Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pharmacology of second-generation chimeric antigen receptors

Key Points

  • T cell engineering is a novel therapeutic strategy designed to rapidly establish potent tumour immunity. Tumour antigen targeting and enhanced T cell functionality may be achieved through the expression of synthetic receptors for antigen, known as chimeric antigen receptors (CARs).

  • Second-generation CARs, which provide co-stimulatory signals in addition to initiating T cell activation, have shown impressive complete remissions in patients with B cell malignancies, especially acute lymphoblastic leukaemia and B cell lymphomas.

  • Co-stimulation is required for effective proliferation, persistence and function of CAR T cells.

  • CD28 and 4-1BB provide distinct, complementary co-stimulatory support to T cells, although their effect within CAR structures cannot be equated to that of the native receptors.

  • Both 28ζ and BBζ CARs show promising clinical results against B cell malignancies, with different tumour-killing kinetics. Inclusion of CD28 appears to mediate faster tumour reduction, whereas 4-1BB appears to promote T cell persistence.

  • The design and study of CARs is giving rise to the new field of immunopharmacology.

Abstract

Second-generation chimeric antigen receptors (CARs) retarget and reprogramme T cells to augment their antitumour efficacy. The combined activating and co-stimulatory domains incorporated in these CARs critically determine the function, differentiation, metabolism and persistence of engineered T cells. CD19-targeted CARs that incorporate CD28 or 4-1BB signalling domains are the best known to date. Both have shown remarkable complete remission rates in patients with refractory B cell malignancies. Recent data indicate that CD28-based CARs direct a brisk proliferative response and boost effector functions, whereas 4-1BB-based CARs induce a more progressive T cell accumulation that may compensate for less immediate potency. These distinct kinetic features can be exploited to further develop CAR-based T cell therapies for a variety of cancers. A new field of immunopharmacology is emerging.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of chimeric antigen receptors.
Figure 2: Second-generation anti-CD19 chimeric antigen receptors used in clinical trials to treat acute lymphoblastic leukaemia.

Similar content being viewed by others

References

  1. Sadelain, M., Riviere, I. & Brentjens, R. Targeting tumours with genetically enhanced T lymphocytes. Nat. Rev. Cancer 3, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ho, W. Y., Blattman, J. N., Dossett, M. L., Yee, C. & Greenberg, P. D. Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 3, 431–437 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dossett, M. L. et al. Adoptive immunotherapy of disseminated leukemia with TCR-transduced, CD8+ T cells expressing a known endogenous TCR. Mol. Ther. 17, 742–749 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sadelain, M., Brentjens, R. & Riviere, I. The promise and potential pitfalls of chimeric antigen receptors. Curr. Opin. Immunol. 21, 215–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Brentjens, R. J. et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118, 4817–4828 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brentjens, R. J. et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra38 (2013). The first report of complete remission in four out of four subjects with ALL following CD19 CAR T cell therapy.

    PubMed  PubMed Central  Google Scholar 

  8. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a Phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  Google Scholar 

  11. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Porter, D. L., Kalos, M., Zheng, Z., Levine, B. & June, C. Chimeric antigen receptor therapy for B-cell malignancies. J. Cancer 2, 331–332 (2011).

    PubMed  PubMed Central  Google Scholar 

  13. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011). The first case-report of complete remission in two out of three subjects with CCL following CD19 CAR T cell therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kochenderfer, J. N. et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119, 2709–2720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maher, J., Brentjens, R. J., Gunset, G., Riviere, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002). The first report of sustained T cell expansion and functionality upon repeated exposure to antigen using a second-generation CAR (28ζ) transduced in human primary T cells.

    CAS  PubMed  Google Scholar 

  17. Imai, C. et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 18, 676–684 (2004). The first report of the antitumor efficacy of a BBζ CAR in an ALL xenograft model.

    CAS  PubMed  Google Scholar 

  18. Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    CAS  PubMed  Google Scholar 

  19. Dembic, Z. et al. Transfer of specificity by murine α and β T-cell receptor genes. Nature 320, 232–238 (1986).

    CAS  PubMed  Google Scholar 

  20. Boomer, J. S. & Green, J. M. An enigmatic tail of CD28 signaling. Cold Spring Harb. Perspect. Biol. 2, a002436 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Jenkins, M. K., Chen, C. A., Jung, G., Mueller, D. L. & Schwartz, R. H. Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J. Immunol. 144, 16–22 (1990).

    CAS  PubMed  Google Scholar 

  22. Weissman, A. M. et al. Molecular cloning of the ζ chain of the T cell antigen receptor. Science 239, 1018–1021 (1988).

    CAS  PubMed  Google Scholar 

  23. Irving, B. A. & Weiss, A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    CAS  PubMed  Google Scholar 

  24. Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell 64, 1037–1046 (1991).

    CAS  PubMed  Google Scholar 

  25. Letourneur, F. & Klausner, R. D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor ζ family proteins. Proc. Natl Acad. Sci. USA 88, 8905–8909 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Eshhar, Z., Waks, T., Gross, G. & Schindler, D. G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA 90, 720–724 (1993). This paper shows redirection of T cell hybridoma specificity through the coupling of an scFv to a T cell-activating CD3ζ or Fcγ receptor domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brocker, T., Peter, A., Traunecker, A. & Karjalainen, K. New simplified molecular design for functional T cell receptor. Eur. J. Immunol. 23, 1435–1439 (1993).

    CAS  PubMed  Google Scholar 

  28. Brocker, T. & Karjalainen, K. Signals through T cell receptor-ζ chain alone are insufficient to prime resting T lymphocytes. J. Exp. Med. 181, 1653–1659 (1995).

    CAS  PubMed  Google Scholar 

  29. Brocker, T. Chimeric Fv-ζ or Fv-ɛ receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96, 1999–2001 (2000).

    CAS  PubMed  Google Scholar 

  30. Gallardo, H. F., Tan, C., Ory, D. & Sadelain, M. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90, 952–957 (1997).

    CAS  PubMed  Google Scholar 

  31. Gong, M. C. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1, 123–127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Finney, H. M., Lawson, A. D., Bebbington, C. R. & Weir, A. N. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J. Immunol. 161, 2791–2797 (1998).

    CAS  PubMed  Google Scholar 

  34. Hombach, A. et al. Tumor-specific T cell activation by recombinant immunoreceptors: CD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3ζ signaling receptor molecule. J. Immunol. 167, 6123–6131 (2001).

    CAS  PubMed  Google Scholar 

  35. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    CAS  PubMed  Google Scholar 

  36. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    CAS  PubMed  Google Scholar 

  38. Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 4, 670–679 (2003).

    CAS  PubMed  Google Scholar 

  39. Brunet, J. F. et al. A new member of the immunoglobulin superfamily — CTLA-4. Nature 328, 267–270 (1987).

    CAS  PubMed  Google Scholar 

  40. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen, J. A., Martin, P. J. & Nowinski, R. C. Monoclonal-antibodies identifying a novel T-cell antigen and Ia antigens of human-lymphocytes. Immunogenetics 10, 247–260 (1980).

    Google Scholar 

  42. Aruffo, A. & Seed, B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl Acad. Sci. USA 84, 8573–8577 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamada, H. et al. Monoclonal antibody 9.3 and anti-CD11 antibodies define reciprocal subsets of lymphocytes. Eur. J. Immunol. 15, 1164–1168 (1985).

    CAS  PubMed  Google Scholar 

  44. Gross, J. A., St John, T. & Allison, J. P. The murine homologue of the T lymphocyte antigen CD28. Molecular cloning and cell surface expression. J. Immunol. 144, 3201–3210 (1990).

    CAS  PubMed  Google Scholar 

  45. Bour-Jordan, H. & Bluestone, J. A. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol. Rev. 229, 41–66 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Woerly, G. et al. Human eosinophils express and release IL-13 following CD28-dependent activation. J. Leukoc. Biol. 72, 769–779 (2002).

    CAS  PubMed  Google Scholar 

  47. Kozbor, D., Moretta, A., Messner, H. A., Moretta, L. & Croce, C. M. Tp44 molecules involved in antigen-independent T cell activation are expressed on human plasma cells. J. Immunol. 138, 4128–4132 (1987).

    CAS  PubMed  Google Scholar 

  48. Venuprasad, K. et al. Immunobiology of CD28 expression on human neutrophils. I. CD28 regulates neutrophil migration by modulating CXCR-1 expression. Eur. J. Immunol. 31, 1536–1543 (2001).

    CAS  PubMed  Google Scholar 

  49. Williams, J. A. et al. Regulation of thymic NKT cell development by the B7–CD28 costimulatory pathway. J. Immunol. 181, 907–917 (2008).

    CAS  PubMed  Google Scholar 

  50. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    CAS  PubMed  Google Scholar 

  51. Manickasingham, S. P., Anderton, S. M., Burkhart, C. & Wraith, D. C. Qualitative and quantitative effects of CD28/B7-mediated costimulation on naive T cells in vitro. J. Immunol. 161, 3827–3835 (1998).

    CAS  PubMed  Google Scholar 

  52. Diehn, M. et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc. Natl Acad. Sci. USA 99, 11796–11801 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Riley, J. L. et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc. Natl Acad. Sci. USA 99, 11790–11795 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. June, C. H., Ledbetter, J. A., Gillespie, M. M., Lindsten, T. & Thompson, C. B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol. 7, 4472–4481 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Smeets, R. L. et al. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling. BMC Immunol. 13, 12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Boonen, G. J. et al. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur. J. Immunol. 29, 789–798 (1999).

    CAS  PubMed  Google Scholar 

  57. Radvanyi, L. G. et al. CD28 costimulation inhibits TCR-induced apoptosis during a primary T cell response. J. Immunol. 156, 1788–1798 (1996).

    CAS  PubMed  Google Scholar 

  58. Thomas, R. M., Gao, L. & Wells, A. D. Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J. Immunol. 174, 4639–4646 (2005).

    CAS  PubMed  Google Scholar 

  59. Gubser, P. M. et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat. Immunol. 14, 1064–1072 (2013).

    CAS  PubMed  Google Scholar 

  60. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Faris, M., Kokot, N., Lee, L. & Nel, A. E. Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J. Biol. Chem. 271, 27366–27373 (1996).

    CAS  PubMed  Google Scholar 

  62. Rao, S., Gerondakis, S., Woltring, D. & Shannon, M. F. c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J. Immunol. 170, 3724–3731 (2003).

    CAS  PubMed  Google Scholar 

  63. Murayama, A. et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 25, 1081–1092 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  65. Jacobs, S. R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    CAS  PubMed  Google Scholar 

  66. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  67. Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not TH2 cytokines. Nat. Immunol. 2, 37–44 (2001).

    CAS  PubMed  Google Scholar 

  68. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  PubMed  Google Scholar 

  69. Vander Heiden, M. G. et al. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol. Cell. Biol. 21, 5899–5912 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    CAS  PubMed  Google Scholar 

  71. Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).

    CAS  PubMed  Google Scholar 

  72. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87–98 (1995).

    CAS  PubMed  Google Scholar 

  73. Wan, Y. Y. & DeGregori, J. The survival of antigen-stimulated T cells requires NFκB-mediated inhibition of p73 expression. Immunity 18, 331–342 (2003).

    CAS  PubMed  Google Scholar 

  74. Kirchhoff, S., Muller, W. W., Li-Weber, M. & Krammer, P. H. Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur. J. Immunol. 30, 2765–2774 (2000).

    CAS  PubMed  Google Scholar 

  75. Gimmi, C. D., Freeman, G. J., Gribben, J. G., Gray, G. & Nadler, L. M. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc. Natl Acad. Sci. USA 90, 6586–6590 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Beier, K. C. et al. Induction, binding specificity and function of human ICOS. Eur. J. Immunol. 30, 3707–3717 (2000).

    CAS  PubMed  Google Scholar 

  77. Johnson-Leger, C., Christensen, J. & Klaus, G. G. CD28 co-stimulation stabilizes the expression of the CD40 ligand on T cells. Int. Immunol. 10, 1083–1091 (1998).

    CAS  PubMed  Google Scholar 

  78. Kim, J. O., Kim, H. W., Baek, K. M. & Kang, C. Y. NF-κB and AP-1 regulate activation-dependent CD137 (4-1BB) expression in T cells. FEBS Lett. 541, 163–170 (2003).

    CAS  PubMed  Google Scholar 

  79. Borowski, A. B. et al. Memory CD8+ T cells require CD28 costimulation. J. Immunol. 179, 6494–6503 (2007).

    CAS  PubMed  Google Scholar 

  80. Fuse, S., Zhang, W. & Usherwood, E. J. Control of memory CD8+ T cell differentiation by CD80/CD86-CD28 costimulation and restoration by IL-2 during the recall response. J. Immunol. 180, 1148–1157 (2008).

    CAS  PubMed  Google Scholar 

  81. Hathcock, K. S., Laszlo, G., Pucillo, C., Linsley, P. & Hodes, R. J. Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J. Exp. Med. 180, 631–640 (1994).

    CAS  PubMed  Google Scholar 

  82. Fleischer, J. et al. Differential expression and function of CD80 (B7-1) and CD86 (B7-2) on human peripheral blood monocytes. Immunology 89, 592–598 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Eck, S. C., Chang, D., Wells, A. D. & Turka, L. A. Differential down-regulation of CD28 by B7-1 and B7-2 engagement. Transplantation 64, 1497–1499 (1997).

    CAS  PubMed  Google Scholar 

  84. Lewis, D. E., Merched-Sauvage, M., Goronzy, J. J., Weyand, C. M. & Vallejo, A. N. Tumor necrosis factor-α and CD80 modulate CD28 expression through a similar mechanism of T-cell receptor-independent inhibition of transcription. J. Biol. Chem. 279, 29130–29138 (2004).

    CAS  PubMed  Google Scholar 

  85. Berg, M. & Zavazava, N. Regulation of CD28 expression on CD8+ T cells by CTLA-4. J. Leukoc. Biol. 83, 853–863 (2008).

    CAS  PubMed  Google Scholar 

  86. Habib-Agahi, M., Jaberipour, M. & Searle, P. F. 4-1BBL costimulation retrieves CD28 expression in activated T cells. Cell. Immunol. 256, 39–46 (2009).

    CAS  PubMed  Google Scholar 

  87. Topp, M. S. et al. Restoration of CD28 expression in CD28 CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J. Exp. Med. 198, 947–955 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Peach, R. J. et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J. Exp. Med. 180, 2049–2058 (1994).

    CAS  PubMed  Google Scholar 

  89. Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    CAS  PubMed  Google Scholar 

  90. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    CAS  PubMed  Google Scholar 

  92. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    CAS  PubMed  Google Scholar 

  93. Riley, J. L. PD-1 signaling in primary T cells. Immunol. Rev. 229, 114–125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Croft, M. Costimulation of T cells by OX40, 4-1BB, and CD27. Cytokine Growth Factor Rev. 14, 265–273 (2003).

    CAS  PubMed  Google Scholar 

  95. Kwon, B. S. et al. Isolation and initial characterization of multiple species of T-lymphocyte subset cDNA clones. Proc. Natl Acad. Sci. USA 84, 2896–2900 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kwon, B. S. & Weissman, S. M. cDNA sequences of two inducible T-cell genes. Proc. Natl Acad. Sci. USA 86, 1963–1967 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwarz, H., Tuckwell, J. & Lotz, M. A receptor induced by lymphocyte activation (ILA): a new member of the human nerve-growth-factor/tumor-necrosis-factor receptor family. Gene 134, 295–298 (1993).

    CAS  PubMed  Google Scholar 

  98. Schwarz, H., Valbracht, J., Tuckwell, J., von Kempis, J. & Lotz, M. ILA, the human 4-1BB homologue, is inducible in lymphoid and other cell lineages. Blood 85, 1043–1052 (1995).

    CAS  PubMed  Google Scholar 

  99. Lee, S. J. et al. 4-1BB signal stimulates the activation, expansion, and effector functions of γδ T cells in mice and humans. Eur. J. Immunol. 43, 1839–1848 (2013).

    CAS  PubMed  Google Scholar 

  100. Melero, I., Johnston, J. V., Shufford, W. W., Mittler, R. S. & Chen, L. NK1.1 cells express 4-1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol. 190, 167–172 (1998).

    CAS  PubMed  Google Scholar 

  101. Zhang, X. et al. CD137 promotes proliferation and survival of human B cells. J. Immunol. 184, 787–795 (2010).

    CAS  PubMed  Google Scholar 

  102. Wilcox, R. A. et al. Cutting edge: expression of functional CD137 receptor by dendritic cells. J. Immunol. 168, 4262–4267 (2002).

    CAS  PubMed  Google Scholar 

  103. Drenkard, D. et al. CD137 is expressed on blood vessel walls at sites of inflammation and enhances monocyte migratory activity. FASEB J. 21, 456–463 (2007).

    CAS  PubMed  Google Scholar 

  104. von Kempis, J., Schwarz, H. & Lotz, M. Differentiation-dependent and stimulus-specific expression of ILA, the human 4-1BB-homologue, in cells of mesenchymal origin. Osteoarthritis Cartilage 5, 394–406 (1997).

    CAS  PubMed  Google Scholar 

  105. Futagawa, T. et al. Expression and function of 4-1BB and 4-1BB ligand on murine dendritic cells. Int. Immunol. 14, 275–286 (2002).

    CAS  PubMed  Google Scholar 

  106. Goodwin, R. G. et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol. 23, 2631–2641 (1993).

    CAS  PubMed  Google Scholar 

  107. Pollok, K. E. et al. 4-1BB T-cell antigen binds to mature B cells and macrophages, and costimulates anti-μ-primed splenic B cells. Eur. J. Immunol. 24, 367–374 (1994).

    CAS  PubMed  Google Scholar 

  108. Alderson, M. R. et al. Molecular and biological characterization of human 4-1BB and its ligand. Eur. J. Immunol. 24, 2219–2227 (1994).

    CAS  PubMed  Google Scholar 

  109. Polte, T., Jagemann, A., Foell, J., Mittler, R. S. & Hansen, G. CD137 ligand prevents the development of T-helper type 2 cell-mediated allergic asthma by interferon-γ-producing CD8+ T cells. Clin. Exp. Allergy 37, 1374–1385 (2007).

    CAS  PubMed  Google Scholar 

  110. Won, E. Y. et al. The structure of the trimer of human 4-1BB ligand is unique among members of the tumor necrosis factor superfamily. J. Biol. Chem. 285, 9202–9210 (2010).

    CAS  PubMed  Google Scholar 

  111. Vinay, D. S., Cha, K. & Kwon, B. S. Dual immunoregulatory pathways of 4-1BB signaling. J. Mol. Med. (Berl.) 84, 726–736 (2006).

    CAS  Google Scholar 

  112. Dawicki, W. & Watts, T. H. Expression and function of 4-1BB during CD4 versus CD8 T cell responses in vivo. Eur. J. Immunol. 34, 743–751 (2004).

    CAS  PubMed  Google Scholar 

  113. Takahashi, C., Mittler, R. S. & Vella, A. T. Cutting edge: 4-1BB is a bona fide CD8 T cell survival signal. J. Immunol. 162, 5037–5040 (1999).

    CAS  PubMed  Google Scholar 

  114. Lee, S. W. et al. Functional dichotomy between OX40 and 4-1BB in modulating effector CD8 T cell responses. J. Immunol. 177, 4464–4472 (2006).

    CAS  PubMed  Google Scholar 

  115. Pulle, G., Vidric, M. & Watts, T. H. IL-15-dependent induction of 4-1BB promotes antigen-independent CD8 memory T cell survival. J. Immunol. 176, 2739–2748 (2006).

    CAS  PubMed  Google Scholar 

  116. Nam, K. O. et al. Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J. Immunol. 174, 1898–1905 (2005).

    CAS  PubMed  Google Scholar 

  117. Daniel-Meshulam, I., Horovitz-Fried, M. & Cohen, C. J. Enhanced antitumor activity mediated by human 4-1BB-engineered T cells. Int. J. Cancer 133, 2903–2913 (2013).

    CAS  PubMed  Google Scholar 

  118. Cannons, J. L. et al. 4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J. Immunol. 167, 1313–1324 (2001).

    CAS  PubMed  Google Scholar 

  119. Wen, T., Bukczynski, J. & Watts, T. H. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J. Immunol. 168, 4897–4906 (2002).

    CAS  PubMed  Google Scholar 

  120. Jang, I. K., Lee, Z. H., Kim, Y. J., Kim, S. H. & Kwon, B. S. Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-κB. Biochem. Biophys. Res. Commun. 242, 613–620 (1998).

    CAS  PubMed  Google Scholar 

  121. Arch, R. H. & Thompson, C. B. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol. Cell. Biol. 18, 558–565 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Saoulli, K. et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J. Exp. Med. 187, 1849–1862 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zheng, C., Kabaleeswaran, V., Wang, Y., Cheng, G. & Wu, H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol. Cell 38, 101–113 (2010).

    PubMed  PubMed Central  Google Scholar 

  124. Sabbagh, L., Pulle, G., Liu, Y., Tsitsikov, E. N. & Watts, T. H. ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J. Immunol. 180, 8093–8101 (2008).

    CAS  PubMed  Google Scholar 

  125. McPherson, A. J., Snell, L. M., Mak, T. W. & Watts, T. H. Opposing roles for TRAF1 in the alternative versus classical NF-κB pathway in T cells. J. Biol. Chem. 287, 23010–23019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cannons, J. L., Choi, Y. & Watts, T. H. Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J. Immunol. 165, 6193–6204 (2000).

    CAS  PubMed  Google Scholar 

  127. Hauer, J. et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-κB pathway by TRAF-binding TNFRs. Proc. Natl Acad. Sci. USA 102, 2874–2879 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lee, H. W., Nam, K. O., Park, S. J. & Kwon, B. S. 4-1BB enhances CD8+ T cell expansion by regulating cell cycle progression through changes in expression of cyclins D and E and cyclin-dependent kinase inhibitor p27kip1. Eur. J. Immunol. 33, 2133–2141 (2003).

    CAS  PubMed  Google Scholar 

  129. DeBenedette, M. A., Shahinian, A., Mak, T. W. & Watts, T. H. Costimulation of CD28 T lymphocytes by 4-1BB ligand. J. Immunol. 158, 551–559 (1997).

    CAS  PubMed  Google Scholar 

  130. Chu, N. R., DeBenedette, M. A., Stiernholm, B. J., Barber, B. H. & Watts, T. H. Role of IL-12 and 4-1BB ligand in cytokine production by CD28+ and CD28 T cells. J. Immunol. 158, 3081–3089 (1997).

    CAS  PubMed  Google Scholar 

  131. Bukczynski, J., Wen, T. & Watts, T. H. Costimulation of human CD28 T cells by 4-1BB ligand. Eur. J. Immunol. 33, 446–454 (2003).

    CAS  PubMed  Google Scholar 

  132. Fann, M. et al. Gene expression characteristics of CD28null memory phenotype CD8+ T cells and its implication in T-cell aging. Immunol. Rev. 205, 190–206 (2005).

    CAS  PubMed  Google Scholar 

  133. Ahmad, H. T., Mansooreh, J., Fereshteh, M. & Mojtaba, H. Changes in lymphocytes' telomerase activity by 4-1BB costimulation. J. Cancer Res. Ther. 10, 998–1003 (2014).

    PubMed  Google Scholar 

  134. Hendriks, J. et al. During viral infection of the respiratory tract, CD27, 4-1BB, and OX40 collectively determine formation of CD8+ memory T cells and their capacity for secondary expansion. J. Immunol. 175, 1665–1676 (2005).

    CAS  PubMed  Google Scholar 

  135. Shuford, W. W. et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J. Exp. Med. 186, 47–55 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sabbagh, L., Snell, L. M. & Watts, T. H. TNF family ligands define niches for T cell memory. Trends Immunol. 28, 333–339 (2007).

    CAS  PubMed  Google Scholar 

  137. DeBenedette, M. A. et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J. Immunol. 163, 4833–4841 (1999).

    CAS  PubMed  Google Scholar 

  138. Kwon, B. S. et al. Immune responses in 4-1BB (CD137)-deficient mice. J. Immunol. 168, 5483–5490 (2002).

    CAS  PubMed  Google Scholar 

  139. Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    CAS  PubMed  Google Scholar 

  140. Humphreys, I. R. et al. Biphasic role of 4-1BB in the regulation of mouse cytomegalovirus-specific CD8+ T cells. Eur. J. Immunol. 40, 2762–2768 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, C. et al. Loss of the signaling adaptor TRAF1 causes CD8+ T cell dysregulation during human and murine chronic infection. J. Exp. Med. 209, 77–91 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Habib-Agahi, M., Phan, T. T. & Searle, P. F. Co-stimulation with 4-1BB ligand allows extended T-cell proliferation, synergizes with CD80/CD86 and can reactivate anergic T cells. Int. Immunol. 19, 1383–1394 (2007).

    CAS  PubMed  Google Scholar 

  143. Zhang, B., Zhang, Y., Niu, L., Vella, A. T. & Mittler, R. S. Dendritic cells and Stat3 are essential for CD137-induced CD8 T cell activation-induced cell death. J. Immunol. 184, 4770–4778 (2010).

    CAS  PubMed  Google Scholar 

  144. Frecha, C. et al. Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 112, 4843–4852 (2008).

    CAS  PubMed  Google Scholar 

  145. Unutmaz, D., KewalRamani, V. N., Marmon, S. & Littman, D. R. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Brentjens, R. J. et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13, 5426–5435 (2007).

    CAS  PubMed  Google Scholar 

  147. Carpenito, C. et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106, 3360–3365 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Milone, M. C. et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17, 1453–1464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tammana, S. et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum. Gene Ther. 21, 75–86 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhong, X. S., Matsushita, M., Plotkin, J., Riviere, I. & Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 18, 413–420 (2010).

    CAS  PubMed  Google Scholar 

  151. Song, D. G. et al. CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood 119, 696–706 (2012).

    CAS  PubMed  Google Scholar 

  152. Santoro, S. P. et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol. Res. 3, 68–84 (2014).

    PubMed  PubMed Central  Google Scholar 

  153. Finney, H. M., Akbar, A. N. & Lawson, A. D. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain. J. Immunol. 172, 104–113 (2004).

    CAS  PubMed  Google Scholar 

  154. Guedan, S. et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 124, 1070–1080 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Hombach, A. A. & Abken, H. Costimulation by chimeric antigen receptors revisited the T cell antitumor response benefits from combined CD28–OX40 signalling. Int. J. Cancer 129, 2935–2944 (2011).

    CAS  PubMed  Google Scholar 

  156. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    CAS  PubMed  Google Scholar 

  157. Loskog, A. et al. Addition of the CD28 signaling domain to chimeric T-cell receptors enhances chimeric T-cell resistance to T regulatory cells. Leukemia 20, 1819–1828 (2006).

    CAS  PubMed  Google Scholar 

  158. Kofler, D. M. et al. CD28 costimulation impairs the efficacy of a redirected T-cell antitumor attack in the presence of regulatory T cells which can be overcome by preventing Lck activation. Mol. Ther. 19, 760–767 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pegram, H. J. et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Sun, J. et al. T cells expressing constitutively active Akt resist multiple tumor-associated inhibitory mechanisms. Mol. Ther. 18, 2006–2017 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Frigault, M. J. et al. Identification of chimeric antigen receptors that mediate constitutive or inducible proliferation of T cells. Cancer Immunol. Res. 3, 356–367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Gargett, T., Fraser, C. K., Dotti, G., Yvon, E. S. & Brown, M. P. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro. J. Immunother. 38, 12–23 (2015).

    CAS  PubMed  Google Scholar 

  163. Song, D. G. et al. In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res. 71, 4617–4627 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Chattopadhyay, K. et al. Sequence, structure, function, immunity: structural genomics of costimulation. Immunol. Rev. 229, 356–386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Long, A. H., et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Cheadle, E. J. et al. Differential role of Th1 and Th2 cytokines in autotoxicity driven by CD19-specific second-generation chimeric antigen receptor T cells in a mouse model. J. Immunol. 92, 3654–3665 (2014).

    Google Scholar 

  167. Brentjens, R. J. et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 9, 279–286 (2003). The first report demonstrating the therapeutic efficacy of human CD19 CAR T cells in mice with systemic B cell malignancies.

    CAS  PubMed  Google Scholar 

  168. Davila, M. L., Kloss, C. C., Gunset, G. & Sadelain, M. CD19 CAR-targeted T cells induce long-term remission and B cell aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS ONE 8, e61338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl. Med. 6, 261ra151 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Zhang, B., Karrison, T., Rowley, D. A. & Schreiber, H. IFN-γ- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J. Clin. Invest. 118, 1398–1404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Braumuller, H. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013).

    PubMed  Google Scholar 

  172. Matsushita, H. et al. Cytotoxic T lymphocytes block tumor growth both by lytic activity and γ-dependent cell-cycle arrest. Cancer Immunol. Res. 3, 26–36 (2015).

    CAS  PubMed  Google Scholar 

  173. Kowolik, C. M. et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66, 10995–11004 (2006).

    CAS  PubMed  Google Scholar 

  174. Plunkett, F. J. et al. The loss of telomerase activity in highly differentiated CD8+CD28CD27 T cells is associated with decreased Akt (Ser473) phosphorylation. J. Immunol. 178, 7710–7719 (2007).

    CAS  PubMed  Google Scholar 

  175. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    CAS  PubMed  Google Scholar 

  176. Hoyos, V. et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24, 1160–1170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Gros, A. et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J. Clin. Invest. 124, 2246–2259 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Liadi, I. et al. Individual motile CD4+ T cells can participate in efficient multikilling through conjugation to multiple tumor cells. Cancer Immunol. Res. 3, 473–482 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Crompton, J. G., Sukumar, M. & Restifo, N. P. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol. Rev. 257, 264–276 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Riddell, S. R. et al. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer J. 20, 141–144 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, Y. S., Hayakawa, K. & Hardy, R. R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178, 951–960 (1993).

    CAS  PubMed  Google Scholar 

  182. Li, Y. S., Wasserman, R., Hayakawa, K. & Hardy, R. R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535 (1996).

    CAS  PubMed  Google Scholar 

  183. Cooper, L. J. et al. T-cell clones can be rendered specific for CD19: toward the selective augmentation of the graft-versus-B-lineage leukemia effect. Blood 101, 1637–1644 (2003).

    CAS  PubMed  Google Scholar 

  184. Kohn, D. B. et al. CARs on track in the clinic. Mol. Ther. 19, 432–438 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Jensen, M. C. et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant 16, 1245–1256 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010). The first case-report of a remission following CD19 CAR T cell therapy in a subject with a B cell lymphoma.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Savoldo, B. et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822–1826 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Cruz, C. R. et al. Infusion of donor-derived CD19-redirected virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase 1 study. Blood 122, 2965–2973 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Kochenderfer, J. N. et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 122, 4129–4139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Hollyman, D. et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother. 32, 169–180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lee, D. W. et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188–195 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Davila, M. L., Brentjens, R., Wang, X., Riviere, I. & Sadelain, M. How do CARs work? Early insights from recent clinical studies targeting CD19. Oncoimmunology 1, 1577–1583 (2012).

    PubMed  PubMed Central  Google Scholar 

  193. Paulos, C. M. et al. The inducible costimulator (ICOS) is critical for the development of human TH17 cells. Sci. Transl. Med. 2, 55ra78 (2010).

    PubMed  PubMed Central  Google Scholar 

  194. Oestreich, K. J. et al. Bcl-6 directly represses the gene program of the glycolysis pathway. Nat. Immunol. 15, 957–964 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    CAS  PubMed  Google Scholar 

  196. Tafuri, A. et al. ICOS is essential for effective T-helper-cell responses. Nature 409, 105–109 (2001).

    CAS  PubMed  Google Scholar 

  197. Burmeister, Y. et al. ICOS controls the pool size of effector-memory and regulatory T cells. J. Immunol. 180, 774–782 (2008).

    CAS  PubMed  Google Scholar 

  198. Shen, C. J. et al. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J. Hematol. Oncol. 6, 33 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Kopf, M. et al. OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11, 699–708 (1999).

    CAS  PubMed  Google Scholar 

  200. Salek-Ardakani, S., Moutaftsi, M., Crotty, S., Sette, A. & Croft, M. OX40 drives protective vaccinia virus-specific CD8 T cells. J. Immunol. 181, 7969–7976 (2008).

    CAS  PubMed  Google Scholar 

  201. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 9, 271–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Hildebrand, J. M. et al. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol. Rev. 244, 55–74 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Pule, M. A. et al. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol. Ther. 12, 933–941 (2005).

    CAS  PubMed  Google Scholar 

  204. Wilkie, S. et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J. Immunol. 180, 4901–4909 (2008).

    CAS  PubMed  Google Scholar 

  205. Carr, J. M. et al. CD27 mediates interleukin-2-independent clonal expansion of the CD8+ T cell without effector differentiation. Proc. Natl Acad. Sci. USA 103, 19454–19459 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Fox, C. J., Hammerman, P. S. & Thompson, C. B. The Pim kinases control rapamycin-resistant T cell survival and activation. J. Exp. Med. 201, 259–266 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Nolte, M. A., van Olffen, R. W., van Gisbergen, K. P. & van Lier, R. A. Timing and tuning of CD27–CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol. Rev. 229, 216–231 (2009).

    CAS  PubMed  Google Scholar 

  208. Sentman, C. L. & Meehan, K. R. NKG2D CARs as cell therapy for cancer. Cancer J. 20, 156–159 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Chang, Y. H. et al. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 73, 1777–1786 (2013).

    CAS  PubMed  Google Scholar 

  210. Lehner, M. et al. Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS ONE 7, e31210 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Song, D. G. et al. Chimeric NKG2D CAR-expressing T cell-mediated attack of human ovarian cancer is enhanced by histone deacetylase inhibition. Hum. Gene Ther. 24, 295–305 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Barber, A. & Sentman, C. L. Chimeric NKG2D T cells require both T cell- and host-derived cytokine secretion and perforin expression to increase tumor antigen presentation and systemic immunity. J. Immunol. 183, 2365–2372 (2009).

    CAS  PubMed  Google Scholar 

  213. Zhang, T. & Sentman, C. L. Mouse tumor vasculature expresses NKG2D ligands and can be targeted by chimeric NKG2D-modified T cells. J. Immunol. 190, 2455–2463 (2013).

    CAS  PubMed  Google Scholar 

  214. Zhao, Y. et al. A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity. J. Immunol. 183, 5563–5574 (2009).

    CAS  PubMed  Google Scholar 

  215. Wang, J. et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 18, 712–725 (2007).

    CAS  PubMed  Google Scholar 

  216. Till, B. G. et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood 119, 3940–3950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kloss, C. C., Condomines, M., Cartellieri, M., Bachmann, M. & Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat. Biotechnol. 31, 71–75 (2013).

    CAS  PubMed  Google Scholar 

  219. Wilkie, S. et al. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J. Clin. Immunol. 32, 1059–1070 (2012).

    CAS  PubMed  Google Scholar 

  220. Lanitis, E. et al. Chimeric antigen receptor T cells with dissociated signaling domains exhibit focused antitumor activity with reduced potential for toxicity in vivo. Cancer Immunol. Res. 1, 43–53 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Hudecek, M. et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells Clin. Cancer Res. 19, 3153–3164 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Hudecek, M. et al. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3, 125–135 (2015).

    CAS  PubMed  Google Scholar 

  223. James, S. E. et al. Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180, 7028–7038 (2008).

    CAS  PubMed  Google Scholar 

  224. Guest, R. D. et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J. Immunother. 28, 203–211 (2005).

    CAS  PubMed  Google Scholar 

  225. Almasbak, H. et al. Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther. 22, 391–403 (2015).

    CAS  PubMed  Google Scholar 

  226. Fitzer-Attas, C. J., Schindler, D. G., Waks, T. & Eshhar, Z. Harnessing Syk family tyrosine kinases as signaling domains for chimeric single chain of the variable domain receptors: optimal design for T cell activation. J. Immunol. 160, 145–154 (1998).

    CAS  PubMed  Google Scholar 

  227. Bridgeman, J. S. et al. The optimal antigen response of chimeric antigen receptors harboring the CD3ζ transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. J. Immunol. 184, 6938–6949 (2010).

    CAS  PubMed  Google Scholar 

  228. Miller, J. F. & Sadelain, M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell 27, 439–449 (2015).

    CAS  PubMed  Google Scholar 

  229. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    CAS  PubMed  Google Scholar 

  230. Melero, I., Hirschhorn-Cymerman, D., Morales-Kastresana, A., Sanmamed, M. F. & Wolchok, J. D. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin. Cancer Res. 19, 1044–1053 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Yao, S., Zhu, Y. & Chen, L. Advances in targeting cell surface signalling molecules for immune modulation. Nat. Rev. Drug Discov. 12, 130–146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Gangadhar, T. C. & Vonderheide, R. H. Mitigating the toxic effects of anticancer immunotherapy. Nat. Rev. Clin. Oncol. 11, 91–99 (2014).

    CAS  PubMed  Google Scholar 

  233. Curti, B. D. et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 73, 7189–7198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. de Vos, S. et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. Oncol. 7, 44 (2014).

    PubMed  PubMed Central  Google Scholar 

  235. Hussein, M. et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 95, 845–848 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Furman, R. R., Forero-Torres, A., Shustov, A. & Drachman, J. G. A Phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk. Lymphoma 51, 228–235 (2010).

    CAS  PubMed  Google Scholar 

  237. Advani, R. et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J. Clin. Oncol. 27, 4371–4377 (2009).

    CAS  PubMed  Google Scholar 

  238. Topalian, S. L. et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J. Clin. Oncol. 32, 1020–1030 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Hodi, F. S. et al. Ipilimumab plus sargramostim versus ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312, 1744–1753 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Sadelain.

Ethics declarations

Competing interests

M.S. is scientific co-founder of Juno Therapeutics. All other authors declare no conflict of interest.

PowerPoint slides

Glossary

T cell engineering

T cell isolation and modification intended to harness antigen specificity, proliferation, persistence and/or function.

Chimeric antigen receptor

(CAR). Fusion receptor combining antigen-recognition and T cell-activating properties. CARs consist of an antigen binding moiety (a single-chain variable fragment (scFv) or ligand), a hinge, a transmembrane domain and a cytoplasmic signalling domain, which includes a co-stimulatory domain in second-generation CARs.

First-generation CARs

Chimeric antigen receptors (CARs) with an endodomain consisting of the cytoplasmic signalling domain of CD3ζ or the Fcγ receptor.

Second generation CARs

Chimeric antigen receptors (CARs) that include a single co-stimulatory element within the endoplasmic domain in cis with the activating CD3ζ domain.

Anergy

Rapidly acquired state of T cell unresponsiveness occurring after suboptimal activation via the T cell receptor in the absence of co-stimulation or in the presence of co-inhibitory molecules.

Activation-induced cell death

(AICD). Apoptosis occurring following T cell activation.

Exhaustion

Progressive hyporesponsiveness developed by T cells after repeated exposure to antigen.

Single-chain variable fragment

(scFv). Fusion protein consisting of the variable fragments of the immunoglobulin heavy and light chains, connected by a glycine or serine linker.

Chimeric co-stimulatory receptor

Fusion molecule coupling antigen specificity to T cell co-stimulatory signalling, without activating domains.

Hinge

Also referred to as spacer domain; an extracellular component connecting the binding moiety to the transmembrane element.

Molecular remission

Complete remission and absence of disease based on PCR analysis.

Complete remission

Absence of disease based on imaging or biopsy analysis.

Severe cytokine release syndrome

A clinical syndrome comprising fever, hypotension, hypoxia and/or neurological symptoms, associated with cytokine release occurring following in vivo T cell activation.

Third-generation CARs

Chimeric antigen receptors (CARs) containing two co-stimulatory elements within the cytoplasmic domain in cis with the activating CD3ζ domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Stegen, S., Hamieh, M. & Sadelain, M. The pharmacology of second-generation chimeric antigen receptors. Nat Rev Drug Discov 14, 499–509 (2015). https://doi.org/10.1038/nrd4597

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4597

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer