Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa

Key Points

  • Proteins with major roles in angiogenesis can also have direct or indirect effects on components of the immune system, most often resulting in immunosuppressive outcomes

  • The tumour vasculature can upregulate or downregulate proteins that control the homing and trafficking of immune cells, creating a selective immune-cell barrier on endothelium

  • The use of anti-angiogenic drugs and other vascular-targeting agents can normalize and remodel the tortuous tumour vasculature, enabling alleviation of hypoxia and efficient tumour infiltration by effector immune cells

  • Combinations of anti-angiogenic agents with various immunotherapies, including immune-checkpoint inhibitors, have been shown preclinically to generate more-potent antitumour effects and might have clinical potential

  • Anti-angiogenic agents can alleviate immunosuppression, and conversely, immunotherapies can induce changes in the vasculature or bring about antivascular effects; thus, immunotherapy and/or anti-angiogenic therapies have the potential to create a cycle of immunostimulation and vascular remodelling within tumours

Abstract

Immunotherapies have revolutionized medical oncology following the remarkable and, in some cases, unprecedented outcomes observed in certain groups of patients with cancer. Combination with other therapeutic modalities, including anti-angiogenic agents, is one of the many strategies currently under investigation to improve the response rates and duration of immunotherapies. Such a strategy might seem counterintuitive given that anti-angiogenic agents can increase tumour hypoxia and reduce the number of blood vessels within tumours. Herein, we review the additional effects mediated by drugs targeting VEGF-dependent signalling and other pathways, such as those mediated by angiopoietin 2 or HGF, which might increase the efficacy of immunotherapies. In addition, we discuss the seldom considered possibility that immunotherapies, and immune-checkpoint inhibitors in particular, might increase the efficacy of anti-angiogenic or other types of antivascular therapies and/or promote changes in the tumour vasculature. In short, we propose that interactions between both therapeutic modalities could be considered a 'two-way street'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angiogenesis-modulating factors have effects on the immune system in three established ways.
Figure 2: A proposed immunostimulatory vascular-modulating cycle.

Similar content being viewed by others

References

  1. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Oleinika, K., Nibbs, R. J., Graham, G. J. & Fraser, A. R. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin. Exp. Immunol. 171, 36–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, L. & Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J. Clin. Invest. 125, 3384–3391 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hui, E. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355, 1428–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amarnath, S. et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci. Transl Med. 3, 111ra120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azuma, T. et al. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635–3643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Black, M. et al. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget 7, 10557–10567 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ishibashi, M. et al. Myeloma drug resistance induced by binding of myeloma B7-H1 (PD-L1) to PD-1. Cancer. Immunol. Res. 4, 779–788 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Balar, A. V. et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 18, 1483–1492 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Apolo, A. B. et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, Phase Ib study. J. Clin. Oncol. 35, 2117–2124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hodi, F. S. et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer. Immunol. Res. 2, 632–642 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wallin, J. J. et al. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 7, 12624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheever, M. A. & Higano, C. S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520–3526 (2011).

    Article  PubMed  Google Scholar 

  19. Huijbers, E. J. et al. Vaccination against the extra domain-B of fibronectin as a novel tumor therapy. FASEB J. 24, 4535–4544 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Wentink, M. Q. et al. Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity. Proc. Natl Acad. Sci. USA 113, 12532–12537 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhuang, X. et al. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis 18, 83–95 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Wentink, M. Q. et al. Vaccination approach to anti-angiogenic treatment of cancer. Biochim. Biophys. Acta 1855, 155–171 (2015).

    CAS  PubMed  Google Scholar 

  23. Blumenthal, G. M. & Pazdur, R. Approvals in 2017: gene therapies and site-agnostic indications. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/nrclinonc.2018.11 (2017).

  24. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hegde, P. S., Karanikas, V. & Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 22, 1865–1874 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Oelkrug, C. & Ramage, J. M. Enhancement of T cell recruitment and infiltration into tumours. Clin. Exp. Immunol. 178, 1–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell. Biol. 17, 611–625 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Mimura, K., Kono, K., Takahashi, A., Kawaguchi, Y. & Fujii, H. Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2. Cancer Immunol. Immunother. 56, 761–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Oyama, T. et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-κB activation in hemopoietic progenitor cells. J. Immunol. 160, 1224–1232 (1998).

    CAS  PubMed  Google Scholar 

  33. Oussa, N. A. et al. VEGF requires the receptor NRP-1 to inhibit lipopolysaccharide-dependent dendritic cell maturation. J. Immunol. 197, 3927–3935 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Boissel, N. et al. Defective blood dendritic cells in chronic myeloid leukemia correlate with high plasmatic VEGF and are not normalized by imatinib mesylate. Leukemia 18, 1656–1661 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lissoni, P. et al. Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1. J. Biol. Regul. Homeost. Agents 15, 140–144 (2001).

    CAS  PubMed  Google Scholar 

  36. Strauss, L., Volland, D., Kunkel, M. & Reichert, T. E. Dual role of VEGF family members in the pathogenesis of head and neck cancer (HNSCC): possible link between angiogenesis and immune tolerance. Med. Sci. Monit. 11, BR280–BR292 (2005).

    CAS  PubMed  Google Scholar 

  37. Alfaro, C. et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer 100, 1111–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 9, 562–567 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Dikov, M. M. et al. Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J. Immunol. 174, 215–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, Y. L., Liang, Y. C. & Chiang, B. L. Placental growth factor down-regulates type 1 T helper immune response by modulating the function of dendritic cells. J. Leukoc. Biol. 82, 1473–1480 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Ohm, J. E. et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878–4886 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Gavalas, N. G. et al. VEGF directly suppresses activation of T cells from ascites secondary to ovarian cancer via VEGF receptor type 2. Br. J. Cancer 107, 1869–1875 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 212, 139–148 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wada, J. et al. The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res. 29, 881–888 (2009).

    CAS  PubMed  Google Scholar 

  46. Adotevi, O. et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J. Immunother. 33, 991–998 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Terme, M. et al. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 73, 539–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Hansen, W. et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J. Exp. Med. 209, 2001–2016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    CAS  PubMed  Google Scholar 

  50. Huang, Y. et al. Distinct roles of VEGFR-1 and VEGFR-2 in the aberrant hematopoiesis associated with elevated levels of VEGF. Blood 110, 624–631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kusmartsev, S. et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J. Immunol. 181, 346–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Serafini, P., Mgebroff, S., Noonan, K. & Borrello, I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68, 5439–5449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J. Y., Park, S., Min, W. S. & Kim, H. J. Restoration of natural killer cell cytotoxicity by VEGFR-3 inhibition in myelogenous leukemia. Cancer Lett. 354, 281–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pogue-Geile, K. et al. Defective mismatch repair and benefit from bevacizumab for colon cancer: findings from NSABP C-08. J. Natl Cancer Inst. 105, 989–992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hochster, H. S. et al. Efficacy and safety of atezolizumab (atezo) and bevacizumab (bev) in a phase Ib study of microsatellite instability (MSI)-high metastatic colorectal cancer (mCRC). JCO 35, 673–673 (2017).

    Article  Google Scholar 

  57. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell. Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Scharpfenecker, M., Fiedler, U., Reiss, Y. & Augustin, H. G. The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J. Cell. Sci. 118, 771–780 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Venneri, M. A. et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109, 5276–5285 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Coffelt, S. B. et al. Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Cancer Res. 70, 5270–5280 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Scholz, A. et al. Angiopoietin-2 promotes myeloid cell infiltration in a β2-integrin-dependent manner. Blood 118, 5050–5059 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Coffelt, S. B. et al. Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J. Immunol. 186, 4183–4190 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Kloepper, J. et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc. Natl Acad. Sci. USA 113, 4476–4481 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peterson, T. E. et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl Acad. Sci. USA 113, 4470–4475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eeaak9670 (2017).

    Article  CAS  Google Scholar 

  66. Scholz, A. et al. Endothelial cell-derived angiopoietin-2 is a therapeutic target in treatment-naive and bevacizumab-resistant glioblastoma. EMBO Mol. Med. 8, 39–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Grenga, I., Kwilas, A. R., Donahue, R. N., Farsaci, B. & Hodge, J. W. Inhibition of the angiopoietin/Tie2 axis induces immunogenic modulation, which sensitizes human tumor cells to immune attack. J. Immunother. Cancer. 3, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wu, X. et al. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer. Immunol. Res. 5, 17–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Kuang, D. M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327–1337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bussolino, F. et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119, 629–641 (1992).

    Article  CAS  PubMed  Google Scholar 

  71. di Tomaso, E. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res. 71, 19–28 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shojaei, F. et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res. 70, 10090–10100 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Ilangumaran, S., Villalobos-Hernandez, A., Bobbala, D. & Ramanathan, S. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions. Cytokine 82, 125–139 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Okunishi, K. et al. A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function. J. Immunol. 175, 4745–4753 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Benkhoucha, M. et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 107, 6424–6429 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rutella, S. et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108, 218–227 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Baek, J. H., Birchmeier, C., Zenke, M. & Hieronymus, T. The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J. Immunol. 189, 1699–1707 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Benkhoucha, M., Molnarfi, N., Schneiter, G., Walker, P. R. & Lalive, P. H. The neurotrophic hepatocyte growth factor attenuates CD8+ cytotoxic T-lymphocyte activity. J. Neuroinflamm. 10, 154 (2013).

    Article  CAS  Google Scholar 

  79. Komarowska, I. et al. Hepatocyte growth factor receptor c-Met instructs T cell cardiotropism and promotes T cell migration to the heart via autocrine chemokine release. Immunity 42, 1087–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Skibinski, G., Skibinska, A. & James, K. The role of hepatocyte growth factor and its receptor c-met in interactions between lymphocytes and stromal cells in secondary human lymphoid organs. Immunology 102, 506–514 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gordin, M. et al. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74. J. Immunol. 185, 2020–2031 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Balan, M. et al. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J. Biol. Chem. 290, 8110–8120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kwilas, A. R., Ardiani, A., Donahue, R. N., Aftab, D. T. & Hodge, J. W. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J. Transl Med. 12, 294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heldin, C. H., Eriksson, U. & Ostman, A. New members of the platelet-derived growth factor family of mitogens. Arch. Biochem. Biophys. 398, 284–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Agrawal, S., Ganguly, S., Hajian, P., Cao, J. N. & Agrawal, A. PDGF upregulates CLEC-2 to induce T regulatory cells. Oncotarget 6, 28621–28632 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chen, C. F. et al. Regulation of T cell proliferation by JMJD6 and PDGF-BB during chronic hepatitis B infection. Sci. Rep. 4, 6359 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheng, J. et al. Platelet-derived growth factor-BB accelerates prostate cancer growth by promoting the proliferation of mesenchymal stem cells. J. Cell. Biochem. 114, 1510–1518 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Han, Z. et al. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell. Biosci. 2, 8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Griffioen, A. W., Damen, C. A., Martinotti, S., Blijham, G. H. & Groenewegen, G. Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res. 56, 1111–1117 (1996).

    CAS  PubMed  Google Scholar 

  90. Griffioen, A. W. Anti-angiogenesis: making the tumor vulnerable to the immune system. Cancer Immunol. Immunother. 57, 1553–1558 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dirkx, A. E. et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res. 63, 2322–2329 (2003).

    CAS  PubMed  Google Scholar 

  92. Tromp, S. C. et al. Tumor angiogenesis factors reduce leukocyte adhesion in vivo. Int. Immunol. 12, 671–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Bouzin, C., Brouet, A., De Vriese, J., Dewever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178, 1505–1511 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Hellwig, S. M. et al. Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett. 120, 203–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Melder, R. J. et al. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2, 992–997 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Dirkx, A. E. et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J. 20, 621–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Fiedler, U. et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat. Med. 12, 235–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Srivastava, K. et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer. Cell. 26, 880–895 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Shetty, S. et al. Common lymphatic endothelial and vascular endothelial receptor-1 mediates the transmigration of regulatory T cells across human hepatic sinusoidal endothelium. J. Immunol. 186, 4147–4155 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Karikoski, M. et al. Clever-1/stabilin-1 controls cancer growth and metastasis. Clin. Cancer Res. 20, 6452–6464 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Huang, H. et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-κB-induced endothelial activation. FASEB J. 29, 227–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buckanovich, R. J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Huang, X. et al. Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. J. Exp. Med. 207, 505–520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pittet, C. L., Newcombe, J., Prat, A. & Arbour, N. Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis. J. Neuroinflamm. 8, 155 (2011).

    Article  CAS  Google Scholar 

  106. Eppihimer, M. J. et al. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9, 133–145 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mazanet, M. M. & Hughes, C. C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol. 33, 3117–3126 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eeaak9679 (2017).

    Article  CAS  Google Scholar 

  110. Jin, Y. et al. A novel function for programmed death ligand-1 regulation of angiogenesis. Am. J. Pathol. 178, 1922–1929 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dieterich, L. C. et al. Tumor-associated lymphatic vessels upregulate PDL1 to inhibit t-cell activation. Front. Immunol. 8, 66 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Siemann, D. W. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat. Rev. 37, 63–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Jain, R. K., Martin, J. D. & Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 16, 321–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hobson, B. & Denekamp, J. Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br. J. Cancer 49, 405–413 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Masiero, M. et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer. Cell. 24, 229–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seaman, S. et al. Genes that distinguish physiological and pathological angiogenesis. Cancer. Cell. 11, 539–554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Palazon, A., Aragones, J., Morales-Kastresana, A., de Landazuri, M. O. & Melero, I. Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin. Cancer Res. 18, 1207–1213 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Huang, Y., Goel, S., Duda, D. G., Fukumura, D. & Jain, R. K. Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73, 2943–2948 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aarjans, M. et al. Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res. 73, 3347–3355 (2013).

    Article  CAS  Google Scholar 

  124. Heskamp, S. et al. Bevacizumab reduces tumor targeting of antiepidermal growth factor and anti-insulin-like growth factor 1 receptor antibodies. Int. J. Cancer. 133, 307–314 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Hamzah, J. et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453, 410–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  126. Huang, Y. et al. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl Acad. Sci. USA 109, 17561–17566 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Nasarre, P. et al. Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res. 69, 1324–1333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Falcon, B. L. et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels. Am. J. Pathol. 175, 2159–2170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Park, J. S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer. Cell. 30, 953–967 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Schmittnaegel, M. & De Palma, M. Reprogramming tumor blood vessels for enhancing immunotherapy. Trends Cancer. 3, 809–812 (2017).

    Article  PubMed  Google Scholar 

  131. Zhao, Y. et al. Targeting vascular endothelial-cadherin in tumor-associated blood vessels promotes T-cell-mediated immunotherapy. Cancer Res. 77, 4434–4447 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Scharping, N. E., Menk, A. V., Whetstone, R. D., Zeng, X. & Delgoffe, G. M. Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer. Immunol. Res. 5, 9–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  133. Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. 71, 5678–5687 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Dieu-Nosjean, M. C. et al. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. Immunol. Rev. 271, 260–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Johansson-Percival, A. et al. De novo induction of intratumoral lymphoid structures and vessel normalization enhances immunotherapy in resistant tumors. Nat. Immunol. 18, 1207–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Fricke, I. et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin. Cancer Res. 13, 4840–4848 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Du Four, S. et al. Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. Am. J. Cancer. Res. 6, 2514–2531 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yuan, J. et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer. Immunol. Res. 2, 127–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Wu, X. et al. Combined anti-VEGF and anti-CTLA-4 therapy elicits humoral immunity to galectin-1 which is associated with favorable clinical outcomes. Cancer. Immunol. Res. 5, 446–454 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu, X. et al. VEGF neutralization plus CTLA-4 blockade alters soluble and cellular factors associated with enhancing lymphocyte infiltration and humoral recognition in melanoma. Cancer. Immunol. Res. 4, 858–868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rini, B. I. et al. Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 117, 758–767 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Yasuda, S. et al. Simultaneous blockade of programmed death 1 and vascular endothelial growth factor receptor 2 (VEGFR2) induces synergistic anti-tumour effect in vivo. Clin. Exp. Immunol. 172, 500–506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ghosh, S., Paul, A. & Sen, E. Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol. Cell. Biol. 33, 2718–2731 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McDermott, D. F. et al. A phase II study of atezolizumab (atezo) with or without bevacizumab (bev) versus sunitinib (sun) in untreated metastatic renal cell carcinoma (mRCC) patients (pts). J. Clin. Oncol. 35, 431–431 (2017).

    Article  Google Scholar 

  145. Huang, H. et al. Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth. Clin. Cancer Res. 17, 1001–1011 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, F. T. et al. Efficacy of Cotargeting angiopoietin-2 and the VEGF pathway in the adjuvant postsurgical setting for early breast, colorectal, and renal cancers. Cancer Res. 76, 6988–7000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  148. Bose, A. et al. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int. J. Cancer 129, 2158–2170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jaini, R., Rayman, P., Cohen, P. A., Finke, J. H. & Tuohy, V. K. Combination of sunitinib with anti-tumor vaccination inhibits T cell priming and requires careful scheduling to achieve productive immunotherapy. Int. J. Cancer 134, 1695–1705 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Rini, B. I. et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 17, 1599–1611 (2016).

    Article  CAS  PubMed  Google Scholar 

  151. Huo, M. et al. Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment. J. Control. Release 245, 81–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Manning, E. A. et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin. Cancer Res. 13, 3951–3959 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Facciponte, J. G. et al. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J. Clin. Invest. 124, 1497–1511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shrimali, R. K. et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 70, 6171–6180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Avella, D. M. et al. Regression of established hepatocellular carcinoma is induced by chemoimmunotherapy in an orthotopic murine model. Hepatology 55, 141–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Shi, S. et al. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models. PLOS One 8, e65757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schoenfeld, J. et al. Active immunotherapy induces antibody responses that target tumor angiogenesis. Cancer Res. 70, 10150–10160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Qin, Z. & Blankenstein, T. CD4+ T cell—mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFNγ receptor expression by nonhematopoietic cells. Immunity 12, 677–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Qin, Z. et al. A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res. 63, 4095–4100 (2003).

    CAS  PubMed  Google Scholar 

  160. Deng, J. et al. IFNgamma-responsiveness of endothelial cells leads to efficient angiostasis in tumours involving down-regulation of Dll4. J. Pathol. 233, 170–182 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Lu, Y. et al. Responsiveness of stromal fibroblasts to IFN-γ blocks tumor growth via angiostasis. J. Immunol. 183, 6413–6421 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Kammertoens, T. et al. Tumour ischaemia by interferon-gamma resembles physiological blood vessel regression. Nature 545, 98–102 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Tian, L. et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 544, 250–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327–337 (2003).

    CAS  PubMed  Google Scholar 

  165. Xin, H. et al. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res. 69, 2506–2513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ozao-Choy, J. et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69, 2514–2522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, X. D. et al. Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer. Immunol. Res. 3, 1017–1029 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Koyama, S. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 7, 10501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.S.K.'s research on anti-angiogenic drugs and/or immunotherapies has been supported over the past 2 years by grants from the Canadian Breast Cancer Foundation (CBCF), the Canadian Institutes of Health Research (CIHR), and Worldwide Cancer Research (WCR).

Author information

Authors and Affiliations

Authors

Contributions

K.A.K. and R.S.K. both contributed to researching data for the article, discussions of content, writing the manuscript, and editing and reviewing the manuscript before publication.

Corresponding authors

Correspondence to Kabir A. Khan or Robert S. Kerbel.

Ethics declarations

Competing interests

R.S.K. has sponsored research agreements with Boehringer Ingelheim, Neovacs, and Genentech. R.S.K. has received honoraria recently from Boehringer Ingelheim, NED Biosystems, Merck Pharmaceuticals, Apobiologix, and Onkaido and consultant fees for Neovacs. K.A.K. declares no competing interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, K., Kerbel, R. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol 15, 310–324 (2018). https://doi.org/10.1038/nrclinonc.2018.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2018.9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer