Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

T cell migration, search strategies and mechanisms

Abstract

T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation–exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell motility according to its state of activation and the microenvironment.
Figure 2: Factors influencing the features of T cell motility and platforms used to study T cell migration characteristics.
Figure 3: Systems biology and integrated studies to unravel 'search' in biology.

Similar content being viewed by others

References

  1. Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jenkins, M. K., Chu, H. H., McLachlan, J. B. & Moon, J. J. On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Annu. Rev. Immunol. 28, 275–294 (2010).

    CAS  PubMed  Google Scholar 

  3. Yu, W. et al. Clonal deletion prunes but does not eliminate self-specific αβ CD8+ T lymphocytes. Immunity 42, 929–941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bajenoff, M. et al. Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol. 28, 346–352 (2007).

    CAS  PubMed  Google Scholar 

  5. Fu, H., Wang, A., Mauro, C. & Marelli-Berg, F. T lymphocyte trafficking: molecules and mechanisms. Front. Biosci. (Landmark Ed.) 18, 422–440 (2013).

    Google Scholar 

  6. Ley, K. The second touch hypothesis: T cell activation, homing and polarization. F1000 Res. 3, 37 (2014).

    Google Scholar 

  7. Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D. & Couzin, I. D. Exploration versus exploitation in space, mind, and society. Trends Cogn. Sci. 19, 46–54 (2015).

    PubMed  Google Scholar 

  8. Codling, E. A., Plank, M. J. & Benhamou, S. Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 2604–2609 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cahalan, M. D. & Parker, I. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu. Rev. Immunol. 26, 585–626 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Harris, T. H. et al. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486, 545–548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Worbs, T., Mempel, T. R., Bolter, J., von Andrian, U. H. & Forster, R. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204, 489–495 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Witt, C. M., Raychaudhuri, S., Schaefer, B., Chakraborty, A. K. & Robey, E. A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, e160 (2005).

    PubMed  PubMed Central  Google Scholar 

  14. James, A., Plank, M. J. & Brown, R. Optimizing the encounter rate in biological interactions: ballistic versus Levy versus Brownian strategies. Phys. Rev. E 78, 051128 (2008).

    CAS  Google Scholar 

  15. Krummel, M. F., Sjaastad, M. D., Wulfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    CAS  PubMed  Google Scholar 

  16. Wulfing, C. et al. Kinetics and extent of T cell activation as measured with the calcium signal. J. Exp. Med. 185, 1815–1825 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Beauchemin, C., Dixit, N. M. & Perelson, A. S. Characterizing T cell movement within lymph nodes in the absence of antigen. J. Immunol. 178, 5505–5512 (2007).

    CAS  PubMed  Google Scholar 

  18. Beltman, J. B., Henrickson, S. E., von Andrian, U. H., de Boer, R. J. & Maree, A. F. Towards estimating the true duration of dendritic cell interactions with T cells. J. Immunol. Methods 347, 54–69 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Preston, S. P., Waters, S. L., Jensen, O. E., Heaton, P. R. & Pritchard, D. I. T-cell motility in the early stages of the immune response modeled as a random walk amongst targets. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74, 011910 (2006).

    CAS  PubMed  Google Scholar 

  20. Textor, J. et al. Defining the quantitative limits of intravital two-photon lymphocyte tracking. Proc. Natl Acad. Sci. USA 108, 12401–12406 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mrass, P., Petravic, J., Davenport, M. P. & Weninger, W. Cell-autonomous and environmental contributions to the interstitial migration of T cells. Semin. Immunopathol. 32, 257–274 (2010).

    PubMed  PubMed Central  Google Scholar 

  22. Miller, M. J., Wei, S. H., Parker, I. & Cahalan, M. D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    CAS  PubMed  Google Scholar 

  23. Benichou, O., Loverdo, C., Moreau, M. & Voituriez, R. Intermittent search strategies. Rev. Modern Phys. 83, 81–129 (2011).

    CAS  Google Scholar 

  24. Méndez, V., Campos, D. & Bartumeus, F. Stochastic Foundations in Movement Ecology (Springer, 2014).

    Google Scholar 

  25. Beltman, J. B., Maree, A. F., Lynch, J. N., Miller, M. J. & de Boer, R. J. Lymph node topology dictates T cell migration behavior. J. Exp. Med. 204, 771–780 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nat. Immunol. 8, 1076–1085 (2007).

    CAS  PubMed  Google Scholar 

  27. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    PubMed  Google Scholar 

  28. Katakai, T., Habiro, K. & Kinashi, T. Dendritic cells regulate high-speed interstitial T cell migration in the lymph node via LFA-1/ICAM-1. J. Immunol. 191, 1188–1199 (2013).

    CAS  PubMed  Google Scholar 

  29. Banigan, E. J., Harris, T. H., Christian, D. A., Hunter, C. A. & Liu, A. J. Heterogeneous CD8+ T cell migration in the lymph node in the absence of inflammation revealed by quantitative migration analysis. PLoS Comput. Biol. 11, e1004058 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mempel, T. R., Junt, T. & von Andrian, U. H. Rulers over randomness: stroma cells guide lymphocyte migration in lymph nodes. Immunity 25, 867–869 (2006).

    CAS  PubMed  Google Scholar 

  33. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Luther, S. A., Tang, H. L., Hyman, P. L., Farr, A. G. & Cyster, J. G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl Acad. Sci. USA 97, 12694–12699 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Asperti-Boursin, F., Real, E., Bismuth, G., Trautmann, A. & Donnadieu, E. CCR7 ligands control basal T cell motility within lymph node slices in a phosphoinositide 3-kinase-independent manner. J. Exp. Med. 204, 1167–1179 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Katakai, T., Kondo, N., Ueda, Y. & Kinashi, T. Autotaxin produced by stromal cells promotes LFA-1-independent and Rho-dependent interstitial T cell motility in the lymph node paracortex. J. Immunol. 193, 617–626 (2014).

    CAS  PubMed  Google Scholar 

  37. Graw, F. & Regoes, R. R. Influence of the fibroblastic reticular network on cell-cell interactions in lymphoid organs. PLoS Comput. Biol. 8, e1002436 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerard, A. et al. Detection of rare antigen-presenting cells through T cell-intrinsic meandering motility, mediated by Myo1g. Cell 158, 492–505 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bartumeus, F., Raposo, E. P., Viswanathan, G. M. & da Luz, M. G. Stochastic optimal foraging: tuning intensive and extensive dynamics in random searches. PLoS ONE 9, e106373 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Mandl, J. N. et al. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naive CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA 109, 18036–18041 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Friedl, P. & Gunzer, M. Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22, 187–191 (2001).

    CAS  PubMed  Google Scholar 

  42. Gunzer, M. et al. Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential. Immunity 13, 323–332 (2000).

    CAS  PubMed  Google Scholar 

  43. Moreau, H. D. et al. Signal strength regulates antigen-mediated T-cell deceleration by distinct mechanisms to promote local exploration or arrest. Proc. Natl Acad. Sci. USA 112, 12151–12156 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Badovinac, V. P., Messingham, K. A., Jabbari, A., Haring, J. S. & Harty, J. T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nat. Med. 11, 748–756 (2005).

    CAS  PubMed  Google Scholar 

  46. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gerner, M. Y., Torabi-Parizi, P. & Germain, R. N. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42, 172–185 (2015).

    CAS  PubMed  Google Scholar 

  48. Woodruff, M. C. et al. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. J. Exp. Med. 211, 1611–1621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gerard, A. et al. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat. Immunol. 14, 356–363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sabatos, C. A. et al. A synaptic basis for paracrine interleukin-2 signaling during homotypic T cell interaction. Immunity 29, 238–248 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferguson, A. R. & Engelhard, V. H. CD8 T cells activated in distinct lymphoid organs differentially express adhesion proteins and coexpress multiple chemokine receptors. J. Immunol. 184, 4079–4086 (2010).

    CAS  PubMed  Google Scholar 

  52. Sallusto, F. et al. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur. J. Immunol. 29, 2037–2045 (1999).

    CAS  PubMed  Google Scholar 

  53. Mueller, S. N. et al. Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317, 670–674 (2007).

    CAS  PubMed  Google Scholar 

  54. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890–895 (2006).

    CAS  PubMed  Google Scholar 

  55. Hugues, S. et al. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nat. Immunol. 8, 921–930 (2007).

    CAS  PubMed  Google Scholar 

  56. Hickman, H. D. et al. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J. Exp. Med. 208, 2511–2524 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hor, J. L. et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4 and CD8 T cell activation to localized viral infection. Immunity 43, 554–565 (2015).

    CAS  PubMed  Google Scholar 

  59. Kelner, G. S. et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science 266, 1395–1399 (1994).

    CAS  PubMed  Google Scholar 

  60. Dorner, B. G. et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823–833 (2009).

    CAS  PubMed  Google Scholar 

  61. Lei, Y. & Takahama, Y. XCL1 and XCR1 in the immune system. Microbes Infect. 14, 262–267 (2012).

    CAS  PubMed  Google Scholar 

  62. Groom, J. R. et al. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37, 1091–1103 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hu, J. K., Kagari, T., Clingan, J. M. & Matloubian, M. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl Acad. Sci. USA 108, E118–E127 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Kurachi, M. et al. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. J. Exp. Med. 208, 1605–1620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Campbell, D. J., Kim, C. H. & Butcher, E. C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat. Immunol. 2, 876–881 (2001).

    CAS  PubMed  Google Scholar 

  66. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    PubMed  Google Scholar 

  67. Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    PubMed  PubMed Central  Google Scholar 

  68. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    CAS  PubMed  Google Scholar 

  69. Tan, J. T. & Surh, C. D. T cell memory. Curr. Top. Microbiol. Immunol. 311, 85–115 (2006).

    CAS  PubMed  Google Scholar 

  70. Kastenmuller, W. et al. Peripheral prepositioning and local CXCL9 chemokine- mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38, 502–513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sung, J. H. et al. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150, 1249–1263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Vergassola, M., Villermaux, E. & Shraiman, B. I. 'Infotaxis' as a strategy for searching without gradients. Nature 445, 406–409 (2007).

    CAS  PubMed  Google Scholar 

  73. Griffith, J. W., Sokol, C. L. & Luster, A. D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol. 32, 659–702 (2014).

    CAS  PubMed  Google Scholar 

  74. Marelli-Berg, F. M., Cannella, L., Dazzi, F. & Mirenda, V. The highway code of T cell trafficking. J. Pathol. 214, 179–189 (2008).

    CAS  PubMed  Google Scholar 

  75. Bromley, S. K., Mempel, T. R. & Luster, A. D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    CAS  PubMed  Google Scholar 

  76. Guo, L. et al. Innate immunological function of TH2 cells in vivo. Nat. Immunol. 16, 1051–1059 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chang, T. T., Jabs, C., Sobel, R. A., Kuchroo, V. K. & Sharpe, A. H. Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J. Exp. Med. 190, 733–740 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Krummel, M. F., Heath, W. R. & Allison, J. Differential coupling of second signals for cytotoxicity and proliferation in CD8+ T cell effectors: amplification of the lytic potential by B7. J. Immunol. 163, 2999–3006 (1999).

    CAS  PubMed  Google Scholar 

  80. Lindsay, R. S. et al. Antigen recognition in the islets changes with progression of autoimmune islet infiltration. J. Immunol. 194, 522–530 (2015).

    CAS  PubMed  Google Scholar 

  81. Friedman, R. S. et al. An evolving autoimmune microenvironment regulates the quality of effector T cell restimulation and function. Proc. Natl Acad. Sci. USA 111, 9223–9228 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Thornton, E. E. et al. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209, 1183–1199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Overstreet, M. G. et al. Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αV. Nat. Immunol. 14, 949–958 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Honda, T. et al. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40, 235–247 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    CAS  PubMed  Google Scholar 

  86. DiMilla, P. A., Barbee, K. & Lauffenburger, D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Baron, J. L., Reich, E. P., Visintin, I. & Janeway, C. A. Jr. The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between α4- integrins and vascular cell adhesion molecule-1. J. Clin. Invest. 93, 1700–1708 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ray, S. J. et al. The collagen binding α1β1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    CAS  PubMed  Google Scholar 

  89. Richter, M. et al. Collagen distribution and expression of collagen-binding α1β1 (VLA-1) and α2β1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. J. Immunol. 178, 4506–4516 (2007).

    CAS  PubMed  Google Scholar 

  90. Natsuaki, Y. et al. Perivascular leukocyte clusters are essential for efficient activation of effector T cells in the skin. Nat. Immunol. 15, 1064–1069 (2014).

    CAS  PubMed  Google Scholar 

  91. Hickman, H. D. et al. CXCR3 chemokine receptor enables local CD8+ T cell migration for the destruction of virus-infected cells. Immunity 42, 524–537 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Groom, J. R. & Luster, A. D. CXCR3 in T cell function. Exp. Cell Res. 317, 620–631 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ariotti, S. et al. Subtle CXCR3-dependent chemotaxis of CTLs within infected tissue allows efficient target localization. J. Immunol. 195, 5285–5295 (2015).

    CAS  PubMed  Google Scholar 

  94. Wilson, E. H. et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30, 300–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Herz, J. et al. In vivo imaging of lymphocytes in the CNS reveals different behaviour of naive T cells in health and autoimmunity. J. Neuroinflamm. 8, 131 (2011).

    CAS  Google Scholar 

  96. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    PubMed  Google Scholar 

  97. Kim, J. V. et al. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods 352, 89–100 (2010).

    CAS  PubMed  Google Scholar 

  98. Kawakami, N. et al. Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion. J. Exp. Med. 201, 1805–1814 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    CAS  PubMed  Google Scholar 

  101. Mrass, P. et al. Random migration precedes stable target cell interactions of tumor-infiltrating T cells. J. Exp. Med. 203, 2749–2761 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Salmon, H. et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122, 899–910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mrass, P. et al. CD44 mediates successful interstitial navigation by killer T cells and enables efficient antitumor immunity. Immunity 29, 971–985 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Boissonnas, A. et al. CD8+ tumor-infiltrating T cells are trapped in the tumor-dendritic cell network. Neoplasia 15, 85–94 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. de Jager, M. et al. How superdiffusion gets arrested: ecological encounters explain shift from Levy to Brownian movement. Proc. R. Soc. B 281, 20132605 (2013).

    PubMed  Google Scholar 

  107. Bartumeus, F. Behavioural ecology cannot turn its back on Levy walk research: comment on “Liberating Levy walk research from the shackles of optimal foraging” by A. M. Reynolds. Phys. Life Rev. 14, 84–86 (2015).

    PubMed  Google Scholar 

  108. Letendre, K., Donnadieu, E., Moses, M. E. & Cannon, J. L. Bringing statistics up to speed with data in analysis of lymphocyte motility. PLoS ONE 10, e0126333 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Dusenbery, D. B. Sensory ecology: how organisms acquire and respond to information. (W. H. Freeman, 1992).

    Google Scholar 

  110. Mischiati, M. et al. Internal models direct dragonfly interception steering. Nature 517, 333–338 (2015).

    CAS  PubMed  Google Scholar 

  111. Lima, S. L. & Zollner, P. A. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).

    CAS  PubMed  Google Scholar 

  112. Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl Acad. Sci. USA 105, 19052–19059 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Campos, D., Bartumeus, F. & Mendez, V. Search times with arbitrary detection constraints. Phys. Rev. E 88, 022101 (2013).

    Google Scholar 

  114. Viswanathan, G. M., da Luz, M. G. E., Raposo, E. P. & Stanley, H. E. The Physics of Foraging (Cambridge Univ. Press, 2011).

    Google Scholar 

  115. Dieterich, P., Klages, R., Preuss, R. & Schwab, A. Anomalous dynamics of cell migration. Proc. Natl Acad. Sci. USA 105, 459–463 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E. Roberts for critical reading of the manuscript and the Advanced Study Group at Max-Planck-Institut für Physik komplexer Systeme (MPIPKS) on Statistical Physics and Anomalous Dynamics in Foraging for insightful discussions on anomalous processes. This work was supported by grants from US NIH (R01AI052116 and R01AI114787 to M.F.K.; R03AI119220 to A.G.) and the Human Frontier Science Program (RGY0084/2011 to F.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew F. Krummel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Chemokinesis

Migration driven by soluble chemokines, without any cue gradient to provide a directional bias.

Haptokinesis

Migration along a surface, utilizing immobilized ligands such as chemokines or integrins, without any cue gradient to provide a directional bias.

Chemotaxis

Migration driven by a gradient of soluble chemokines, which occurs when an asymmetry in chemoattractant (such as rate and density) exists and local cue gradients can be followed.

Haptotaxis

Migration along a surface that is guided by a gradient of immobilized chemoattractants or adhesion receptor ligands, which provides a directional bias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krummel, M., Bartumeus, F. & Gérard, A. T cell migration, search strategies and mechanisms. Nat Rev Immunol 16, 193–201 (2016). https://doi.org/10.1038/nri.2015.16

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2015.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing