Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mitigating the toxic effects of anticancer immunotherapy

Key Points

  • In addition to new FDA-approved drugs, several investigational immune therapies are being developed as anti-cancer approaches in clinical trials

  • Toxicities related to immune therapies are varied and complex; familiarity with common immune-related adverse events is essential for the clinical care of patients

  • Most immune-related toxicities are reversible and can be managed with supportive care or cessation of therapy

  • The early recognition and management of serious immune-related toxicity is essential for patient safety

Abstract

Advances in our understanding of the regulatory mechanisms of the immune system have led to the development of novel approaches for cancer therapy, including inhibition of immune checkpoints with anti-CTLA-4 and anti-PD-1 antibodies. An increasing number of immunomodulatory treatments are under investigation, and are beginning to show promise in clinical trials. As more-effective therapies become available based on modulation of the immune system in order to trigger or enhance antitumour immune responses, clinicians will need to become familiar with recognizing and controlling the adverse effects arising from immune therapy. This Review describes the toxicity profiles for various anticancer therapies based on the use of agents that block immune checkpoints, immunostimulatory agents, and adoptive T-cell therapy (that is, infusion of modified autologous T cells). The management of patients receiving these treatments presents unique challenges for clinicians. Nevertheless, many of the adverse effects associated with these treatments are reversible and can be managed with supportive care either with or without cessation of therapy. This final point is extremely important given the continued development of new cancer immunotherapies, and the importance of safe and effective use of existing effective FDA-approved agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targets of immune modulatory drugs for cancer therapy.

Similar content being viewed by others

References

  1. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Margolin, K. A. et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J. Clin. Oncol. 7, 486–498 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Kirkwood, J. M. et al. A pooled analysis of Eastern Cooperative Oncology Group and Intergroup trials of adjuvant high-dose interferon for melanoma. Clin. Cancer Res. 10, 1670–1677 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Eggermont, A. M. et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet 372, 117–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Mocellin, S. et al. Interferon α adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J. Natl Cancer Inst. 102, 493–501 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Kirkwood, J. M. et al. Mechanisms and management of toxicities associated with high-dose interferon alfa-2b therapy. J. Clin. Oncol. 20, 3703–3718 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Melero, I., Hervas-Stubbs, S., Glennie, M., Pardoll, D. M. & Chen, L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer 7, 95–106 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Ribas, A. et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675206. J. Clin. Oncol. 23, 8968–8977 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Ribas, A. et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J. Clin. Oncol. 31, 616–622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Khattri, R., Auger, J. A., Griffin, M. D., Sharpe, A. H. & Bluestone, J. A. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784–5791 (1999).

    CAS  PubMed  Google Scholar 

  13. Wolchok, J. D. & Saenger, Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 13 (Suppl. 4), 2–9 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Attia, P. et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol. 23, 6043–6053 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Downey, S. G. et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res. 13 (22 Pt 1), 6681–6688 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weber, J. S., Kähler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Di Giacomo, A. M., Biagioli, M. & Maio, M. The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin. Oncol. 37, 499–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Beck, K. E. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol. 24, 2283–2289 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Phan, G. Q., Weber, J. S. & Sondak, V. K. CTLA-4 blockade with monoclonal antibodies in patients with metastatic cancer: surgical issues. Ann. Surg. Oncol. 15, 3014–3021 (2008).

    Article  PubMed  Google Scholar 

  21. Bristol-Myers Squibb. YERVOY (ipilimumab): Immune-mediated Adverse Reaction Management Guide [online], (2011).

  22. Weber, J. et al. A randomized, double-blind, placebo-controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered with or without prophylactic budesonide in patients with unresectable stage III or IV melanoma. Clin. Cancer Res. 15, 5591–5598 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, K. W. et al. Ipilimumab-associated colitis: CT findings. Am. J. Roentgenol. 200, 468–474 (2013).

    Article  Google Scholar 

  24. Robinson, M. R. et al. Cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma: a new cause of uveitis. J. Immunother. 27, 478–479 (2004).

    Article  PubMed  Google Scholar 

  25. Corsello, S. M. et al. Endocrine side effects induced by immune checkpoint inhibitors. J. Clin. Endocrinol. Metab. 98, 1361–1375 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Hamnvik, O. P., Larsen, P. R. & Marqusee, E. Thyroid dysfunction from antineoplastic agents. J. Natl Cancer Inst. 103, 1572–1587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blansfield, J. A. et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J. Immunother. 28, 593–598 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilgenhof, S. & Neyns, B. Anti-CTLA-4 antibody-induced Guillain–Barré syndrome in a melanoma patient. Ann. Oncol. 22, 991–993 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. YERVOY® (ipilimumab) package insert [online], (Bristol-Myers Squibb, 2013).

  30. Robert, C. et al. Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin. Cancer Res. 19, 2232–2239 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Wolchok, J. D. et al. Ipilimumab efficacy and safety in patients with advanced melanoma: a retrospective analysis of HLA subtype from four trials. Cancer Immun. 10, 9–14 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Wei, F. et al. Strength of PD-1 signaling differentially affects T-cell effector functions. Proc. Natl Acad. Sci. USA 110, e2480–e2489 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Riley, J. L. & June, C. H. The road to recovery: translating PD-1 biology into clinical benefit. Trends Immunol. 28, 48–50 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ribas, A. Tumor immunotherapy directed at PD-1. N. Engl. J. Med. 366, 2517–2519 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Sznol, M. et al. Survival and long-term follow-up of safety and response in patients (pts) with advanced melanoma (MEL) in a phase I trial of nivolumab (anti-PD-1; BMS-936558; ONO-4538) [abstract]. J. Clin. Oncol. 31 (Suppl.), CRA9006 (2013).

    Article  Google Scholar 

  40. Hamid, O. et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic melanoma (mM) [abstract]. J. Clin. Oncol. 31 (Suppl.), a9010 (2013).

    Google Scholar 

  41. Chacon, J. A. et al. Co-stimulation through 4–1BB/CD137 improves the expansion and function of CD8+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE 8, e60031 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melero, I. et al. A phase I study of the safety, tolerability, pharmacokinetics, and immunoregulatory activity of urelumab (BMS-663513) in subjects with advanced and/or metastatic solid tumors and relapsed/refractory B-cell non-Hodgkin's lymphoma (B-NHL) [abstract]. J. Clin. Oncol. 31 (Suppl.), TPS3107 (2013).

    Google Scholar 

  43. Sznol, M. et al. Phase I study of BMS-663513 a fully human anti-CD137 agonist monoclonal antibody, in patients (pts) with advanced cancer (CA) [abstract]. J. Clin. Oncol. 26 (Suppl.), a3007 (2008).

    Article  Google Scholar 

  44. Ascierto, P. A. et al. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin. Oncol. 37, 508–516 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Hwu, W. J. Targeted therapy for metastatic melanoma: from bench to bedside. HemOnc Today [online], (2010).

    Google Scholar 

  46. Glaude, R. P. et al. The CD40 agonist antibody CP-870, 893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol. Immunother. 60, 1009–1017 (2011).

    Article  CAS  Google Scholar 

  47. Vonderheide, R. H. et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 25, 876–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Vonderheide, R. H. et al. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2, e23033 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vonderheide, R. H. & Glennie, M. J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035–1043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalos, M. & June, C. H. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity 39, 49–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vonderheide, R. H. & June, C. H. A translational bridge to cancer immunotherapy: exploiting costimulation and target antigens for active and passive T cell immunotherapy. Immunol. Res. 27, 341–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Kalos, M., Levine, B. L. & Porter, D. L. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brentjens, R. et al. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol. Ther. 18, 666–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4–1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Louis, C. U. et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhong, S. et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proc. Natl Acad. Sci. USA 110, 6973–6978 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cameron, B. J. et al. Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci. Transl. Med. 5, 197ra103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morgan, R. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

  67. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-γ production. Blood 90, 2541–2548 (1997).

    CAS  PubMed  Google Scholar 

  69. Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 25, 9543–9553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilmott, J. S. et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin. Cancer Res. 18, 1386–1394 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Ribas, A., Hodi, F. S., Callahan, M., Konto, C. & Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368, 1365–1366 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Hodi, F. S. et al. Multicenter, randomized phase II trial of GM-CSF plus ipilimumab (Ipi) versus Ipi alone in metastatic melanoma: E1608 [abstract]. J. Clin. Oncol. 31 (Suppl.), CRA9007 (2013).

    Article  Google Scholar 

  74. Beatty, G. L. et al. Phase I study of the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of the oral inhibitor of indoleamine 2, 3-dioxygenase (IDO1) INCB024360 in patients (pts) with advanced malignancies [abstract]. J. Clin. Oncol. 31 (Suppl.), a3025 (2013).

    Google Scholar 

  75. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Riley, J. L. Combination checkpoint blockade—taking melanoma immunotherapy to the next level. N. Engl. J. Med. 369, 187–189 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article (researching data for the article, discussions of its content, writing the article, and review or editing of the manuscript before submission).

Corresponding author

Correspondence to Tara C. Gangadhar.

Ethics declarations

Competing interests

R. H. Vonderheide declares the receipt of research funding from Pfizer and Roche. T. G. Gangadhar declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangadhar, T., Vonderheide, R. Mitigating the toxic effects of anticancer immunotherapy. Nat Rev Clin Oncol 11, 91–99 (2014). https://doi.org/10.1038/nrclinonc.2013.245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2013.245

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer