Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origins of the cytolytic synapse

Key Points

  • Ordering the events that lead to the formation of the cytolytic synapse provides a better understanding of the molecular mechanisms that are involved.

  • The reorganization of both actin and microtubule cytoskeletons has key roles in polarizing secretion at the cytolytic synapse.

  • The immune synapse and the primary cilium have structural and functional similarities; both structures provide sensing and signalling platforms in cells.

  • Hedgehog signalling is associated with both primary cilia and immune synapses, which indicates, amongst other reasons, that the immune synapse could have arisen from the evolutionarily ancient primary cilium found in many organisms.

Abstract

Cytotoxic T lymphocytes (CTLs) kill virus-infected and tumour cells with remarkable specificity. Upon recognition, CTLs form a cytolytic immune synapse with their target cell, and marked reorganization of both the actin and the microtubule cytoskeletons brings the centrosome up to the plasma membrane to the point of T cell receptor signalling. Secretory granules move towards the centrosome and are delivered to this focal point of secretion. Such centrosomal docking at the plasma membrane also occurs during ciliogenesis; indeed, striking similarities exist between the cytolytic synapse and the primary cilium that throw light on the possible origins of immune synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin-rich interdigitations characterize the early but not the mature cytolytic synapse.
Figure 2: The order of events leading to polarized secretion at the CTL synapse.
Figure 3: Actin dynamics in migrating and synapsing CTLs.
Figure 4: Regulation of centrosome polarization to the immune synapse.
Figure 5: Structural similarities between the cytolytic synapse and the primary cilium.
Figure 6: Hedgehog signalling at the primary cilium and in CD8+ T cells.

Similar content being viewed by others

References

  1. Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    CAS  PubMed  Google Scholar 

  2. Potter, T. A., Grebe, K., Freiberg, B. & Kupfer, A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl Acad. Sci. USA 98, 12624–12629 (2001).

    CAS  PubMed  Google Scholar 

  3. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  PubMed  Google Scholar 

  4. O'Keefe, J. P., Blaine, K., Alegre, M. L. & Gajewski, T. F. Formation of a central supramolecular activation cluster is not required for activation of naive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 9351–9356 (2004).

    CAS  PubMed  Google Scholar 

  5. Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462–465 (2006).

    CAS  PubMed  Google Scholar 

  6. Sanderson, C. J. & Glauert, A. M. The mechanism of T cell mediated cytotoxicity. V. Morphological studies by electron microscopy. Proc. R. Soc. Lond. B 198, 315–323 (1977).

    CAS  PubMed  Google Scholar 

  7. Sanderson, C. J. & Glauert, A. M. The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing. Immunology 36, 119–129 (1979). An early description of the role of membrane projections in the initial contact between a killer cell and a target cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

    CAS  PubMed  Google Scholar 

  9. Choudhuri, K., Wiseman, D., Brown, M. H., Gould, K. & van der Merwe, P. A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    CAS  PubMed  Google Scholar 

  10. Ueda, H., Morphew, M. K., McIntosh, J. R. & Davis, M. M. CD4+ T-cell synapses involve multiple distinct stages. Proc. Natl Acad. Sci. USA 108, 17099–17104 (2011).

    CAS  PubMed  Google Scholar 

  11. Jenkins, M. R. et al. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. eLife 3, e01310 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Balagopalan, L., Sherman, E., Barr, V. A. & Samelson, L. E. Imaging techniques for assaying lymphocyte activation in action. Nat. Rev. Immunol. 11, 21–33 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  14. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M. L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yi, J., Wu, X. S., Crites, T. & Hammer, J. A. 3rd. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. Mol. Biol. Cell 23, 834–852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Beemiller, P., Jacobelli, J. & Krummel, M. F. Integration of the movement of signaling microclusters with cellular motility in immunological synapses. Nat. Immunol. 13, 787–795 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hashimoto-Tane, A. et al. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Immunity 34, 919–931 (2011).

    CAS  PubMed  Google Scholar 

  18. Martin-Cofreces, N. B. et al. End-binding protein 1 controls signal propagation from the T cell receptor. EMBO J. 31, 4140–4152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20, 577–588 (2004). Together with reference 23, this paper describes the role of vesicle fusion in modulating TCR signalling.

    CAS  PubMed  Google Scholar 

  20. Purbhoo, M. A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36 (2010).

    PubMed  Google Scholar 

  21. Williamson, D. J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    CAS  PubMed  Google Scholar 

  22. Larghi, P. et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat. Immunol. 14, 723–731 (2013).

    CAS  PubMed  Google Scholar 

  23. Soares, H. et al. Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J. Exp. Med. 210, 2415–2433 (2013). Together with reference 19, this paper describes the role of vesicle fusion in modulating TCR signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ritter, A. T. et al. Actin depletion initiates events leading to granule secretion at the immunological synapse. Immunity 42, 864–876 (2015). This study reports 4D imaging of the steps leading to secretion at the cytolytic synapse of a CTL.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Raucher, D. et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221–228 (2000).

    CAS  PubMed  Google Scholar 

  26. Janmey, P. A. & Lindberg, U. Cytoskeletal regulation: rich in lipids. Nat. Rev. Mol. Cell Biol. 5, 658–666 (2004).

    CAS  PubMed  Google Scholar 

  27. Comrie, W. A., Babich, A. & Burkhardt, J. K. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J. Cell Biol. 208, 475–491 (2015). This study describes an important role for actin flow in activating integrins at the immune synapse.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei, S. Y. et al. Protein kinase C-δ and -β coordinate flow-induced directionality and deformation of migratory human blood T-lymphocytes. J. Mol. Cell. Biol. 6, 458–472 (2014).

    CAS  PubMed  Google Scholar 

  29. Kumari, S. et al. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 4, e04953 (2015). This study reports a possible role for actin-rich protrusions at the T cell synapse.

    PubMed Central  Google Scholar 

  30. Tsun, A. et al. Centrosome docking at the immunological synapse is controlled by Lck signaling. J. Cell Biol. 192, 663–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lowin-Kropf, B., Shapiro, V. S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol. 140, 861–871 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuhne, M. R. et al. Linker for activation of T cells, ζ-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J. Immunol. 171, 860–866 (2003).

    CAS  PubMed  Google Scholar 

  33. Spitaler, M., Emslie, E., Wood, C. D. & Cantrell, D. Diacylglycerol and protein kinase D localization during T lymphocyte activation. Immunity 24, 535–546 (2006).

    CAS  PubMed  Google Scholar 

  34. Kupfer, A., Swain, S. L. & Singer, S. J. The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. J. Exp. Med. 165, 1565–1580 (1987).

    CAS  PubMed  Google Scholar 

  35. Yi, J. et al. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. J. Cell Biol. 202, 779–792 (2013). This paper provides exceptional mechanistic insights into centrosome polarization by pioneer microtubules.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Quann, E. J., Merino, E., Furuta, T. & Huse, M. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat. Immunol. 10, 627–635 (2009).

    CAS  PubMed  Google Scholar 

  37. Liu, X., Kapoor, T. M., Chen, J. K. & Huse, M. Diacylglycerol promotes centrosome polarization in T cells via reciprocal localization of dynein and myosin II. Proc. Natl Acad. Sci. USA 110, 11976–11981 (2013). Together with reference 42, this study describes a role for dynein in centrosome polarization to the synapse.

    CAS  PubMed  Google Scholar 

  38. Quann, E. J., Liu, X., Altan-Bonnet, G. & Huse, M. A cascade of protein kinase C isozymes promotes cytoskeletal polarization in T cells. Nat. Immunol. 12, 647–654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertrand, F. et al. Activation of the ancestral polarity regulator protein kinase C ζ at the immunological synapse drives polarization of Th cell secretory machinery toward APCs. J. Immunol. 185, 2887–2894 (2010).

    CAS  PubMed  Google Scholar 

  40. Ludford-Menting, M. J. et al. A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22, 737–748 (2005).

    CAS  PubMed  Google Scholar 

  41. Lin, J., Hou, K. K., Piwnica-Worms, H. & Shaw, A. S. The polarity protein Par1b/EMK/MARK2 regulates T cell receptor-induced microtubule-organizing center polarization. J. Immunol. 183, 1215–1221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl Acad. Sci. USA 103, 14883–14888 (2006). Together with reference 37, this study describes a role for dynein in centrosome polarization to the synapse.

    CAS  PubMed  Google Scholar 

  43. Martin-Cofreces, N. B. et al. MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 182, 951–962 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. Immunity 16, 111–121 (2002).

    CAS  PubMed  Google Scholar 

  45. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J. Biol. Chem. 279, 6196–6203 (2004).

    CAS  PubMed  Google Scholar 

  47. Gomez, T. S. et al. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Filbert, E. L., Le Borgne, M., Lin, J., Heuser, J. E. & Shaw, A. S. Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells. J. Immunol. 188, 5421–5427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. de la Roche, M. et al. Hedgehog signaling controls T cell killing at the immunological synapse. Science 342, 1247–1250 (2013). This paper describes a role for ciliary Hh signalling in CTL secretion.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zyss, D., Ebrahimi, H. & Gergely, F. Casein kinase I δ controls centrosome positioning during T cell activation. J. Cell Biol. 195, 781–797 (2011). The first description of a centrosomal protein that is required for centrosome polarization in T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stinchcombe, J. C. et al. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems. BMC Biol. 9, 45 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bryceson, Y. T., March, M. E., Barber, D. F., Ljunggren, H. G. & Long, E. O. Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells. J. Exp. Med. 202, 1001–1012 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. March, M. E. & Long, E. O. beta2 integrin induces TCRζ-Syk-phospholipase C-γ phosphorylation and paxillin-dependent granule polarization in human NK cells. J. Immunol. 186, 2998–3005 (2011).

    CAS  PubMed  Google Scholar 

  54. Barber, D. F., Faure, M. & Long, E. O. LFA-1 contributes an early signal for NK cell cytotoxicity. J. Immunol. 173, 3653–3659 (2004).

    CAS  PubMed  Google Scholar 

  55. Au-Yeung, B. B. et al. A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. Nat. Immunol. 11, 1085–1092 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, M., March, M. E., Lane, W. S. & Long, E. O. A signaling network stimulated by beta2 integrin promotes the polarization of lytic granules in cytotoxic cells. Sci. Signal. 7, ra96 (2014). This study uses a mass spectrometry approach to identify the signalling network initiated by β2 integrin signalling that is required for granule and centrosome polarization towards the synapse in NK cells.

    PubMed  PubMed Central  Google Scholar 

  57. Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. I.L. K. PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20–31 (2006).

    CAS  PubMed  Google Scholar 

  58. Robertson, L. K. & Ostergaard, H. L. Paxillin associates with the microtubule cytoskeleton and the immunological synapse of CTL through its leucine-aspartic acid domains and contributes to microtubule organizing center reorientation. J. Immunol. 187, 5824–5833 (2011).

    CAS  PubMed  Google Scholar 

  59. Gismondi, A. et al. Cutting edge: functional role for proline-rich tyrosine kinase 2 in NK cell-mediated natural cytotoxicity. J. Immunol. 164, 2272–2276 (2000).

    CAS  PubMed  Google Scholar 

  60. Sancho, D. et al. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J. Cell Biol. 149, 1249–1262 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mizesko, M. C. et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J. Allergy Clin. Immunol. 131, 840–848 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ham, H. et al. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J. Immunol. 190, 3661–3669 (2013).

    CAS  PubMed  Google Scholar 

  64. Ham, H., Huynh, W., Schoon, R. A., Vale, R. D. & Billadeau, D. D. HkRP3 is a microtubule-binding protein regulating lytic granule clustering and NK cell killing. J. Immunol. 194, 3984–3996 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Pieters, J., Muller, P. & Jayachandran, R. On guard: coronin proteins in innate and adaptive immunity. Nat. Rev. Immunol. 13, 510–518 (2013).

    CAS  PubMed  Google Scholar 

  66. Mace, E. M. & Orange, J. S. Lytic immune synapse function requires filamentous actin deconstruction by Coronin 1A. Proc. Natl Acad. Sci. USA 111, 6708–6713 (2014). Patients lacking coronin 1A have defective NK cell-mediated killing.

    CAS  PubMed  Google Scholar 

  67. Rak, G. D., Mace, E. M., Banerjee, P. P., Svitkina, T. & Orange, J. S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9, e1001151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Brown, A. C. et al. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol. 9, e1001152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wheatley, D. N. Primary cilia in normal and pathological tissues. Pathobiology 63, 222–238 (1995).

    CAS  PubMed  Google Scholar 

  70. Hildebrandt, F. & Otto, E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat. Rev. Genet. 6, 928–940 (2005).

    CAS  PubMed  Google Scholar 

  71. Stinchcombe, J. C. & Griffiths, G. M. Secretory mechanisms in cell-mediated cytotoxicity. Annu. Rev. Cell Dev. Biol. 23, 495–517 (2007).

    CAS  PubMed  Google Scholar 

  72. Griffiths, G. M., Tsun, A. & Stinchcombe, J. C. The immunological synapse: a focal point for endocytosis and exocytosis. J. Cell Biol. 189, 399–406 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    CAS  PubMed  Google Scholar 

  74. Francis, S. S., Sfakianos, J., Lo, B. & Mellman, I. A hierarchy of signals regulates entry of membrane proteins into the ciliary membrane domain in epithelial cells. J. Cell Biol. 193, 219–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jensen, V. L. et al. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J. 34, 2537–2556 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Garcia-Gonzalo, F. R. et al. Phosphoinositides regulate ciliary protein trafficking to modulate Hedgehog signaling. Dev. Cell 34, 400–409 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chavez, M. et al. Modulation of ciliary phosphoinositide content regulates trafficking and Sonic Hedgehog signaling output. Dev. Cell 34, 338–350 (2015).

    CAS  PubMed  Google Scholar 

  78. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    CAS  PubMed  Google Scholar 

  79. Finetti, F. et al. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system. J. Cell Sci. 127, 1924–1937 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Finetti, F. et al. Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse. Nat. Cell Biol. 11, 1332–1339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vivar, O. I. et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc. Natl Acad. Sci. USA 113, 386–391 (2016).

    CAS  PubMed  Google Scholar 

  82. Sato, T. et al. Rab8a and Rab8b are essential for several apical transport pathways but insufficient for ciliogenesis. J. Cell Sci. 127, 422–431 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Finetti, F. et al. The small GTPase Rab8 interacts with VAMP-3 to regulate the delivery of recycling T-cell receptors to the immune synapse. J. Cell Sci. 128, 2541–2552 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Clement, C. A. et al. TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 3, 1806–1814 (2013).

    CAS  PubMed  Google Scholar 

  85. Delling, M., DeCaen, P. G., Doerner, J. F., Febvay, S. & Clapham, D. E. Primary cilia are specialized calcium signalling organelles. Nature 504, 311–314 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. DeCaen, P. G., Delling, M., Vien, T. N. & Clapham, D. E. Direct recording and molecular identification of the calcium channel of primary cilia. Nature 504, 315–318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hogan, P. G., Lewis, R. S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28, 491–533 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dubreuil, V., Marzesco, A. M., Corbeil, D., Huttner, W. B. & Wilsch-Brauninger, M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J. Cell Biol. 176, 483–495 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, J. et al. C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr. Biol. 24, 519–525 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cao, M. et al. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife. 4, e05242 (2015).

    PubMed Central  Google Scholar 

  91. Wood, C. R., Huang, K., Diener, D. R. & Rosenbaum, J. L. The cilium secretes bioactive ectosomes. Curr. Biol. 23, 906–911 (2013).

    CAS  PubMed  Google Scholar 

  92. Martinez-Lorenzo, M. J. et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281 (1999).

    CAS  PubMed  Google Scholar 

  93. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Choudhuri, K. et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507, 118–123 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    CAS  PubMed  Google Scholar 

  96. Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    CAS  PubMed  Google Scholar 

  97. Haycraft, C. J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    PubMed  PubMed Central  Google Scholar 

  98. Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    CAS  PubMed  Google Scholar 

  99. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    CAS  PubMed  Google Scholar 

  100. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Briscoe, J. & Therond, P. P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    PubMed  Google Scholar 

  102. Furmanski, A. L. et al. Tissue-derived hedgehog proteins modulate Th differentiation and disease. J. Immunol. 190, 2641–2649 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Crompton, T., Outram, S. V. & Hager-Theodorides, A. L. Sonic hedgehog signalling in T-cell development and activation. Nat. Rev. Immunol. 7, 726–735 (2007).

    CAS  PubMed  Google Scholar 

  104. Bijlsma, M. F., Borensztajn, K. S., Roelink, H., Peppelenbosch, M. P. & Spek, C. A. Sonic hedgehog induces transcription-independent cytoskeletal rearrangement and migration regulated by arachidonate metabolites. Cell. Signal. 19, 2596–2604 (2007).

    CAS  PubMed  Google Scholar 

  105. Polizio, A. H. et al. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J. Biol. Chem. 286, 19589–19596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Sasaki, N., Kurisu, J. & Kengaku, M. Sonic hedgehog signaling regulates actin cytoskeleton via Tiam1-Rac1 cascade during spine formation. Mol. Cell Neurosci. 45, 335–344 (2010).

    CAS  PubMed  Google Scholar 

  107. Kurowska, M. et al. Terminal transport of lytic granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 119, 3879–3889 (2012).

    CAS  PubMed  Google Scholar 

  108. Bertrand, F. et al. An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse. Proc. Natl Acad. Sci. USA 110, 6073–6078 (2013).

    CAS  PubMed  Google Scholar 

  109. Wei, Q., Ling, K. & Hu, J. The essential roles of transition fibers in the context of cilia. Curr. Opin. Cell Biol. 35, 98–105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tanos, B. E. et al. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 27, 163–168 (2013). An important paper in revealing the role of CEP83 in centrosome docking.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Stinchcombe, J. C. et al. Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis. Curr. Biol. 25, 3239–3244 (2015). This study shows that the centrosome docks directly at the synapse through distal appendages of the mother centriole and that CEP83 depletion reduces killing by CTLs.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).

    CAS  PubMed  Google Scholar 

  113. Prosser, S. L. & Morrison, C. G. Centrin2 regulates CP110 removal in primary cilium formation. J. Cell Biol. 208, 693–701 (2015). Cilia can be forced to form in B and T cells, showing that the machinery is present but not used.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Plattner, H. Calcium signalling in the ciliated protozoan model, Paramecium: strict signal localisation by epigenetically controlled positioning of different Ca2+-channels. Cell Calcium 57, 203–213 (2015).

    CAS  PubMed  Google Scholar 

  115. Davis, L. C. et al. NAADP activates two-pore channels on T cell cytolytic granules to stimulate exocytosis and killing. Curr. Biol. 22, 2331–2337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).

    CAS  PubMed  Google Scholar 

  117. Pulecio, J. et al. Cdc42-mediated MTOC polarization in dendritic cells controls targeted delivery of cytokines at the immune synapse. J. Exp. Med. 207, 2719–2732 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Beal, A. M. et al. Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain. Immunity 31, 632–642 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jellison, E. R., Kim, S. K. & Welsh, R. M. Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174, 614–618 (2005).

    CAS  PubMed  Google Scholar 

  120. Quezada, S. A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Takeuchi, A. et al. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage. J. Exp. Med. 213, 123–138 (2016). This study reveals the lineage regulation of cytolytic CD4+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Scales, S. J. & de Sauvage, F. J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 30, 303–312 (2009).

    CAS  PubMed  Google Scholar 

  123. Ng, J. M. & Curran, T. The Hedgehog's tale: developing strategies for targeting cancer. Nat. Rev. Cancer 11, 493–501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Low, J. A. & de Sauvage, F. J. Clinical experience with Hedgehog pathway inhibitors. J. Clin. Oncol. 28, 5321–5326 (2010).

    CAS  PubMed  Google Scholar 

  125. Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    CAS  PubMed  Google Scholar 

  126. Fisch, C. & Dupuis-Williams, P. Ultrastructure of cilia and flagella — back to the future! Biol. Cell 103, 249–270 (2011).

    PubMed  Google Scholar 

  127. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    CAS  PubMed  Google Scholar 

  128. Poole, C. A. et al. Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol. Int. 21, 483–494 (1997).

    CAS  PubMed  Google Scholar 

  129. Kupfer, A., Dennert, G. & Singer, S. J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol. 2, 37–49 (1985).

    CAS  PubMed  Google Scholar 

  130. Keady, B. T. et al. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev. Cell 22, 940–951 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Nachury, M. V. How do cilia organize signalling cascades? Phil. Trans. R. Soc. B 369, 20130465 (2014).

    PubMed  Google Scholar 

  132. Wheatley, D. N. Cilia and centrioles of the rat adrenal cortex. J. Anat. 101, 223–237 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.M.G. is funded by a Wellcome Trust Principal Research Fellowship (103930); M.D.R. is now funded by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (107609) and Cancer Research UK (C14303/A17197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maike de la Roche or Gillian M. Griffiths.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Immune synapse

The interface formed upon receptor-mediated recognition between an immune cell and an antigen-presenting cell.

Perforin

A pore-forming protein that is stored in the cytolytic granules of cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells.

Granzymes

Cytolytic granule-contained serine proteases that cleave substrates in the cytoplasm of target cells, triggering rapid apoptosis.

Centrosomes

Usually consist of two centrioles surrounded by pericentriolar material and are the only microtubule-organizing centres (MTOCs) in T cells.

Microtubule-organizing centre

(MTOC). A structure found in eukaryotic cells, where the minus ends of microtubules are anchored and from which the plus ends of microtubules extend. Cells can contain multiple MTOCs.

Artificial planar synapses

Synapses formed between T cells and lipid bilayers containing stimulatory ligands (for example, peptide–MHC complexes) supported on a cover slip.

Partitioning defective polarity complex

(PAR polarity complex). A conserved protein complex that regulates cell polarity in eukaryotes and consists of PAR3, PAR6 and an atypical protein kinase C (such as PKCζ).

Pioneer microtubules

These microtubules extend from the microtubule-organizing centre (such as the centrosome) to the leading edge of cells.

Casein kinase 1δ

(CK1δ). A serine/threonine kinase that mediates the phosphorylation of tubulin, microtubule nucleation and the phosphorylation of microtubule-associated proteins.

Primary cilium

Immotile single hair-like extension from the plasma membrane formed by most cells that integrates signals from the environment.

Intraflagellar transport

(IFT). The bidirectional transport of protein complexes along microtubules in and out of the cilium or flagellum, which is required for ciliary assembly, resorption and signalling.

Transient receptor potential channel

(TRP channel). A large family of multifunctional ion channels, most of which are permeable to Ca2+.

Hedgehog signalling

(Hh signalling). An important signalling pathway for embryonic development and postnatal tissue maintenance in invertebrates and vertebrates. Mutations in this pathway can lead to cancer.

Smoothened

(SMO). A G protein-coupled receptor-like protein and the key signal transducer in the Hedgehog (Hh) signalling pathway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Roche, M., Asano, Y. & Griffiths, G. Origins of the cytolytic synapse. Nat Rev Immunol 16, 421–432 (2016). https://doi.org/10.1038/nri.2016.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing