Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioequivalence and the immunogenicity of biopharmaceuticals

Key Points

  • The first patents of recombinant-DNA-derived biopharmaceuticals will expire in the near future, which should allow the marketing of 'generics'.

  • With classical drugs, generics can be marketed on the basis of limited documentation that shows physicochemical and pharmaceutical similarity to the innovator product.

  • Clinical data from a crossover volunteer study will generally suffice.

  • However, for biopharmaceuticals, which are in general large proteins, the biological and clinical properties cannot be completely predicted by current analytical methods, such as mass spectroscopy.

  • As illustrated by the problem of immunogenicity, the properties of a biopharmaceutical are dependent on many factors, which include downstream processing and formulation.

  • Even if the same genes are expressed in the same host cells, and identical production methods are used, this does not necessarily lead to a similar degree of immunogenicity.

  • Although the induction of antibodies is in many cases harmless, serious clinical consequences might occur, as shown by the current epidemic of the antibody-induced severe anaemia that is associated with the use of a specific form of recombinant erythropoietin.

  • So, the concept of generics cannot be extrapolated to biopharmaceuticals, and the term 'biogenerics' should not be used.

Abstract

The expiry of the first patents for recombinant-DNA-derived biopharmaceuticals will open the possibility of marketing generics, if they can be shown to be essentially similar to the innovator product. However, as shown by the problem of immunogenicity, the properties of biopharmaceuticals are dependent on many factors, including downstream processing and formulation. Products from different sources cannot be assumed to be bioequivalent, even if identical genes are expressed in the same host cells and similar production methods are used. Some of the influencing factors are still unknown, which makes it impossible to completely predict biological behaviour, such as immunogenicity, which can sometimes lead to serious side effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Some of the many factors that influence the immunogenicity of biopharmaceuticals.
Figure 2: Immunogenicity of different human IFN-α2A preparations.
Figure 3: RP-HPLC of a highly immunogenic batch of interferon (IFN)-α2A.

Similar content being viewed by others

References

  1. Chance, R. E., Root, M. A. & Galloway, J. A. The immunogenicity of insulin preparations. Acta Endocrinol. Suppl. 205, 185–198 (1976).

    CAS  Google Scholar 

  2. Milner, R. D. G. & Fiodh, H. (eds) Immunological Aspects of Human Growth Hormone: Proceedings of a Workshop, London, 12 November 1985. (Medical Education Services, Oxford, 1986).These papers give a comprehensive review of the immunogenicity of pituitary-derived and early-recombinant-DNA-derived human growth hormones.

    Google Scholar 

  3. Jacquemin, M. G. & Saint-Remy, J. M. Factor VIII immunogenicity. Haemophilia 4, 552–557 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Dietrich, F. M., Fischer, J. A. & Bijvoet, O. L. Formation of antibodies to synthetic human calcitonin during treatment of Paget's disease. Acta Endocrinol. 92, 468–476 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. Schernthaner, G. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care 16, 155–165 (1993).

    Article  PubMed  Google Scholar 

  6. Rosenschein, U., Lenz, R., Radnay, J., Ben Tovim, T. & Rozenszajn, L. A. Streptokinase immunogenicity in thrombolytic therapy for acute myocardial infarction. Isr. J. Med. Sci. 27, 541–545 (1991).

    CAS  PubMed  Google Scholar 

  7. Vanderschueren, S. M., Stassen, J. M. & Collen, D. On the immunogenicity of recombinant staphylokinase in patients and in animal models. Thromb. Haemost. 72, 297–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Chaffee, S. et al. IgG antibody response to polyethylene glycol-modified adenosine deaminase in patients with adenosine deaminase deficiency. J. Clin. Invest. 89, 1643–1651 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grauer, A., Frank-Raue, K., Schroth, J., Raue, F. & Ziegler, R. Neutralizing antibodies against salmon calcitonin. The cause of a treatment failure in Paget's disease. Dtsch. Med. Wochenschr. 119, 507–510 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gilles, J. G., Jacquemin, M. G. & Saint-Remy, J. M. Factor VIII inhibitors. Thromb. Haemost. 78, 641–646 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Frasier, S. D. Human pituitary growth hormone (hGH) therapy in growth hormone deficiency. Endocr. Rev. 4, 155–170 (1983).

    Article  CAS  PubMed  Google Scholar 

  12. Dummer, R. et al. Formation of neutralizing antibodies against natural interferon-β, but not against recombinant interferon-γ during adjuvant therapy for high-risk malignant melanoma patients. Cancer 67, 2300–2304 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Prabhakar, S. S. & Muhlfelder, T. Antibodies to recombinant human erythropoietin causing pure red cell aplasia. Clin. Nephrology 47, 331–335 (1997).

    CAS  Google Scholar 

  14. Oberg, K. et al. Treatment of malignant carcinoid tumors with recombinant interferon-α2B: development of neutralizing interferon antibodies and possible loss of antitumor activity. J. Natl Cancer Inst. 81, 531–535 (1989).One of the first studies to show the inhibition of efficacy by antibodies that are induced by human IFN-α.

    Article  CAS  PubMed  Google Scholar 

  15. Zang, Y. C. et al. Immunoregulation and blocking antibodies induced by interferon-β treatment in MS. Neurology 55, 397–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kontsek, P., Liptakova, H. & Kontsekova, E. Immunogenicity of interferon-α2 in therapy: structural and physiological aspects. Acta Virol. 43, 63–70 (1999).

    CAS  PubMed  Google Scholar 

  17. Melian, E. B. & Plosker, G. L. Interferon αcon-1: a review of its pharmacology and therapeutic efficacy in the treatment of chronic hepatitis C. Drugs 61, 1661–1691 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Girard, F. & Gourmelen, M. Clinical experience with somatonorm. Acta Pœdiatr. Scand. 325, 29–32 (1986).

    Article  CAS  Google Scholar 

  19. Gribben, J. G. et al. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet 335, 434–437 (1990).

    Article  CAS  Google Scholar 

  20. Karpusas, M. et al. The structure of human interferon-β: implications for activity. Cell. Mol. Life Sci. 54, 1203–1216 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. MacDougall, I. C. Novel erythropoiesis stimulating protein. Semin. Nephrology 20, 375–381 (2000).

    CAS  Google Scholar 

  22. Antonelli, G. et al. Interferon antibodies in patients with infectious diseases. Biotherapy 10, 7–14 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Prümmer, O. Treatment-induced antibodies to interleukin-2. Biotherapy 10, 15–24 (1997).

    Article  PubMed  Google Scholar 

  24. Stubbe, P. in Growth Hormone Deficiency. Proceedings of a Workshop in Tubingen, 1981 (eds Ranke, M. B. & Bierich, J. R.) 92–99 (Urban and Schwarzenberg, Munich, 1983).

    Google Scholar 

  25. Fierlbeck, G. et al. Neutralizing interferon-β antibodies in melanoma patients treated with recombinant and natural interferon-β. Cancer Immunol. Immunother. 39, 263–268 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Hochuli, E. Interferon immunogenicity: technical evaluation of interferon-α2A. J. Int. Cytokine Res. 17, S15–S21 (1997).The first study to link the immunogenicity of human IFN-α2A to the presence of oxidized proteins.

    CAS  Google Scholar 

  27. Moore, W. V. & Leppert, P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J. Clin. Endocrinol. Metab. 51, 691–697 (1980).

    Article  CAS  PubMed  Google Scholar 

  28. Ryff, J.-C. Clinical investigation of the immunogenicity of interferon-α2A. J. Int. Cytokine Res. 17, S29–S33 (1997).

    CAS  Google Scholar 

  29. Rosendaal, F. R. et al. A sudden increase in factor VIII inhibitor development in multitransfused hemophilia A patients in the Netherlands. Blood 81, 2180–2186 (1993).This study shows the induction of immunogenicity by the introduction of a pasteurization step during production.

    CAS  PubMed  Google Scholar 

  30. Cleland, J. L., Powell, M. F. & Shire, S. J. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10, 307–377 (1993).

    CAS  PubMed  Google Scholar 

  31. Palleroni, A. V. et al. Interferon immunogenicity: preclinical evaluation of interferon-α2A. J. Int. Cytokine Res. 17, S23–S27 (1997).

    CAS  Google Scholar 

  32. Perini, P. et al. Interferon-β (IFN-β) antibodies in interferon-β1A- and interferon-β1B-treated multiple sclerosis patients. Prevalence, kinetics, cross-reactivity, and factors enhancing interferon-β immunogenicity in vivo. Eur. Cytokine Netw. 12, 56–61 (2001).

    CAS  PubMed  Google Scholar 

  33. Kirchner, H. et al. Subcutaneous interleukin-2 and interferon-α2B in patients with metastatic renal cell cancer: the German outpatient experience. Mol. Biother. 2, 145–154 (1990).

    CAS  PubMed  Google Scholar 

  34. Levy, F., Muff, R., Dotti-Sigrist, S., Dambacher, M. A. & Fischer, J. A. Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of Paget's disease. J. Clin. Endocrinol. Metab. 67, 541–545 (1988).

    Article  CAS  PubMed  Google Scholar 

  35. Eisenberg, J. D. et al. Safety of repeated intermittent courses of aerosolized recombinant human deoxyribonuclease in patients with cystic fibrosis. J. Pediatr. 131, 118–124 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Ross, C. et al. Immunogenicity of interferon-β in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Danish Multiple Sclerosis Study Group. Ann. Neurol. 48, 706–712 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Antonelli, G. In vivo development of antibodies to interferon: an update to 1996. J. Int. Cytokine Res. 17, S39–S46 (1997).

    CAS  Google Scholar 

  38. Prescott, R. et al. The inhibitor antibody response is more complex in hemophilia A patients than in most nonhemophiliacs with factor VIII autoantibodies. Blood 89, 3663–3671 (1997).

    CAS  PubMed  Google Scholar 

  39. Fakharzadeh, S. S. & Kazazian, H. H. Jr. Correlation between factor VIII genotype and inhibitor development in hemophilia A. Semin. Thromb. Hemost. 26, 167–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Schernthaner, G. et al. Immunogenicity of human insulin (Novo) or pork monocomponent insulin in HLA-DR-typed insulin-dependent diabetic individuals. Diabetes Care 6, 43–48 (1983).

    PubMed  Google Scholar 

  41. Jeandidier, N. et al. Immunogenicity of intraperitoneal insulin infusion using programmable implantable devices. Diabetologia 38, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Schellekens, H., Ryff, J.-C. & van der Meide, P. H. Assays for antibodies to human interferon-α: the need for standardisation. J. Int. Cytokine Res. 17, 5–8 (1997).

    Google Scholar 

  43. Casadevall, N. et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N. Engl. J. Med. 346, 469–475 (2002).An excellent clinical study, which shows the severe clinical consequences of the immunogenicity of a protein drug.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, B. S. et al. Augmentation of hormonal activities with antibodies from cattle immunized with a combination of synthetic and recombinant growth hormone peptide. Anim. Biotechnol. 9, 21–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Zipkin, I. Amgen lays MGDF to rest. BioCentury [online] (cited 29 Apr 02) 〈http://www.biocentury.com/〉 (1998).

  46. Chan, S. H. et al. Engineering of a mini-trichosanthin that has lower antigenicity by deleting its C-terminal amino acid residues. Biochem. Biophys. Res. Commun. 270, 279–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Collen, D. et al. Recombinant staphylokinase variants with altered immunoreactivity. I. Construction and characterization. Circulation 94, 197–206 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Chang, T. Y. Towards a quantitative model of immunogenicity: counting pathways in sequence space. J. Theor. Biol. 206, 255–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Van Regenmortel, M. H. Analysing structure–function relationships with biosensors. Cell. Mol. Life Sci. 58, 794–800 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Vanderschueren, S. M., Stassen, J. M. & Collen, D. On the immunogenicity of recombinant staphylokinase in patients and in animal models. Thromb. Haemost. 72, 297–301 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Collen, D., De Cock, F. & Stassen, J. M. Comparative immunogenicity and thrombolytic properties toward arterial and venous thrombi of streptokinase and recombinant staphylokinase in baboons. Circulation 87, 996–1006 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Dempster, A. M. Nonclinical safety evaluation of biotechnologically derived pharmaceuticals. Biotechnol. Annu. Rev. 5, 221–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Randolph, J. F., Stokol, T., Scarlett, J. M. & MacLeod, J. N. Comparison of biological activity and safety of recombinant canine erythropoietin with that of recombinant human erythropoietin in clinically normal dogs. Am. J. Vet. Res. 60, 636–642 (1999).

    CAS  PubMed  Google Scholar 

  54. Zwickl, C. M. et al. Comparison of the immunogenicity of recombinant and pituitary human growth hormone in rhesus monkeys. Fundam. Appl. Toxicol. 16, 275–287 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Wierda, D., Smith, H. W. & Zwickl, C. M. Immunogenicity of biopharmaceuticals in laboratory animals. Toxicology 158, 71–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Ottesen, J. L. et al. The potential immunogenicity of human insulin and insulin analogues evaluated in a transgenic mouse model. Diabetologia 37, 1178–1185 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Stewart, T. A. et al. Transgenic mice as a model to test the immunogenicity of proteins altered by site-specific mutagenesis. Mol. Biol. Med. 6, 275–281 (1989).The first study to show the relevance of immunotolerant transgenic mice for predicting the immunogenicity of proteins in man.

    CAS  PubMed  Google Scholar 

  58. Palleroni, A. V. et al. Interferon immunogenicity: preclinical evaluation of interferon-α2A. J. Int. Cytokine Res. 17, S23–S27 (1997).

    CAS  Google Scholar 

  59. Du, X. & Tang, J. G. Effects of deleting A19 tyrosine from insulin. Biochem. Mol. Biol. Int. 44, 507–513 (1998).

    CAS  PubMed  Google Scholar 

  60. Steis, R. G. et al. Loss of interferon antibodies during prolonged continuous interferon-α2A therapy in hairy cell leukemia. Blood 77, 792–798 (1991).

    CAS  PubMed  Google Scholar 

  61. Roffi, L. et al. Breakthrough during recombinant interferon-α therapy in patients with chronic hepatitis C virus infection: prevalence, etiology, and management. Hepatology 21, 645–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Schellekens, H. & Ryff, J.-C. Biogenerics; the Off-Patent Biotech Products. Trends Pharmacol. Sci. 23, 119–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Chaffee, S. et al. IgG antibody response to polyethylene glycol-modified adenosine deaminase in patients with adenosine deaminase deficiency. J. Clin. Invest. 89, 1643–1651 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blumenfeld, Z., Frisch, L. & Conn, P. M. Gonadotropin-releasing hormone (GnRH) antibodies formation in hypogonadotropic azoospermic men treated with pulsatile GnRH-diagnosis and possible alternative treatment. Fertil. Steril. 50, 622–629 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Olsen, E. et al. Pivotal Phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J. Clin. Oncol. 19, 376–388 (2001).

    Article  CAS  Google Scholar 

  66. Claustrat, B., David, L., Faure, A. & Francois, R. Development of anti-human chorionic gonadotropin antibodies in patients with hypogonadotropic hypogonadism. A study of four patients. J. Clin. Endocrinol. Metab. 57, 1041–1047 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Ragnhammar, P. & Wadhwa, M. Neutralising antibodies to granulocyte-macrophage colony stimulating factor(GM–CSF) in carcinoma patients following GM-CSF combination therapy. Med. Oncol. 13, 161–166 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank P. Patten, K. Vahle, D. Crommelin, S. Goelz and S. Swanson for their critical comments. M. von Stein helped in preparing the manuscript. A generous educational grant by Maxygen Inc. enabled the writing of this review.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

GM-CSF

GnRH

growth hormone

HCG

HSA

IFN-α2

IFN-β

IL-2

IL-3

insulin

tPA

Medscape DrugInfo

bovine insulin

consensus IFN-α

EPO

factor VIII

IFN-α2A

IFN-α2B

porcine insulin

recombinant IFN-β

salmon calcitonin

streptokinase

LINK

Biogen

Glossary

RECOMBINANT DNA

The combination of DNA from different species; for example, the introduction of human genes into microorganisms.

GENERIC

A copy of a drug that is introduced after the patent expires.

BIOEQUIVALENCE

Similarity of biological properties.

BIOPHARMACEUTICAL

A pharmaceutical product that consists of protein and/or nucleic acid.

IMMUNOGENICITY

The capacity to elicit an immune response, such as the production of specific antibodies.

EPITOPE

Part of a protein that is recognized by an antibody.

SURFACE PLASMON RESONANCE

(SPR.) This occurs when surface plasmon waves are excited by light deflection at a metal–liquid interface. SPR can be used to investigate protein–protein interactions, such as antibody–antigen interactions.

ADJUVANT

A substance that can boost the immune response.

NEO-ANTIGEN

A non-self antigen that is new for an individual.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellekens, H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 1, 457–462 (2002). https://doi.org/10.1038/nrd818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd818

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing