Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating liquid biopsies into the management of cancer

Key Points

  • Patient selection is central to the success of targeted therapy; identification of tumour-specific molecular landscapes is pivotal to guiding treatment choices

  • The genomic landscape of each individual tumour is heterogeneous and changes over time as a result of the Darwinian clonal evolution imposed on cancer cells by selective pressures, including targeted therapy

  • Longitudinal surveillance of clonal evolution is essential for precision medicine, but cannot be effectively achieved using tissue biopsy specimens, owing to sampling issues

  • The blood of patients with cancer contains diverse tumour-derived materials, including circulating cell-free tumour DNA (ctDNA), circulating tumour cells, and exosomes

  • The sampling and analysis of ctDNA or other circulating tumour components present in biological fluids, termed 'liquid biopsy', enables minimally invasive monitoring of tumour evolution over time in the clinic

  • Two different liquid biopsy companion diagnostic tests for EGFR mutations in plasma ctDNA have been approved by the regulatory agencies in Europe and the USA for the selection of patients with non-small-cell lung cancer for anti-EGFR treatment in clinical practice

Abstract

During cancer progression and treatment, multiple subclonal populations of tumour cells compete with one another, with selective pressures leading to the emergence of predominant subclones that replicate and spread most proficiently, and are least susceptible to treatment. At present, the molecular landscapes of solid tumours are established using surgical or biopsy tissue samples. Tissue-based tumour profiles are, however, subject to sampling bias, provide only a snapshot of tumour heterogeneity, and cannot be obtained repeatedly. Genomic profiles of circulating cell-free tumour DNA (ctDNA) have been shown to closely match those of the corresponding tumours, with important implications for both molecular pathology and clinical oncology. Analyses of circulating nucleic acids, commonly referred to as 'liquid biopsies', can be used to monitor response to treatment, assess the emergence of drug resistance, and quantify minimal residual disease. In addition to blood, several other body fluids, such as urine, saliva, pleural effusions, and cerebrospinal fluid, can contain tumour-derived genetic information. The molecular profiles gathered from ctDNA can be further complemented with those obtained through analysis of circulating tumour cells (CTCs), as well as RNA, proteins, and lipids contained within vesicles, such as exosomes. In this Review, we examine how different forms of liquid biopsies can be exploited to guide patient care and should ultimately be integrated into clinical practice, focusing on liquid biopsy of ctDNA — arguably the most clinically advanced approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Liquid biopsies capture the molecular heterogeneity of metastatic cancers.
Figure 2: Body fluids as a source of tumour-derived molecular information.
Figure 3: Monitoring clonal evolution using liquid biopsies.

Similar content being viewed by others

References

  1. Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 795–801 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Diaz, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Russo, M. et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 6, 147–153 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. Murtaza, M. et al. Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat. Commun. 6, 8760 (2015).

    PubMed  Google Scholar 

  5. Morelli, M. P. et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti- EGFR treatment. Ann. Oncol. 26, 731–736 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alix-Panabières, C., Schwarzenbach, H. & Pantel, K. Circulating tumor cells and circulating tumor DNA. Annu. Rev. Med. 63, 199–215 (2012).

    PubMed  Google Scholar 

  7. Reckamp, K. L. et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J. Thorac. Oncol. 11, 1690–1700 (2016).

    PubMed  Google Scholar 

  8. Wang, Y. et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl Med. 7, 293ra104 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Kimura, H. et al. EGFR mutation status in tumour-derived DNA from pleural effusion fluid is a practical basis for predicting the response to gefitinib. Br. J. Cancer 95, 1390–1395 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. De Mattos-Arruda, L. et al. Cerebrospinal fluid- derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat. Commun. 6, 8839 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Diehl, F. et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology 135, 489–498 (2008).

    CAS  PubMed  Google Scholar 

  12. El Messaoudi, S., Rolet, F., Mouliere, F. & Thierry, A. R. Circulating cell free DNA: preanalytical considerations. Clin. Chim. Acta 424, 222–230 (2013).

    CAS  PubMed  Google Scholar 

  13. Yu, M., Stott, S., Toner, M., Maheswaran, S. & Haber, D. A. Circulating tumor cells: approaches to isolation and characterization. J. Cell Biol. 192, 373–382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Diaz, L. A. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Ashworth, T. R. A case of cancer in which cells similar to those in the tumours where seen in the blood after death. Australian Med. J. 14, 146–147 (1869).

    Google Scholar 

  16. Krebs, M. G., Hou, J. M., Ward, T. H., Blackhall, F. H. & Dive, C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther. Adv. Med. Oncol. 2, 351–365 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Krebs, M. G. et al. Molecular analysis of circulating tumour cells — biology and biomarkers. Nat. Rev. Clin. Oncol. 11, 129–144 (2014).

    CAS  PubMed  Google Scholar 

  18. Haber, D. A. & Velculescu, V. E. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 4, 650–661 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lianidou, E. S. & Markou, A. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin. Chem. 57, 1242–1255 (2011).

    CAS  PubMed  Google Scholar 

  20. Alix-Panabières, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

    PubMed  Google Scholar 

  21. Pantel, K., Brakenhoff, R. H. & Brandt, B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat. Rev. Cancer 8, 329–340 (2008).

    CAS  PubMed  Google Scholar 

  22. Joosse, S. A. & Pantel, K. Biologic challenges in the detection of circulating tumor cells. Cancer Res. 73, 8–11 (2013).

    CAS  PubMed  Google Scholar 

  23. Alix-Panabières, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    PubMed  Google Scholar 

  24. Lin, H. K. et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16, 5011–5018 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Paterlini-Brechot, P. & Benali, N. L. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 253, 180–204 (2007).

    CAS  PubMed  Google Scholar 

  26. Zhang, L. et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci. Transl Med. 5, 180ra148 (2013).

    Google Scholar 

  27. Ameri, K. et al. Circulating tumour cells demonstrate an altered response to hypoxia and an aggressive phenotype. Br. J. Cancer 102, 561–569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 345, 216–220 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cayrefourcq, L. et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 75, 892–901 (2015).

    CAS  PubMed  Google Scholar 

  30. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat. Biotechnol. 31, 539–544 (2013).

    CAS  PubMed  Google Scholar 

  31. Rossi, E. et al. Retaining the long-survive capacity of circulating tumor cells (CTCs) followed by xeno-transplantation: not only from metastatic cancer ofthe breast but also of prostate cancer patients. Oncoscience 1, 49–56 (2014).

    PubMed  Google Scholar 

  32. Hodgkinson, C. L. et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 20, 897–903 (2014).

    CAS  PubMed  Google Scholar 

  33. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Khoo, B. L. et al. Liquid biopsy and therapeutic response: circulating tumor cell cultures for evaluation of anticancer treatment. Sci. Adv. 2, e1600274 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Cocucci, E., Racchetti, G. & Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

    CAS  PubMed  Google Scholar 

  36. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999).

    CAS  PubMed  Google Scholar 

  37. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).

    CAS  PubMed  Google Scholar 

  38. Simons, M. & Raposo, G. Exosomes — vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    CAS  PubMed  Google Scholar 

  39. Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920 (2010).

    CAS  PubMed  Google Scholar 

  40. Liao, J., Liu, R., Yin, L. & Pu, Y. Expression profiling of exosomal miRNAs derived from human esophageal cancer cells by Solexa high-throughput sequencing. Int. J. Mol. Sci. 15, 15530–15551 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wieckowski, E. & Whiteside, T. L. Human tumor-derived versus dendritic cell-derived exosomes have distinct biologic roles and molecular profiles. Immunol. Res. 36, 247–254 (2006).

    CAS  PubMed  Google Scholar 

  42. Lobb, R. J. et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031 (2015).

    PubMed  Google Scholar 

  43. Zhang, J. et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13, 17–24 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rani, S. et al. Isolation of exosomes for subsequent mRNA, microRNA, and protein profiling. Methods Mol. Biol. 784, 181–195 (2011).

    CAS  PubMed  Google Scholar 

  45. Stevens, G. L., Scheer, W. D. & Levine, E. A. Detection of tyrosinase mRNA from the blood of melanoma patients. Cancer Epidemiol. Biomarkers Prev. 5, 293–296 (1996).

    CAS  PubMed  Google Scholar 

  46. Taylor, D. D. & Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21 (2008).

    CAS  PubMed  Google Scholar 

  47. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D. & Remaley, A. T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13, 423–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Joosse, S. A. & Pantel, K. Tumor-educated platelets as liquid biopsy in cancer patients. Cancer Cell 28, 552–554 (2015).

    CAS  PubMed  Google Scholar 

  49. Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl Acad. Sci. USA 105, 10513–10518 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rabinowits, G., Gerçel-Taylor, C., Day, J. M., Taylor, D. D. & Kloecker, G. H. Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46 (2009).

    CAS  PubMed  Google Scholar 

  52. García-Olmo, D. C., Picazo, M. G., Toboso, I., Asensio, A. I. & García-Olmo, D. Quantitation of cell-free DNA and RNA in plasma during tumor progression in rats. Mol. Cancer 12, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Ono, S., Lam, S., Nagahara, M. & Hoon, D. S. Circulating microRNA biomarkers as liquid biopsy for cancer patients: pros and cons of current assays. J. Clin. Med. 4, 1890–1907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwarzenbach, H., Nishida, N., Calin, G. A. & Pantel, K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat. Rev. Clin. Oncol. 11, 145–156 (2014).

    CAS  PubMed  Google Scholar 

  55. Wren Laboratories, LLC. NETest Supporting Data. Wrenlaboratories.com http://www.wrenlaboratories.com/provider/netest-supporting-data/ (2017).

  56. Mandel, P. & Metais, P. Les acides nucléiques du plasma sanguin chez l'homme [French]. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  Google Scholar 

  57. Swarup, V. & Rajeswari, M. R. Circulating (cell-free) nucleic acids — a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 581, 795–799 (2007).

    CAS  PubMed  Google Scholar 

  58. Leon, S. A., Shapiro, B., Sklaroff, D. M. & Yaros, M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 37, 646–650 (1977).

    CAS  PubMed  Google Scholar 

  59. Stroun, M. et al. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 46, 318–322 (1989).

    CAS  PubMed  Google Scholar 

  60. Wang, J. Y. et al. Molecular detection of APC, K-ras, and p53 mutations in the serum of colorectal cancer patients as circulating biomarkers. World J. Surg. 28, 721–726 (2004).

    PubMed  Google Scholar 

  61. Shaw, J. A. et al. Microsatellite alterations plasma DNA of primary breast cancer patients. Clin. Cancer Res. 6, 1119–1124 (2000).

    CAS  PubMed  Google Scholar 

  62. Fujiwara, K. et al. Identification of epigenetic aberrant promoter methylation in serum DNA is useful for early detection of lung cancer. Clin. Cancer Res. 11, 1219–1225 (2005).

    CAS  PubMed  Google Scholar 

  63. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  64. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lo, Y. M. et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl Med. 2, 61ra91 (2010).

    CAS  PubMed  Google Scholar 

  66. Heitzer, E. et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int. J. Cancer 133, 346–356 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lo, Y. M. et al. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 64, 218–224 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jung, M., Klotzek, S., Lewandowski, M., Fleischhacker, M. & Jung, K. Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin. Chem. 49, 1028–1029 (2003).

    CAS  PubMed  Google Scholar 

  69. Millholland, J. M., Li, S., Fernandez, C. A. & Shuber, A. P. Detection of low frequency FGFR3 mutations in the urine of bladder cancer patients using next-generation deep sequencing. Res. Rep. Urol. 4, 33–40 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y., Zhou, X., St John, M. A. & Wong, D. T. RNA profiling of cell-free saliva using microarray technology. J. Dent. Res. 83, 199–203 (2004).

    CAS  PubMed  Google Scholar 

  71. Pan, W., Gu, W., Nagpal, S., Gephart, M. H. & Quake, S. R. Brain tumor mutations detected in cerebral spinal fluid. Clin. Chem. 61, 514–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. De Mattos-Arruda, L. et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann. Oncol. 25, 1729–1735 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Soh, J. et al. Usefulness of EGFR mutation screening in pleural fluid to predict the clinical outcome of gefitinib treated patients with lung cancer. Int. J. Cancer 119, 2353–2358 (2006).

    CAS  PubMed  Google Scholar 

  74. Kawahara, A. et al. Epidermal growth factor receptor mutation status in cell-free DNA supernatant of bronchial washings and brushings. Cancer Cytopathol. 123, 620–628 (2015).

    CAS  PubMed  Google Scholar 

  75. Wang, Y. et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc. Natl Acad. Sci. USA 112, 9704–9709 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, J. et al. Presence of donor- and recipient-derived DNA in cell-free urine samples of renal transplantation recipients: urinary DNA chimerism. Clin. Chem. 45, 1741–1746 (1999).

    CAS  PubMed  Google Scholar 

  77. Botezatu, I. et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism. Clin. Chem. 46, 1078–1084 (2000).

    CAS  PubMed  Google Scholar 

  78. Simkin, M., Abdalla, M., El-Mogy, M. & Haj-Ahmad, Y. Differences in the quantity of DNA found in the urine and saliva of smokers versus nonsmokers: implications for the timing of epigenetic events. Epigenomics 4, 343–352 (2012).

    CAS  PubMed  Google Scholar 

  79. Hoque, M. O. et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res. 64, 5511–5517 (2004).

    CAS  PubMed  Google Scholar 

  80. Bryzgunova, O. E. et al. Isolation and comparative study of cell-free nucleic acids from human urine. Ann. N. Y. Acad. Sci. 1075, 334–340 (2006).

    CAS  PubMed  Google Scholar 

  81. Su, Y. H. et al. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J. Mol. Diagn. 6, 101–107 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Melkonyan, H. S. et al. Transrenal nucleic acids: from proof of principle to clinical tests. Ann. N. Y. Acad. Sci. 1137, 73–81 (2008).

    CAS  PubMed  Google Scholar 

  83. Tsui, N. B. et al. High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS ONE 7, e48319 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nadano, D., Yasuda, T. & Kishi, K. Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem. 39, 448–452 (1993).

    CAS  PubMed  Google Scholar 

  85. Mall, C., Rocke, D. M., Durbin-Johnson, B. & Weiss, R. H. Stability of miRNA in human urine supports its biomarker potential. Biomark. Med. 7, 623–631 (2013).

    CAS  PubMed  Google Scholar 

  86. Li, M. et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and itspotential as biomarkers. Phil. Trans. R. Soc. B http://dx.doi.org/10.1098/rstb.2013.0502 (2014).

  87. Turchinovich, A., Weiz, L., Langheinz, A. & Burwinkel, B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 39, 7223–7233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Eisenberger, C. F. et al. Diagnosis of renal cancer by molecular urinalysis. J. Natl Cancer Inst. 91, 2028–2032 (1999).

    CAS  PubMed  Google Scholar 

  89. Goessl, C., Müller, M., Straub, B. & Miller, K. DNA alterations in body fluids as molecular tumor markers for urological malignancies. Eur. Urol. 41, 668–676 (2002).

    CAS  PubMed  Google Scholar 

  90. Damkier, H. H., Brown, P. D. & Praetorius, J. Cerebrospinal fluid secretion by the choroid plexus. Physiol. Rev. 93, 1847–1892 (2013).

    CAS  PubMed  Google Scholar 

  91. Segal, M. B. Extracellular and cerebrospinal fluids. J. Inherit. Metab. Dis. 16, 617–638 (1993).

    CAS  PubMed  Google Scholar 

  92. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014).

    PubMed  PubMed Central  Google Scholar 

  93. von Hoff, K. & Rutkowski, S. Medulloblastoma. Curr. Treat. Options Neurol. 14, 416–426 (2012).

    PubMed  Google Scholar 

  94. Chamberlain, M. C., Kormanik, P. A. & Glantz, M. J. A comparison between ventricular and lumbar cerebrospinal fluid cytology in adult patients with leptomeningeal metastases. Neuro Oncol. 3, 42–45 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bougel, S. et al. Methylation of the hTERT promoter: a novel cancer biomarker for leptomeningeal metastasis detection in cerebrospinal fluids. Clin. Cancer Res. 19, 2216–2223 (2013).

    CAS  PubMed  Google Scholar 

  96. Samuel, N., Remke, M., Rutka, J. T., Raught, B. & Malkin, D. Proteomic analyses of CSF aimed at biomarker development for pediatric brain tumors. J. Neurooncol. 118, 225–238 (2014).

    CAS  PubMed  Google Scholar 

  97. Baraniskin, A. et al. Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood 117, 3140–3146 (2011).

    CAS  PubMed  Google Scholar 

  98. Saadatpour, L. et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther. 23, 415–418 (2016).

    CAS  PubMed  Google Scholar 

  99. Akers, J. C. et al. miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. J. Neurooncol. 123, 205–216 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gallo, A. & Alevizos, I. Isolation of circulating microRNA in saliva. Methods Mol. Biol. 1024, 183–190 (2013).

    CAS  PubMed  Google Scholar 

  101. Gallo, A., Tandon, M., Alevizos, I. & Illei, G. G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7, e30679 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Han, H. S. et al. Downregulation of cell-free miR-198 as a diagnostic biomarker for lung adenocarcinoma-associated malignant pleural effusion. Int. J. Cancer 133, 645–652 (2013).

    CAS  PubMed  Google Scholar 

  103. Wang, T. et al. Cell-free microRNA expression profiles in malignant effusion associated with patient survival in non-small cell lung cancer. PLoS ONE 7, e43268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Oh, J. E. et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes. J. Mol. Diagn. 12, 418–424 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Reis-Filho, J. S. Next-generation sequencing. Breast Cancer Res. 11 (Suppl. 3), S12 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Cai, X., Janku, F., Zhan, Q. & Fan, J. B. Accessing genetic information with liquid biopsies. Trends Genet. 31, 564–575 (2015).

    CAS  PubMed  Google Scholar 

  107. Siravegna, G. & Bardelli, A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol. 15, 449 (2014).

    PubMed  PubMed Central  Google Scholar 

  108. Nagaiah, G. & Abraham, J. Circulating tumor cells in the management of breast cancer. Clin. Breast Cancer 10, 209–216 (2010).

    CAS  PubMed  Google Scholar 

  109. Toss, A., Mu, Z., Fernandez, S. & Cristofanilli, M. CTC enumeration and characterization: moving toward personalized medicine. Ann. Transl Med. 2, 108 (2014).

    PubMed  PubMed Central  Google Scholar 

  110. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    CAS  PubMed  Google Scholar 

  111. Cohen, S. J. et al. Relationship of circulating tumor cellsto tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 3213–3221 (2008).

    PubMed  Google Scholar 

  112. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    CAS  PubMed  Google Scholar 

  113. Allard, W. J. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin. Cancer Res. 10, 6897–6904 (2004).

    PubMed  Google Scholar 

  114. Hayes, D. F. et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin. Cancer Res. 12, 4218–4224 (2006).

    CAS  PubMed  Google Scholar 

  115. Janni, W. J. et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin. Cancer Res. 22, 2583–2593 (2016).

    CAS  PubMed  Google Scholar 

  116. Yu, M. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339, 580–584 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stott, S. L. et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci. Transl Med. 2, 25ra23 (2010).

    PubMed  PubMed Central  Google Scholar 

  118. Powell, A. A. et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS ONE 7, e33788 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Pestrin, M. et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res. Treat. 118, 523–530 (2009).

    CAS  PubMed  Google Scholar 

  120. Butt, A. Q. & Mills, K. H. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene 33, 4623–4631 (2014).

    CAS  PubMed  Google Scholar 

  121. Mazel, M. et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol. Oncol. 9, 1773–1782 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sozzi, G. et al. Quantification of free circulating DNA as a diagnostic marker in lung cancer. J. Clin. Oncol. 21, 3902–3908 (2003).

    CAS  PubMed  Google Scholar 

  123. Kim, K. et al. Circulating cell-free DNA as a promising biomarker in patients with gastric cancer: diagnostic validity and significant reduction of cfDNA after surgical resection. Ann. Surg. Treat. Res. 86, 136–142 (2014).

    PubMed  PubMed Central  Google Scholar 

  124. Frattini, M. et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 263, 170–181 (2008).

    CAS  PubMed  Google Scholar 

  125. Chen, X. et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin. Cancer Res. 5, 2297–2303 (1999).

    CAS  PubMed  Google Scholar 

  126. Chan, K. C. et al. Early detection of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA analysis in a surveillance program. Cancer 119, 1838–1844 (2013).

    CAS  PubMed  Google Scholar 

  127. Gormally, E. et al. TP53 and KRAS2 mutations in plasma DNA of healthy subjects and subsequent cancer occurrence: a prospective study. Cancer Res. 66, 6871–6876 (2006).

    CAS  PubMed  Google Scholar 

  128. Welch, H. G. & Black, W. C. Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010).

    PubMed  Google Scholar 

  129. Higgins, M. J. et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin. Cancer Res. 18, 3462–3469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dawson, S. J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Google Scholar 

  131. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  132. Misale, S. et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486, 532–536 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Thierry, A. R. et al. Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat. Med. 20, 430–435 (2014).

    CAS  PubMed  Google Scholar 

  134. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Narayan, A. et al. Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res. 72, 3492–3498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Takai, E. et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci. Rep. 5, 18425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liggett, T. et al. Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer 116, 1674–1680 (2010).

    CAS  PubMed  Google Scholar 

  138. Sturgeon, S. R. et al. Detection of promoter methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast disease controls. Epigenetics 7, 1258–1267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ellinger, J. et al. CpG island hypermethylation in cell-free serum DNA identifies patients with localized prostate cancer. Prostate 68, 42–49 (2008).

    CAS  PubMed  Google Scholar 

  140. Ellinger, J. et al. CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. J. Urol. 182, 324–329 (2009).

    CAS  PubMed  Google Scholar 

  141. Kadam, S. K., Farmen, M. & Brandt, J. T. Quantitative measurement of cell-free plasma DNA and applications for detecting tumor genetic variation and promoter methylation in a clinical setting. J. Mol. Diagn. 14, 346–356 (2012).

    CAS  PubMed  Google Scholar 

  142. Kristensen, L. S. & Hansen, L. L. PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin. Chem. 55, 1471–1483 (2009).

    CAS  PubMed  Google Scholar 

  143. Chan, K. C. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA 110, 18761–18768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Balaña, C. et al. O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin. Cancer Res. 9, 1461–1468 (2003).

    PubMed  Google Scholar 

  145. Barault, L. et al. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. Ann. Oncol. 26, 1994–1999 (2015).

    CAS  PubMed  Google Scholar 

  146. Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863 (2009).

    PubMed  PubMed Central  Google Scholar 

  147. Reinert, T. et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut 65, 625–634 (2015).

    PubMed  Google Scholar 

  148. Beaver, J. A. et al. Detection of cancer DNA in plasma of early stage breast cancer patients. Clin. Cancer Res. 20, 2643–2650 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).

    PubMed  Google Scholar 

  150. Roschewski, M. et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 16, 541–549 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Tie, J. et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann. Oncol. 26, 1715–1722 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Schiavon, G. et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci. Transl Med. 7, 313ra182 (2015).

    PubMed  PubMed Central  Google Scholar 

  153. Murtaza, M. et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497, 108–112 (2013).

    CAS  PubMed  Google Scholar 

  154. Thress, K. S. et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer 90, 509–515 (2015).

    PubMed  Google Scholar 

  155. Misale, S. et al. Blockade of EGFR and MEK intercepts heterogeneous mechanisms of acquired resistance to anti-EGFR therapies in colorectal cancer. Sci. Transl Med. 6, 224ra26 (2014).

    PubMed  Google Scholar 

  156. Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3, 658–673 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Arena, S. et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin. Cancer Res. 21, 2157–2166 (2015).

    CAS  PubMed  Google Scholar 

  158. Russo, M. et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov. 6, 36–44 (2016).

    CAS  PubMed  Google Scholar 

  159. Hata, A., Katakami, N., Kaji, R., Fujita, S. & Imai, Y. Does T790M disappear? Successful gefitinib rechallenge after T790M disappearance in a patient with EGFR-mutant non-small-cell lung cancer. J. Thorac. Oncol. 8, e27–e29 (2013).

    PubMed  Google Scholar 

  160. Hata, A. et al. Panitumumab rechallenge in chemorefractory patients with metastatic colorectal cancer. J. Gastrointest. Cancer 44, 456–459 (2013).

    PubMed  Google Scholar 

  161. Hata, A., Katakami, N. & Kitajima, N. Successful cetuximab therapy after failure of panitumumab rechallenge in a patient with metastatic colorectal cancer: restoration of drug sensitivity after anti-EGFR monoclonal antibody-free interval. J. Gastrointest. Cancer 45, 506–507 (2014).

    PubMed  Google Scholar 

  162. Seghers, A. C., Wilgenhof, S., Lebbé, C. & Neyns, B. Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor. Melanoma Res. 22, 466–472 (2012).

    PubMed  Google Scholar 

  163. Nakamura, T. et al. Application of a highly sensitive detection system for epidermal growth factor receptor mutations in plasma DNA. J. Thorac. Oncol. 7, 1369–1381 (2012).

    CAS  PubMed  Google Scholar 

  164. Gremel, G. et al. Distinct sub-clonal tumour responses to therapy revealed by circulating cell-free DNA. Ann. Oncol. 27, 1959–1965 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. El-Hefnawy, T. et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin. Chem. 50, 564–573 (2004).

    CAS  PubMed  Google Scholar 

  166. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    PubMed  PubMed Central  Google Scholar 

  167. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    CAS  PubMed  Google Scholar 

  168. Cardoso, F. et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med. 375, 717–729 (2016).

    CAS  PubMed  Google Scholar 

  169. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kimura, H. et al. Detection of epidermal growth factor receptor mutations in serum as a predictor of the response to gefitinib in patients with non-small-cell lung cancer. Clin. Cancer Res. 12, 3915–3921 (2006).

    CAS  PubMed  Google Scholar 

  171. Han, B. et al. Determining the prevalence of EGFR mutations in Asian and Russian patients (pts) with advanced non-small-cell lung cancer (aNSCLC) of adenocarcinoma (ADC) and non-ADC histology: IGNITE study [abstract 960]. Ann. Oncol. 26 (Suppl. 1), 29–44 (2015).

    Google Scholar 

  172. Reck, M. et al. Investigating the utility of circulating-free tumour-derived DNA (ctDNA) in plasma for the detection of epidermal growth factor receptor (EGFR) mutation status in European and Japanese patients (pts) with advanced non-small-cell lung cancer (NSCLC): ASSESS study. [abstract 35O_PR]. Ann. Oncol. 26 (Suppl. 1), i57–i61 (2015).

    Google Scholar 

  173. Qiu, M. et al. Circulating tumor DNA is effective for the detection of EGFR mutation in non-small cell lung cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 24, 206–212 (2015).

    CAS  PubMed  Google Scholar 

  174. Luo, J., Shen, L. & Zheng, D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci. Rep. 4, 6269 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Bordi, P., Del Re, M., Danesi, R. & Tiseo, M. Circulating DNA in diagnosis and monitoring EGFR gene mutations in advanced non-small cell lung cancer. Transl Lung Cancer Res. 4, 584–597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Karachaliou, N. et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol. 1, 149–157 (2015).

    PubMed  Google Scholar 

  177. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    CAS  PubMed  Google Scholar 

  178. Mok, T. et al. Detection and dynamic changes of EGFR mutations from circulating tumor DNA as a predictor of survival outcomes in NSCLC patients treated with first-line intercalated erlotinib and chemotherapy. Clin. Cancer Res. 21, 3196–3203 (2015).

    CAS  PubMed  Google Scholar 

  179. Weber, B. et al. Detection of EGFR mutations in plasma and biopsies from non-small-cell lung cancer patients by allele-specific PCR assays. BMC Cancer 14, 294 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 4, 1046–1061 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhou, W. et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462, 1070–1074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Oxnard, G. R. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J. Clin. Oncol. 34, 3375–3382 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Sacher, A. G. et al. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2, 1014–1022 (2016).

    PubMed  PubMed Central  Google Scholar 

  184. Guardant Health. Lunar. Guardanthealth.com http://www.guardanthealth.com/lunar/ (2016).

  185. Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. US Food and Drug Administration. Document Number: GEN1500674. FDA http://www.fda.gov/downloads/MedicalDevices/ResourcesforYou/Industry/UCM464092.pdf (2015).

  187. US Food and Drug Administration. Principles for codevelopment of an in vitro companion diagnostic device with a therapeutic product. FDA http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-meddev-gen/documents/document/ucm510824.pdf (2016).

  188. RNCOS Business Consultancy Services. Global Liquid Biopsy Market Outlook to 2020. RNCOS http://www.rncos.com/Market-Analysis-Reports/Global-Liquid-Biopsy-Market-Outlook-to-2020-IM815.htm (2016).

  189. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    CAS  PubMed  Google Scholar 

  190. US Food and Drug Administration. therascreen® EGFR RGQ PCR kit instructions for use (handbook). FDA http://www.accessdata.fda.gov/cdrh_docs/pdf12/P120022c.pdf (2013).

  191. Douillard, J. Y. et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br. J. Cancer 110, 55–62 (2014).

    CAS  PubMed  Google Scholar 

  192. European Medicines Agency. Annex I: summary of product characteristics. EMA http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001016/WC500036358.pdf (2014).

  193. US Food and Drug Administration. PMA P150047: FDA summary of safety and effectiveness data page 1 summary of safety and effectiveness data (SSED). FDA http://www.accessdata.fda.gov/cdrh_docs/pdf15/P150047b.pdf (2016).

  194. US Food and Drug Administration. cobas EGFR Mutation Test v2. FDA http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm504540.htm (2016).

  195. Jenkins, S. et al. Plasma ctDNA analysis for detection of EGFR T790M mutation in patients (pts) with EGFR mutation-positive advanced non-small cell lung cancer (aNSCLC) [abstract 134O_PR]. J. Thorac. Oncol. 11 (Suppl. 4), S57–S166. (2016).

    Google Scholar 

  196. Sacher, A. G. Prospective validation of rapid plasma genotyping for the detection of EGFR and KRAS mutations in advanced lung cancer. JAMA Oncol. 2, 1014–1022 (2016).

    PubMed  PubMed Central  Google Scholar 

  197. Lanman, R. B. et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS ONE 10, e0140712 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Zill, O. A. et al. Somatic genomic landscape of over 15,000 patients with advanced-stage cancer from clinical next-generation sequencing analysis of circulating tumor DNA [abstract]. J. Clin. Oncol. 34 (Suppl.), LBA11501 (2016).

    Google Scholar 

  199. Devonshire, A. S. et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal. Bioanal. Chem. 406, 6499–6512 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Swinkels, D. W., Wiegerinck, E., Steegers, E. A. & de Kok, J. B. Effects of blood-processing protocols on cell-free DNA quantification in plasma. Clin. Chem. 49, 525–526 (2003).

    CAS  PubMed  Google Scholar 

  201. Ignatiadis, M. et al. International study on inter-reader variability for circulating tumor cells in breast cancer. Breast Cancer Res. 16, R43 (2014).

    PubMed  PubMed Central  Google Scholar 

  202. Sorenson, G. D. Detection of mutated KRAS2 sequences as tumor markers in plasma/serum of patients with gastrointestinal cancer. Clin. Cancer Res. 6, 2129–2137 (2000).

    CAS  PubMed  Google Scholar 

  203. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Pixberg, C. F., Schulz, W. A., Stoecklein, N. H. & Neves, R. P. Characterization of DNA methylation in circulating tumor cells. Genes (Basel) 6, 1053–1075 (2015).

    CAS  Google Scholar 

  206. Yamamoto, H. et al. BARHL2 methylation using gastric wash DNA or gastric juice exosomal DNA is a useful marker for early detection of gastric cancer in an H. pylori-independent manner. Clin. Transl Gastroenterol. 7, e184 (2016).

    PubMed  PubMed Central  Google Scholar 

  207. Krebs, M. G. et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J. Clin. Oncol. 29, 1556–1563 (2011).

    PubMed  Google Scholar 

  208. Watanabe, K. et al. EGFR mutation analysis of circulating tumor DNA using an improved PNA-LNA PCR clamp method. Can. Respir. J. 2016, 5297329 (2016).

    PubMed  PubMed Central  Google Scholar 

  209. Spindler, K. L., Pallisgaard, N., Vogelius, I. & Jakobsen, A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin. Cancer Res. 18, 1177–1185 (2012).

    CAS  PubMed  Google Scholar 

  210. Milbury, C. A. et al. Multiplex amplification coupled with COLD-PCR and high resolution melting enables identification of low-abundance mutations in cancer samples with low DNA content. J. Mol. Diagn. 13, 220–232 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Diehl, F. et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat. Methods 3, 551–559 (2006).

    CAS  PubMed  Google Scholar 

  212. Sanmamed, M. F. et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin. Chem. 61, 297–304 (2015).

    CAS  PubMed  Google Scholar 

  213. Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Taly, V. et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin. Chem. 59, 1722–1731 (2013).

    CAS  PubMed  Google Scholar 

  215. Mouliere, F. et al. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol. 6, 319–328 (2013).

    PubMed  PubMed Central  Google Scholar 

  216. Mouliere, F., El Messaoudi, S., Pang, D., Dritschilo, A. & Thierry, A. R. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol. Oncol. 8, 927–941 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Rothé, F. et al. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann. Oncol. 25, 1959–1965 (2014).

    PubMed  Google Scholar 

  218. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl Med. 4, 136ra68 (2012).

    PubMed  Google Scholar 

  219. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. & Vogelstein, B. Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl Acad. Sci. USA 108, 9530–9535 (2011).

    PubMed  PubMed Central  Google Scholar 

  220. Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl Med. 4, 162ra154 (2012).

    PubMed  PubMed Central  Google Scholar 

  222. Diaz, L. A., Sausen, M., Fisher, G. A. & Velculescu, V. E. Insights into therapeutic resistance from whole-genome analyses of circulating tumor DNA. Oncotarget 4, 1856–1857 (2013).

    PubMed  PubMed Central  Google Scholar 

  223. Chan, K. C. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224 (2013).

    CAS  PubMed  Google Scholar 

  224. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl Med. 2, 20ra14 (2010).

    PubMed  PubMed Central  Google Scholar 

  225. McBride, D. J. et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer 49, 1062–1069 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Elizabeth Cook, a US-based freelancer graphic artist, for her assistance in drafting the figures for this article, and Beth Van Emburgh and Cosimo Martino of the Candiolo Cancer Institute for their assistance in revising the text. The work of the G.S. and A.B. is supported by the European Community's Seventh Framework Programme under grant agreement no. 602901 MErCuRIC, grant agreement no. 635342–2 MoTriColor, and IMI contract n. 115749 CANCER-ID; AIRC (Associazione Italiana per la Ricerca sul Cancro) 2010 Special Programme Molecular Clinical Oncology 5 per mille, project no. 9970; Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille 2010 e 2011 Ministero della Salute; and AIRC Investigator Grants project 16788.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data for article, discussions of content, and writing, review and editing of manuscript before submission.

Corresponding author

Correspondence to Alberto Bardelli.

Ethics declarations

Competing interests

G.S. is a consultant for Trovagene. A.B. is a member of the scientific advisory board for Biocartis, Horizon Discovery, and Trovagene. S.M. and S.S. declare no competing interests.

Supplementary information

Supplementary information S1 (table)

List of ongoing oncology clinical trials incorporating cfDNA analysis (DOC 122 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siravegna, G., Marsoni, S., Siena, S. et al. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14, 531–548 (2017). https://doi.org/10.1038/nrclinonc.2017.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.14

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer