Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants and clinical implications of chromosomal instability in cancer

Key Points

  • Chromosomal instability (CIN) drives intratumoural heterogeneity, resulting in the temporal and spatial diversification of tumour subclones

  • CIN enables cancer cells to rapidly explore complex genetic makeups by potentially causing the simultaneous acquisition of whole-chromosome or segmental aneuploidy, structural chromosomal aberrations, and the acquisition of mutations

  • CIN accelerates phenotypic adaptation under selective pressures encountered during tumour evolution and therapy, leading to a poor clinical outcome

  • Paradoxically, high levels of CIN are tumour suppressive owing to the frequent generation of unviable karyotypes, while CIN tolerance and attenuation mechanisms allow an optimal equilibrium to be reached, leading to sustainable CIN propagation

  • A deeper understanding of the vulnerabilities associated with CIN and the development of clinically applicable biomarkers are needed both for patient stratification and to leverage new therapeutic opportunities

Abstract

Aberrant chromosomal architecture, ranging from small insertions or deletions to large chromosomal alterations, is one of the most common characteristics of cancer genomes. Chromosomal instability (CIN) underpins much of the intratumoural heterogeneity observed in cancers and drives phenotypic adaptation during tumour evolution. Thus, an urgent need exists to increase our efforts to target CIN as if it were a molecular entity. Indeed, CIN accelerates the development of anticancer drug resistance, often leading to treatment failure and disease recurrence, which limit the effectiveness of most current therapies. Identifying novel strategies to modulate CIN and to exploit the fitness cost associated with aneuploidy in cancer is, therefore, of paramount importance for the successful treatment of cancer. Modern sequencing and analytical methods greatly facilitate the identification and cataloguing of somatic copy-number alterations and offer new possibilities to better exploit the dynamic process of CIN. In this Review, we describe the principles governing CIN propagation in cancer and how CIN might influence sensitivity to immune-checkpoint inhibition, and survey the vulnerabilities associated with CIN that offer potential therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Merotely, tetraploidy, and chromosomal instability attenuation.
Figure 2: Effect of chromosomal instability tolerance and attenuation on the propagation of cells with complex karyotypes.

Similar content being viewed by others

References

  1. Choma, D., Daurès, J. P., Quantin, X. & Pujol, J. L. Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data. Br. J. Cancer 85, 14–22 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walther, A., Houlston, R. & Tomlinson, I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 57, 941–950 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kuipers, E. J. et al. Colorectal cancer. Nat. Rev. Dis. Primers 1, 15065 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lennartz, M. et al. The combination of DNA ploidy status and PTEN/6q15 deletions provides strong and independent prognostic information in prostate cancer. Clin. Cancer Res. 22, 2802–2811 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Donepudi, M. S., Kondapalli, K., Amos, S. J. & Venkanteshan, P. Breast cancer statistics and markers. J. Cancer Res. Ther. 10, 506–511 (2014).

    PubMed  Google Scholar 

  7. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  8. Schvartzman, J.-M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nat. Rev. Cancer 10, 102–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13, 189–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Solomon, D. A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holland, A. J. & Cleveland, D. W. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 10, 478–487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gregan, J., Polakova, S., Zhang, L., Tolić-Nørrelykke, I. M. & Cimini, D. Merotelic kinetochore attachment: causes and effects. Trends Cell Biol. 21, 374–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ertych, N. et al. Increased microtubule assembly rates influence chromosomal instability in colorectal cancer cells. Nat. Cell Biol. 16, 779–791 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bakhoum, S. F., Thompson, S. L., Manning, A. L. & Compton, D. A. Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat. Cell Biol. 11, 27–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. Nature 460, 278–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D'Assoro, A. B., Lingle, W. L. & Salisbury, J. L. Centrosome amplification and the development of cancer. Oncogene 21, 6146–6153 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Silkworth, W. T., Nardi, I. K., Scholl, L. M. & Cimini, D. Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLOS ONE 4, e6564–e6569 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ganem, N. J., Storchova, Z. & Pellman, D. Tetraploidy, aneuploidy and cancer. Curr. Opin. Genet. Dev. 17, 157–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 5, 45–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Davoli, T. & de Lange, T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol. 27, 585–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dewhurst, S. M. et al. Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov. 4, 175–185 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sennerstam, R. B. Hyperdiploidy tetraploidization and genomic instability in breast cancer — a case report study. J. Carcinog. Mutagen. 4, 144 (2013).

    Article  Google Scholar 

  26. Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gerstung, M. et al. The evolutionary history of 2,658 cancers. bioRxivorg https://doi.org/10.1101/161562 (2017).

  28. Abou-Elhamd, K.-E. A. & Habib, T. N. The flow cytometric analysis of premalignant and malignant lesions in head and neck squamous cell carcinoma. Oral Oncol. 43, 366–372 (2007).

    Article  PubMed  Google Scholar 

  29. Barrett, M. T. et al. Molecular phenotype of spontaneously arising 4N (G2-tetraploid) intermediates of neoplastic progression in Barrett's esophagus. Cancer Res. 63, 4211–4217 (2003).

    CAS  PubMed  Google Scholar 

  30. Olaharski, A. J. et al. Tetraploidy and chromosomal instability are early events during cervical carcinogenesis. Carcinogenesis 27, 337–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Burrell, R. A. et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 494, 492–496 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mullins, J. M. & Biesele, J. J. Cytokinetic activities in a human cell line: the midbody and intercellular bridge. Tissue Cell 5, 47–61 (1973).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, Q. & King, R. W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038–1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Davoli, T. & de Lange, T. Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21, 765–776 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pampalona, J., Frías, C., Genescà, A. & Tusell, L. Progressive telomere dysfunction causes cytokinesis failure and leads to the accumulation of polyploid cells. PLOS Genet. 8, e1002679 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, C.-Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hatch, E. M., Fischer, A. H., Deerinck, T. J. & Hetzer, M. W. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell 154, 47–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nik-Zainal, S. et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roberts, S. A. & Gordenin, D. A. Hypermutation in human cancer genomes: footprints and mechanisms. Nat. Rev. Cancer 14, 786–800 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Takaki, T. et al. Actomyosin drives cancer cell nuclear dysmorphia and threatens genome stability. Nat. Commun. 8, 1–13 (2017).

    Article  Google Scholar 

  48. Comaills, V. et al. Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition. Cell Rep. 17, 2632–2647 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dai, C., Sun, F., Zhu, C. & Hu, X. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability — an implication in aneuploid human tumors. PLOS ONE 8, e63054 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kondoh, M. et al. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLOS ONE 8, e80349 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Krajcovic, M. et al. A non-genetic route to aneuploidy in human cancers. Nat. Cell Biol. 13, 324–330 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Overholtzer, M. & Brugge, J. S. The cell biology of cell-in-cell structures. Nat. Rev. Mol. Cell Biol. 9, 796–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Sheltzer, J. M. et al. Aneuploidy drives genomic instability in yeast. Science 333, 1026–1030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sheltzer, J. M. et al. Single-chromosome gains commonly function as tumor suppressors. Cancer Cell 31, 240–255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Passerini, V. et al. The presence of extra chromosomes leads to genomic instability. Nat. Commun. 7, 1–12 (2016).

    Article  CAS  Google Scholar 

  56. Rancati, G. et al. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135, 879–893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pavelka, N. et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468, 321–325 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Selmecki, A. M. et al. Polyploidy can drive rapid adaptation in yeast. Nature 519, 349–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Selmecki, A. M., Dulmage, K., Cowen, L. E., Anderson, J. B. & Berman, J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLOS Genet. 5, e1000705–1000716 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lee, A. J. X. et al. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res. 71, 1858–1870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuznetsova, A. Y. et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14, 2810–2820 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma, S. V. & Settleman, J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 21, 3214–3231 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Rowald, K. et al. Negative selection and chromosome instability induced by Mad2 overexpression delay breast cancer but facilitate oncogene-independent outgrowth. Cell Rep. 15, 2679–2691 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sotillo, R., Schvartzman, J.-M., Socci, N. D. & Benezra, R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature 464, 436–440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Gao, Y. et al. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells. Genome Res. 27, 1312–1322 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Xue, Y. et al. An approach to suppress the evolution of resistance in BRAFV600E-mutant cancer. Nat. Med. 23, 929–937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Bakhoum, S. F. et al. Numerical chromosomal instability mediates susceptibility to radiation treatment. Nat. Commun. 6, 1–10 (2015).

    Article  CAS  Google Scholar 

  71. Lee, H. S. et al. Effects of anticancer drugs on chromosome instability and new clinical implications for tumor-suppressing therapies. Cancer Res. 76, 902–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, J.-H. et al. Development of a novel HAC-based 'gain of signal' quantitative assay for measuring chromosome instability (CIN) in cancer cells. Oncotarget 7, 14841–14856 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473–485 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Pfau, S. J., Silberman, R. E., Knouse, K. A. & Amon, A. Aneuploidy impairs hematopoietic stem cell fitness and is selected against in regenerating tissues in vivo. Genes Dev. 30, 1395–1408 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ganmore, I., Smooha, G. & Izraeli, S. Constitutional aneuploidy and cancer predisposition. Hum. Mol. Genet. 18, R84–R93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Williams, B. R. et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322, 703–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tang, Y.-C. & Amon, A. Gene copy-number alterations: a cost-benefit analysis. Cell 152, 394–405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dürrbaum, M. & Storchova, Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J. 283, 791–802 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Sheltzer, J. M. A transcriptional and metabolic signature of primary aneuploidy is present in chromosomally unstable cancer cells and informs clinical prognosis. Cancer Res. 73, 6401–6412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Komlodi-Pasztor, E., Sackett, D., Wilkerson, J. & Fojo, T. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 8, 244–250 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Struikmans, H., Kal, H. B., Hordijk, G. J. & van der Tweel, I. Proliferative capacity in head and neck cancer. Head Neck 23, 484–491 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Haustermans, K. & Fowler, J. F. Is there a future for cell kinetic measurements using IdUrd or BdUrd? Int. J. Radiat. Oncol. Biol. Phys. 49, 505–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Cutress, R. I., Mullee, M. A. & Rew, D. A. Clinical outcome and bromodeoxyuridine derived proliferation indices in 100 colonic and rectal carcinomas. Eur. J. Surg. Oncol. (EJSO) 28, 516–519 (2002).

    Article  CAS  Google Scholar 

  84. Stanton, P. D., Cooke, T. G., Forster, G., Smith, D. & Going, J. J. Cell kinetics in vivo of human breast cancer. Br. J. Surg. 83, 98–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Tovey, S. M. et al. Outcome and human epidermal growth factor receptor (HER) 1–4 status in invasive breast carcinomas with proliferation indices evaluated by bromodeoxyuridine labelling. Breast Cancer Res. 6, R246–R251 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Orth, J. D. et al. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics. Cancer Res. 71, 4608–4616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dodgson, S. E., Santaguida, S., Kim, S., Sheltzer, J. & Amon, A. The pleiotropic deubiquitinase Ubp3 confers aneuploidy tolerance. Genes Dev. 30, 2259–2271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Torres, E. M. et al. Identification of aneuploidy- tolerating mutations. Cell 143, 71–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thompson, S. L. & Compton, D. A. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J. Cell Biol. 188, 369–381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Foijer, F. et al. Chromosome instability induced by Mps1 and p53 mutation generates aggressive lymphomas exhibiting aneuploidy-induced stress. Proc. Natl Acad. Sci. USA 111, 13427–13432 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Soto, M. et al. p53 prohibits propagation of chromosome segregation errors that produce structural aneuploidies. Cell Rep. 19, 2423–2431 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Santaguida, S. et al. Chromosome mis-segregation generates cell- cycle-arrested cells with complex karyotypes that are eliminated by the immune system. Dev. Cell 41, 638–651 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333, 1895–1898 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Sansregret, L. et al. APC/C dysfunction limits excessive cancer chromosomal instability. Cancer Discov. 7, 218–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. López-García, C. et al. BCL9L dysfunction impairs caspase-2 expression permitting aneuploidy tolerance in colorectal cancer. Cancer Cell 31, 79–93 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Oliver, T. G. et al. Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. Mol. Cell 43, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Storchova, Z. et al. Genome-wide genetic analysis of polyploidy in yeast. Nature 443, 541–547 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Ganem, N. J. & Pellman, D. Limiting the proliferation of polyploid cells. Cell 131, 437–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl Med. 7, 283ra54 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ganem, N. J. et al. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158, 833–848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Berenjeno, I. M. et al. Oncogenic PIK3CA induces centrosome amplification and tolerance to genome doubling. Nat. Commun. 8, 1773 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Crockford, A. et al. Cyclin D mediates tolerance of genome-doubling in cancers with functional p53. Ann. Oncol. 28, 149–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Potapova, T. A., Seidel, C. W., Box, A. C., Rancati, G. & Li, R. Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53. Mol. Biol. Cell 27, 3065–3084 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Cahill, D. P., Kinzler, K. W., Vogelstein, B. & Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 9, M57–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 71, 3447–3452 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Roylance, R. et al. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol. Biomarkers Prev. 20, 2183–2194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Weaver, B. A. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Silk, A. D. et al. Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors. Proc. Natl Acad. Sci. USA 110, E4134–E4141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Janssen, A., Kops, G. J. P. L. & Medema, R. H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl Acad. Sci. USA 106, 19108–19113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Godek, K. M. et al. Chromosomal instability affects the tumorigenicity of glioblastoma tumor-initiating cells. Cancer Discov. 6, 532–545 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zasadil, L. M. et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci. Transl Med. 6, 229ra43 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    Article  CAS  PubMed  Google Scholar 

  117. Hesse, M. et al. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle. Nat. Commun. 3, 1076 (2012).

    Article  PubMed  CAS  Google Scholar 

  118. Sansregret, L. et al. Cut homeobox 1 causes chromosomal instability by promoting bipolar division after cytokinesis failure. Proc. Natl Acad. Sci. USA 108, 1949–1954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Asatryan, A. D. & Komarova, N. L. Evolution of genetic instability in heterogeneous tumors. J. Theor. Biol. 396, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Komarova, N. L. & Wodarz, D. The optimal rate of chromosome loss for the inactivation of tumor suppressor genes in cancer. Proc. Natl Acad. Sci. USA 101, 7017–7021 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Laughney, A. M., Elizalde, S., Genovese, G. & Bakhoum, S. F. Dynamics of tumor heterogeneity derived from clonal karyotypic evolution. Cell Rep. 12, 809–820 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355, eaaf8399 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Boilève, A. et al. Immunosurveillance against tetraploidization-induced colon tumorigenesis. Cell Cycle 12, 473–479 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mason, J. M. et al. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer. Proc. Natl Acad. Sci. USA 114, 3127–3132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747–752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tran, E., Robbins, P. F. & Rosenberg, S. A. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nat. Immunol. 18, 255–262 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Baca, S. C. et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Danielsen, H. V. E., Pradhan, M. & Novelli, M. Revisiting tumour aneuploidy? the place of ploidy assessment in the molecular era. Nat. Rev. Clin. Oncol. 13, 291–304 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Bakker, B., van den Bos, H., Lansdorp, P. M. & Foijer, F. How to count chromosomes in a cell: an overview of current and novel technologies. Bioessays 37, 570–577 (2015).

    Article  PubMed  Google Scholar 

  137. Chen, G., Bradford, W. D., Seidel, C. W. & Li, R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Schütz, E. et al. Chromosomal instability in cell-free DNA is a serum biomarker for prostate cancer. Clin. Chem. 61, 239–248 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Van Roy, N. et al. Shallow whole genome sequencing on circulating cell-free DNA allows reliable non-invasive copy number profiling in neuroblastoma patients. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-0675 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Chicard, M. et al. Genomic copy number profiling using circulating free tumor DNA highlights heterogeneity in neuroblastoma. Clin. Cancer Res. 22, 5564–5573 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175–188 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Pierssens, D. D. C. G. et al. Chromosome instability in tumor resection margins of primary OSCC is a predictor of local recurrence. Oral Oncol. 66, 14–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Tang, Y.-C., Williams, B. R., Siegel, J. J. & Amon, A. Identification of aneuploidy-selective antiproliferation compounds. Cell 144, 499–512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pyne, N. J. & Pyne, S. Sphingosine 1-phosphate and cancer. Nat. Rev. Cancer 10, 489–503 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Tang, Y.-C. et al. Aneuploid cell survival relies upon sphingolipid homeostasis. Cancer Res. 77, 5272–5286 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Weaver, B. A. How taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 25, 2677–2681 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Swanton, C. et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell 11, 498–512 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Wengner, A. M. et al. Novel Mps1 kinase inhibitors with potent antitumor activity. Mol. Cancer Ther. 15, 583–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Koch, A., Maia, A., Janssen, A. & Medema, R. H. Molecular basis underlying resistance to Mps1/TTK inhibitors. Oncogene 35, 1–22 (2015).

    Google Scholar 

  150. Watts, C. A. et al. Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem. Biol. 20, 1399–1410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Orr, B., Talje, L., Liu, Z., Kwok, B. H. & Compton, D. A. Adaptive resistance to an inhibitor of chromosomal instability in human cancer cells. Cell Rep. 17, 1755–1763 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.V. gratefully acknowledges financial support from Cancer Research UK (CRUK; C23338/A15965) and the UK National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre. C.S. gratefully acknowledges financial support from the Breast Cancer Research Foundation (BCRF), CRUK (TRACERx), the CRUK Lung Cancer Centre of Excellence, the CRUK University College London Experimental Cancer Medicine Centre, the European Research Council (THESEUS) and the Marie Curie Network and European Commission PloidyNet, the Francis Crick Institute (which receives its core funding from CRUK (FC001169), the Novo Nordisk Foundation (ID 16584), the Prostate Cancer Foundation, the Rosetrees Trust, Stand Up 2 Cancer (SU2C), the UK Medical Research Council (FC001169), the Wellcome Trust (FC001169)), and the UK NIHR, and the University College London Hospitals Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to researching data, discussions of content, writing the manuscript, and reviewing and/or editing the manuscript prior to submission.

Corresponding author

Correspondence to Charles Swanton.

Ethics declarations

Competing interests

L.S. became a full-time employee of Novartis after submission of this manuscript. B.V. has acted as a consultant of Karus Therapeutics. In the past 36 months, C.S. has acted as a consultant and speaker for Boehringer Ingelheim, Novartis, and Roche, has acted as a speaker for Celgene, Eli Lilly, GlaxoSmithKline, Pfizer, and Servier, serves as an advisory board member for and retains stock options in ApoGen Biotechnologies, Epic Sciences, and GRAIL, has served as an advisory board member and receives honoraria from Natera, and is the founder of, and retains stock options in, Achilles Therapeutics.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansregret, L., Vanhaesebroeck, B. & Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat Rev Clin Oncol 15, 139–150 (2018). https://doi.org/10.1038/nrclinonc.2017.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2017.198

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer