Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Big opportunities for small molecules in immuno-oncology

Key Points

  • The concept of immuno-oncology, using the immune system to fight cancer, dates back 150 years.

  • However, broad clinical success for immunotherapies in cancer has only recently been achieved and comprises a class of biologics that includes vaccines, engineered immune cells and mAbs.

  • Some areas of immune biology cannot be modulated with biologic therapies either due to intracellular access restriction or enzymatic properties that require smaller moieties for intervention.

  • Most small-molecule drugs are tumour-targeted agents, some of which induce immunogenic cell death that could assist an immune response or create synergy in combination with an immunotherapy.

  • Multiple small-molecule drugs aiming to block the function of immune suppressor cells (for example, myeloid-derived suppressor cells, regulatory T cells, dendritic cells and tumour-associated macrophages) have been identified.

  • The hypoxic environment of solid tumours creates a hypoxia–adenosinergic axis of gene regulation, which enforces tumour immune tolerance and can be targeted by small-molecule drugs.

  • Small-molecule immunotherapy for cancer is a growing area ripe with opportunity for exploitation of critical immune biology and potential new drugs to offer patient benefit.

Abstract

The regulatory approval of ipilimumab (Yervoy) in 2011 ushered in a new era of cancer immunotherapies with durable clinical effects. Most of these breakthrough medicines are monoclonal antibodies that block protein–protein interactions between T cell checkpoint receptors and their cognate ligands. In addition, genetically engineered autologous T cell therapies have also recently demonstrated significant clinical responses in haematological cancers. Conspicuously missing from this class of therapies are traditional small-molecule drugs, which have previously served as the backbone of targeted cancer therapies. Modulating the immune system through a small-molecule approach offers several unique advantages that are complementary to, and potentially synergistic with, biologic modalities. This Review highlights immuno-oncology pathways and mechanisms that can be best or solely targeted by small-molecule medicines. Agents aimed at these mechanisms — modulation of the immune response, trafficking to the tumour microenvironment and cellular infiltration — are poised to significantly extend the scope of immuno-oncology applications and enhance the opportunities for combination with tumour-targeted agents and biologic immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune function and the immune response to cancer.
Figure 2: Small-molecule drug targets to restore cancer immunity in the tumour.
Figure 3: Purinergic and PGE2 signalling in immune cells.

Similar content being viewed by others

References

  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Coley, W. B. Contribution to the knowledge of sarcoma. Ann. Surg. 14, 199–220 (1891).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheever, M. A. & Higano, C. S. Provenge (sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520–3526 (2011).

    PubMed  Google Scholar 

  4. Hoos, A. et al. Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin. Oncol. 37, 533–546 (2010). Recounts lessons learnt from the development of ipilimumab (a CTLA4-specific mAb), the first modern immuno-oncology therapy for melanoma.

    CAS  PubMed  Google Scholar 

  5. Hoos, A., Britten, C. M., Huber, C. & O'Donnell-Tormey, J. A methodological framework to enhance the clinical success of cancer immunotherapy. Nat. Biotech. 29, 867–870 (2011).

    CAS  Google Scholar 

  6. Poole, R. M. Pembrolizumab: first global approval. Drugs 74, 1973–1981 (2014). Summarizes the milestones in the development of pembrolizumab (a PD1-specific mAb) for the treatment of malignant melanoma.

    CAS  PubMed  Google Scholar 

  7. Wang, C. et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol. Res. 2, 846–856 (2014).

    CAS  PubMed  Google Scholar 

  8. Lee, S. & Margolin, K. Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Melero, I. et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin. Oncol. 11, 509–524 (2014).

    CAS  PubMed  Google Scholar 

  10. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Muller, A. J. & Scherle, P. A. Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nat. Rev. Cancer 6, 613–625 (2006). The first comprehensive review of small-molecule drug targets with the potential to treat cancer by relieving immune tolerance.

    CAS  PubMed  Google Scholar 

  13. Gill, S. Going viral: chimeric antigen receptor T cell therapy for hematological malignancies. Immunol. Rev. 263, 68–89 (2015).

    CAS  PubMed  Google Scholar 

  14. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Marabelle, A. et al. Depleting tumor-specific T regs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    CAS  PubMed  Google Scholar 

  17. Srinivasan, R., Houghton, A. N. & Wolchok, J. D. Induction of autoantibodies against tyrosinase-related proteins following DNA vaccination: unexpected reactivity to a protein paralogue. Cancer Immun. 2, 8 (2002).

    PubMed  Google Scholar 

  18. Printz, C. Spontaneous regression of melanoma may offer insight into cancer immunology. J. Natl Cancer Inst. 93, 1047–1048 (2001).

    CAS  PubMed  Google Scholar 

  19. Waldhauer, I. & Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008).

    CAS  PubMed  Google Scholar 

  20. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lewis, C. & Murdoch, C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am. J. Pathol. 167, 627–635 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    CAS  PubMed  Google Scholar 

  24. Frey, D. M. et al. High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int. J. Cancer 126, 2635–2643 (2010).

    CAS  PubMed  Google Scholar 

  25. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    CAS  PubMed  Google Scholar 

  26. Whiteside, T. L. Induced regulatory T cells in inhibitory microenvironments created by cancer. Expert Opin. Biol. Ther. 14, 1411–1425 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Adeegbe, D. O. & Nishikawa, H. Natural and induced T regulatory cells in cancer. Front. Immunol. 4, 190 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Madar, S. Goldstein, I. & Rotter, V. 'Cancer associated fibroblasts' — more than meets the eye. Trends Mol. Med. 19, 447–453 (2013).

    CAS  PubMed  Google Scholar 

  29. Galluzzi, L., Senovilla, L., Zitvogel, L. & Kroemer, G. The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012).

    CAS  PubMed  Google Scholar 

  30. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013). A comprehensive review that outlines the characteristics and consequences of immunogenic cell death in cancer therapy.

    CAS  PubMed  Google Scholar 

  31. Sullivan, R. J., LoRusso, P. M. & Flaherty, K. T. The intersection of immune-directed and molecularly targeted therapy in advanced melanoma: where we have been, are, and will be. Clin. Cancer Res. 19, 5283–5291 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lynch, T. J. et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non–small-cell lung cancer: results from a randomized, double-blind, multicenter Phase II study. J. Clin. Oncol. 30, 2046–2054 (2012).

    CAS  PubMed  Google Scholar 

  33. Ribas, A., Hodi, F. S., Callahan, M., Konto, C. & Wolchok, J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N. Engl. J. Med. 368, 1365–1366 (2013).

    CAS  PubMed  Google Scholar 

  34. Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, X. et al. Selective inhibition of IDO1 effectively regulates mediators of antitumor immunity. Blood 115, 3520–3530 (2010). Provides an in vitro and in vivo demonstration that a potent and selective IDO1 inhibitor can effectively regulate immune tolerance and slow tumour growth.

    CAS  PubMed  Google Scholar 

  36. Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  37. Mautino, M. R., et al. Synergistic antitumor effects of combinatorial immune checkpoint inhibition with anti-PD-1/PD-L antibodies and the IDO pathway inhibitors NLG-919 and indoximod in the context of active immunotherapy. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5–9; San Diego, CA. Philadelphia (PA): AACR. Cancer Res. 74 (Suppl. 19), 5023 (2014).

    Google Scholar 

  38. Pilotte, L. et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase. Proc. Natl Acad. Sci. USA 109, 2497–2502 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Zandt, M. C. et al. Discovery of (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid and congeners as highly potent inhibitors of human arginases I and II for treatment of myocardial reperfusion injury. J. Med. Chem. 56, 2568–2580 (2013).

    CAS  PubMed  Google Scholar 

  40. Hagos, G. K. et al. Anti-inflammatory, antiproliferative, and cytoprotective activity of NO chimera nitrates of use in cancer chemoprevention. Mol. Pharmacol. 74, 1381–1391 (2008).

    CAS  PubMed  Google Scholar 

  41. Molon, B. et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J. Exp. Med. 208, 1949–1962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009). Elucidates the mechanism for the effect of high extracellular ATP acting on dendritic cells leading to IL-1β release and enhanced tumour-specific CD8 T cell cytotoxicity.

    CAS  PubMed  Google Scholar 

  44. Adinolfi, E. et al. Expression of P2X7 receptor increases in vivo tumor growth. Cancer Res. 72, 2957–2969 (2012).

    CAS  PubMed  Google Scholar 

  45. Meis, S. et al. NF546 [4,4′-(carbonylbis(imino-3,1- phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha′-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells. J. Pharmacol. Exp. Ther. 332, 238–247 (2010).

    CAS  PubMed  Google Scholar 

  46. Beavis, P. A. et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc. Natl Acad. Sci. USA 110, 14711–14716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, J. F., Eltzschig, H. K. & Fredholm, B. B. Adenosine receptors as drug targets — what are the challenges? Nat. Rev. Drug Discov. 12, 265–286 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Iannone, R., Miele, L., Maiolino, P., Pinto, A. & Morello, S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia 15, 1400–1409 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Bastid, J. et al. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32, 1743–1751 (2013).

    CAS  PubMed  Google Scholar 

  50. Wang, L. et al. CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J. Clin. Invest. 121, 2371–2382 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, D. & DuBois, R. N. The role of anti-inflammatory drugs in colorectal cancer. Ann. Rev. Med. 64, 131–144 (2013).

    CAS  PubMed  Google Scholar 

  52. af Forselles, K. J. et al. In vitro and in vivo characterization of PF-04418948, a novel, potent and selective prostaglandin EP 2 receptor antagonist. Br. J. Pharmacol. 164, 1847–1856 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma, X. et al. A prostaglandin E (PGE) receptor EP4 antagonist protects natural killer cells from PGE2-mediated immunosuppression and inhibits breast cancer metastasis. Oncoimmunology 2, e22647 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Highfill, S. L. et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci. Transl. Med. 6, 237ra67 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanford, D. E. et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 19, 3404–3415 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Weitzenfeld, P. & Ben-Baruch, A. The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Lett. 352, 36–53 (2014).

    CAS  PubMed  Google Scholar 

  58. Onier, N. et al. Cure of colon cancer metastasis in rats with the new lipid A OM 174. Apoptosis of tumor cells and immunization of rats. Clin. Exp. Metastasis 17, 299–306 (1999).

    CAS  PubMed  Google Scholar 

  59. Geisse, J. et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J. Am. Acad. Dermatol. 50, 722–733 (2004).

    PubMed  Google Scholar 

  60. Dudek, A. Z. et al. First in human phase I trial of 852A, a novel systemic Toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin. Cancer Res. 13, 7119–7125 (2007).

    CAS  PubMed  Google Scholar 

  61. Northfelt, D. W. et al. A phase I dose-finding study of the novel toll-like receptor 8 agonist VTX-2337 in adult subjects with advanced solid tumors or lymphoma. Clin. Cancer Res. 20, 3683–3691 (2014).

    CAS  PubMed  Google Scholar 

  62. Hwang, J. J. et al. A phase I study of HYB2055 in patients (pts) with advanced solid malignancies. J. Clin. Oncol. 22 (Suppl.), 3111 (2004).

    Google Scholar 

  63. Yoon, J. H. et al. Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes. EMBO Mol. Med. 5, 1720–1739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Khalili, J. S. et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin. Cancer Res. 18, 5329–5340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schilling, B. et al. Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int. J. Cancer 133, 1653–1663 (2013).

    CAS  PubMed  Google Scholar 

  66. Eyob, H., Ekiz, H. A. & Welm, A. L. RON promotes the metastatic spread of breast carcinomas by subverting antitumor immune responses. Oncoimmunology 2, e25670 (2013).

    PubMed  PubMed Central  Google Scholar 

  67. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ali, K. et al. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407–411 (2014). Demonstrates that a PI3Kδ-selective inhibitor can break tumour-induced immune tolerance in a wide range of solid tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmid, Michael, C. et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3Kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715–727 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sikalidis, A. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol. Oncol. Res. 21, 9–17 (2015).

    CAS  PubMed  Google Scholar 

  71. Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004). A seminal review detailing the involvement of IDO1 in the development of immune tolerance.

    CAS  PubMed  Google Scholar 

  72. Okamoto, A. et al. Indoleamine 2,3-dioxygenase serves as a marker of poor prognosis in gene expression profiles of serous ovarian cancer cells. Clin. Cancer Res. 11, 6030–6039 (2005).

    CAS  PubMed  Google Scholar 

  73. Belladonna, M. L., Orabona, C., Grohmann, U. & Puccetti, P. TGF-β and kynurenines as the key to infectious tolerance. Trends Mol. Med. 15, 41–49 (2009).

    CAS  PubMed  Google Scholar 

  74. Opitz, C. A. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  75. Yue, E. W. et al. Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in vivo pharmacodynamic activity and efficacy in a mouse melanoma model. J. Med. Chem. 52, 7364–7367 (2009).

    CAS  PubMed  Google Scholar 

  76. Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor ζ-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176, 6752–6761 (2006).

    CAS  PubMed  Google Scholar 

  77. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    CAS  PubMed  Google Scholar 

  78. Rodriguez, P. C. et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. de Boniface, J., Mao, Y., Schmidt-Mende, J., Kiessling, R. & Poschke, I. Expression patterns of the immunomodulatory enzyme arginase 1 in blood, lymph nodes and tumor tissue of early-stage breast cancer patients. Oncoimmunology 1, 1305–1312 (2012).

    PubMed  PubMed Central  Google Scholar 

  80. Serafini, P. Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol. Res. 57, 172–184 (2013).

    PubMed  Google Scholar 

  81. De Santo, C. et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl Acad. Sci. USA 102, 4185–4190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777–2790 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Califano, J. A. et al. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 30–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Weed, D. T. et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 21, 39–48 (2015). Provides clinical evidence in patients with HNSCC that a PDE5 inhibitor can lower the numbers of MDSCs and T Reg cells and increase the number of tumour-specific CD8+ T cells.

    CAS  PubMed  Google Scholar 

  85. Sitkovsky, M. & Ohta, A. Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J. Mol. Med. 91, 147–155 (2013).

    CAS  PubMed  Google Scholar 

  86. Blay, J., White, T. D. & Hoskin, D. W. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 57, 2602–2605 (1997).

    CAS  PubMed  Google Scholar 

  87. Yang, M. et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol. Cell Biol. 88, 165–171 (2010).

    CAS  PubMed  Google Scholar 

  88. Sitkovsky, M. V. T regulatory cells: hypoxia-adenosinergic suppression and re-direction of the immune response. Trends Immunol. 30, 102–108 (2009). Hypothesis detailing how the hypoxia–adenosinergic axis enforces tumour immune tolerance through the regulation of T Reg cell function.

    CAS  PubMed  Google Scholar 

  89. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007). Demonstrates the regulation of T Reg cell–effector T cell interaction by coordinate expression of CD39, CD73 and A 2A receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ohta, A. et al. The development and immunosuppressive functions of CD4+ CD25+ FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front. Immunol. 3, 190 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, X. et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010).

    CAS  PubMed  Google Scholar 

  92. Chalmin, F. et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36, 362–373 (2012).

    CAS  PubMed  Google Scholar 

  93. Aswad, F., Kawamura, H. & Dennert, G. High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. J. Immunol. 175, 3075–3083 (2005).

    CAS  PubMed  Google Scholar 

  94. Schenk, U. et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci. Signal. 4, ra12 (2011).

    PubMed  Google Scholar 

  95. Bian, S. et al. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS ONE 8, e60184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Di Virgilio, F., Ferrari, D. & Adinolfi, E. P2X7: a growth-promoting receptor — implications for cancer. Purinergic Signal. 5, 251–256 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bianchi, G. et al. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis. 5, e1135 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. North, R. A. & Jarvis, M. F. P2X receptors as drug targets. Mol. Pharmacol. 83, 759–769 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Csóka, B. et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 26, 376–386 (2012).

    PubMed  PubMed Central  Google Scholar 

  100. Ryzhov, S. et al. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J. Immunol. 187, 6120–6129 (2011).

    CAS  PubMed  Google Scholar 

  101. Cekic, C. et al. Adenosine A 2B receptor blockade slows growth of bladder and breast tumors. J. Immunol. 188, 198–205 (2012).

    CAS  PubMed  Google Scholar 

  102. Kalla, R. V. & Zablocki, J. Progress in the discovery of selective, high affinity A2B adenosine receptor antagonists as clinical candidates. Purinergic Signal. 5, 21–29 (2009).

    CAS  PubMed  Google Scholar 

  103. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    CAS  PubMed  Google Scholar 

  104. Jie, H. B. et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br. J. Cancer 109, 2629–2635 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Serra, S. et al. CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death. Blood 118, 6141–6152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Hilchey, S. P. et al. Human follicular lymphoma CD39+-infiltrating T cells contribute to adenosine-mediated T cell hyporesponsiveness. J. Immunol. 183, 6157–6166 (2009).

    CAS  PubMed  Google Scholar 

  107. Michaud, M. et al. Subversion of the chemotherapy-induced anticancer immune response by the ecto-ATPase CD39. Oncoimmunology 1, 393–395 (2012).

    PubMed  PubMed Central  Google Scholar 

  108. Al-Rashida, M. & Iqbal, J. Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med. Res. Rev. 34, 703–743 (2014).

    CAS  PubMed  Google Scholar 

  109. Lévesque, S. A., Lavoie, É. G., Lecka, J., Bigonnesse, F. & Sévigny, J. Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br. J. Pharmacol. 152, 141–150 (2007).

    PubMed  PubMed Central  Google Scholar 

  110. Lecka, J. et al. 8-BuS-ATP derivatives as specific NTPDase1 inhibitors. Br. J. Pharmacol. 169, 179–196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest. 110, 993–1002 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010).

    CAS  PubMed  Google Scholar 

  113. Mandapathil, M. et al. Adenosine and prostaglandin e2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 285, 27571–27580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Clayton, A., Al-Taei, S., Webber, J., Mason, M. D. & Tabi, Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J. Immunol. 187, 676–683 (2011).

    CAS  PubMed  Google Scholar 

  115. Schuler, P. J. et al. Human CD4+CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin. Exp. Immunol. 177, 531–543 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Xu, S. et al. Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro. Oncol. 15, 1160–1172 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Forte, G. et al. Inhibition of CD73 improves B cell-mediated anti-tumor immunity in a mouse model of melanoma. J. Immunol. 189, 2226–2233 (2012).

    CAS  PubMed  Google Scholar 

  119. Knapp, K. et al. Crystal structure of the human ecto-5′-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure 20, 2161–2173 (2012).

    CAS  PubMed  Google Scholar 

  120. Ogino, S. et al. Cyclooxygenase-2 expression Is an independent predictor of poor prognosis in colon cancer. Clin. Cancer Res. 14, 8221–8227 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kaidi, A., Qualtrough, D., Williams, A. C. & Paraskeva, C. Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res. 66, 6683–6691 (2006).

    CAS  PubMed  Google Scholar 

  122. Nakanishi, Y. et al. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32, 1333–1339 (2011).

    CAS  PubMed  Google Scholar 

  123. Mahic, M., Yaqub, S., Johansson, C. C., Taskén, K. & Aandahl, E. M. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J. Immunol. 177, 246–254 (2006).

    CAS  PubMed  Google Scholar 

  124. Obermajer, N., Muthuswamy, R., Lesnock, J., Edwards, R. P. & Kalinski, P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118, 5498–5505 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Duan, B. et al. Distinct roles of adenylyl cyclase VII in regulating the immune responses in mice. J. Immunol. 185, 335–344 (2010).

    CAS  PubMed  Google Scholar 

  126. Mao, Y. et al. Inhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin. Cancer Res. 20, 4096–4106 (2014).

    CAS  PubMed  Google Scholar 

  127. Holt, D., Ma, X., Kundu, N. & Fulton, A. Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol. Immunother. 60, 1577–1586 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Antonova, M. et al. The pharmacological effect of BGC20-1531, a novel prostanoid EP 4 receptor antagonist, in the prostaglandin E 2 human model of headache. J. Headache Pain 12, 551–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jiang, L. I., Collins, J., Davis, R., Fraser, I. D. & Sternweis, P. C. Regulation of cAMP responses by the G12-13 pathway converges on adenylyl cyclase VII. J. Biol. Chem. 283, 23429–23439 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Whiteside, T. L. & Jackson, E. K. Adenosine and prostaglandin E2 production by human inducible regulatory T cells in health and disease. Front. Immunol. 4, 212 (2013). Inhibitors of adenylyl cyclase VII are proposed as a novel strategy to disarm the immunosuppressive function of T Reg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Mancini, R. J., Stutts, L., Ryu, K. A., Tom, J. K. & Esser-Kahn, A. P. Directing the immune system with chemical compounds. ACS Chem. Biol. 9, 1075–1085 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pradere, J. P., Dapito, D. H. & Schwabe, R. F. The yin and yang of Toll-like receptors in cancer. Oncogene 33, 3485–3495 (2014).

    CAS  PubMed  Google Scholar 

  133. Guiducci, C., Vicari, A. P., Sangaletti, S., Trinchieri, G. & Colombo, M. P. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 65, 3437–3446 (2005).

    CAS  PubMed  Google Scholar 

  134. Fang, H. et al. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell. Mol. Immunol. 11, 150–159 (2014).

    CAS  PubMed  Google Scholar 

  135. Peri, F. & Calabrese, V. Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: an update. J. Med. Chem. 57, 3612–3622 (2014).

    CAS  PubMed  Google Scholar 

  136. Gérard, C., Baudson, N., Ory, T. & Louahed, J. Tumor mouse model confirms MAGE-A3 cancer immunotherapeutic as an efficient inducer of long-lasting anti-tumoral responses. PLoS ONE 9, e94883 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Kaczanowska, S., Joseph, A. M. & Davila, E. TLR agonists: our best frenemy in cancer immunotherapy. J. Leukocyte Biol. 93, 847–863 (2013). A review integrating recent advances in TLR signalling with the thus far disappointing clinical results to develop criteria for future clinical development of immune-stimulant TLR agonists for cancer treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zlotnik, A. & Yoshie, O. The chemokine superfamily revisited. Immunity 36, 705–712 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Franciszkiewicz, K., Boissonnas, A., Boutet, M., Combadière, C. & Mami-Chouaib, F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 72, 6325–6332 (2012).

    CAS  PubMed  Google Scholar 

  140. Vinader, V. & Afarinkia, K. A beginners guide to chemokines. Future Med. Chem. 4, 845–852 (2012).

    CAS  PubMed  Google Scholar 

  141. Stewart, T. J. & Smyth, M. J. Chemokine–chemokine receptors in cancer immunotherapy. Immunotherapy 1, 109–127 (2009).

    CAS  PubMed  Google Scholar 

  142. Vinader, V. & Afarinkia, K. The emerging role of CXC chemokines and their receptors in cancer. Future Med. Chem. 4, 853–867 (2012).

    CAS  PubMed  Google Scholar 

  143. Debnath, B., Xu, S., Grande, F., Garofalo, A. & Neamati, N. Small molecule inhibitors of CXCR4. Theranostics 3, 47–75 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Yan, M. et al. Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers. Breast Cancer Res. 13, R47 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Varmavuo, V., Mäntymaa, P., Kuittinen, T., Nousiainen, T. & Jantunen, E. Pre-emptive plerixafor injection increases blood neutrophil, lymphocyte and monocyte counts in addition to CD34+ counts in patients with non-Hodgkin lymphoma mobilizing poorly with chemotherapy plus G-CSF: potential implications for apheresis and graft composition. Transfusion Apheresis Sci. 46, 257–262 (2012).

    CAS  Google Scholar 

  146. Peled, A. et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin. Cancer Res. 20, 469–479 (2014).

    CAS  PubMed  Google Scholar 

  147. Katoh, H. et al. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24, 631–644 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Stewart, T. J. & Smyth, M. J. Improving cancer immunotherapy by targeting tumor-induced immune suppression. Cancer Metastasis Rev. 30, 125–140 (2011).

    CAS  PubMed  Google Scholar 

  149. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    CAS  PubMed  Google Scholar 

  150. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–600 (2015).

    CAS  PubMed  Google Scholar 

  151. Jin, C. H. et al. Discovery of N-((4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin- 2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J. Med. Chem. 57, 4213–4238 (2014).

    CAS  PubMed  Google Scholar 

  152. Moran, N. Incyte comes of age with JAK inhibitor approval. Nat. Biotech. 30, 3–5 (2012).

    CAS  Google Scholar 

  153. Furgan, M. et al. STAT inhibitors for cancer therapy. J. Hematol. Oncol. 6, 90 (2013).

    Google Scholar 

  154. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Balachandran, V. P. et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat. Med. 17, 1094–1100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Frederick, D. T. et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin. Cancer Res. 19, 1225–1231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, L. et al. The BRAF and MEK inhibitors dabrafenib and trametinib: effects on immune function and in combination with immunomodulatory antibodies targeting PD1, PD-L1 and CTLA-4. Clin. Cancer Res. 21, 1639–1651 (2015). Studies in human T cells using BRAF and MEK inhibitors in combination with checkpoint blockers provide a translational rationale for clinical trials to further extend their utility.

    CAS  PubMed  Google Scholar 

  158. Yao, H. P., Zhou, Y. Q., Zhang, R. & Wang, M. H. MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat. Rev. Cancer 13, 466–481 (2013).

    CAS  PubMed  Google Scholar 

  159. Burger, J. A. & Okkenhaug, K. Haematological cancer: Idelalisib-targeting PI3Kδ in patients with B-cell malignancies. Nat. Rev. Clin. Oncol. 11, 184–186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Smyth, M. J., Ngiow, S. F. & Teng, M. W. L. Targeting regulatory T cells in tumor immunotherapy. Immunol. Cell Biol. 92, 473–474 (2014).

    CAS  PubMed  Google Scholar 

  161. Stewart, C. A. et al. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J. Clin. Invest. 123, 4859–4874 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review was inspired by the bravery and resolve of cancer patients and their families. The authors also wish to thank R&D leadership as well as immuno-oncology researchers, physicians and administrative staff at GlaxoSmithKline for their continued devotion to cancer medicine innovation, with particular thanks to A. Lockenour for thoughtful discussion and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hoos.

Ethics declarations

Competing interests

J.L.A., J.S., R.S. and A.H. are employees of GlaxoSmithKline. J.L.A., J.S. and R.S. also hold GlaxoSmithKline stocks.

Related links

FURTHER INFORMATION

ClinicalTrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Combination Immunotherapy: Small Molecules that Boost Immune Response in Combination with Other Agents (PDF 426 kb)

Supplementary information S2 (table)

Immuno–Modulating SMDs that have Entered Clinical Trials Either as Single–Agent Studies or as Part of a Combination Therapy Exploration. (PDF 741 kb)

Glossary

Dendritic cells

Professional antigen-presenting cells that take up and present antigens. In the tumour microenvironment these cells present antigens from dying tumour cells, which are taken up and processed by immature dendritic cells. Upon cell maturation, and as they migrate to the draining lymph node, they display antigen via HLA class I and II molecules to prime effector T lymphocytes.

Effector T cell

Mediates killing of target cells via cognate antigen recognition on HLA class I molecules.

Regulatory (TReg) cell

CD4+CD25+FOXP3+ cells that are suppressive in nature and dampen CD8+ effector T cell responses.

Natural killer cells

Cells that kill viral and tumour targets via non-MHC restriction.

Tumour-associated macrophages

(TAMs). Arise from anti-inflammatory, pro-tumorigenic M2 macrophages and reside in the tumour stroma, causing inhibition of immune responses, or in blood vessels in the core of the tumour tissue, promoting tumour invasion.

TH1-type response

A CD4+ T cell immune response mediated by pro-inflammatory cytokines (e.g., interferon, interleukin-1 and tumour necrosis factor), which promotes cellular immune responses.

TH2-type response

A CD4+ T cell response driven by interleukin-4, which stimulates antibody production.

Myeloid-derived suppressor cells

(MDSCs). Cells that promote immune suppression of multiple cell types and initiate tumour cell evasion.

Cancer-associated fibroblasts

Components of tumour tissue that support and promote tumour growth and immune cell evasion.

Immunogenic cell death

Cell death that primes an immune response; characterized by release of ATP, high mobility group box 1 (HMGB1) and the pre-apoptotic display of calreticulin.

CD39

Also known as ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase 1), CD39 is a cell surface-bound phosphatase found on lymphocytes and tumours and is responsible for the conversion of extracellular ATP into adenosine.

CD73

Also known as 5′-nucleotidase (5′-NT), CD73 is a cell surface-bound phosphatase found on lymphocytes and tumours and is responsible for the conversion of extracellular ATP into adenosine.

Hypoxia–adenosinergic axis

A programme of gene regulation in response to hypoxia whereby elevated extracellular adenosine mediates a broadly suppressive immune response.

B cells

Lymphocytes that produce antibodies in response to antigen presentation by antigen-presenting cells. B cells may also function as antigen-presenting cells in some instances.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, J., Smothers, J., Srinivasan, R. et al. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 14, 603–622 (2015). https://doi.org/10.1038/nrd4596

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4596

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer