Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The unfolded protein response in immunity and inflammation

Key Points

  • The unfolded protein response (UPR) has an important role in the differentiation and maturation of various immune cells and is crucial for immune cell function, such as cytokine production by macrophages and cross-presentation by dendritic cells, for example.

  • Innate immune signalling differentially affects the three arms of the UPR to optimize inflammatory responses, while simultaneously inhibiting the activation of the terminal UPR, which is associated with cell death. This allows the cell to survive and manage temporary increases in protein production during immune responses to pathogens.

  • In complex autoimmune diseases, chronic activation of the UPR can function as the nidus for the development of inflammation.

  • UPR activation triggers inflammatory responses mainly through nuclear factor-κB (NF-κB) activation, phosphorylation of JUN N-terminal kinase (JNK), activation of the inflammasome and direct interaction of downstream UPR targets with the promoters of inflammatory cytokine genes.

  • UPR activation in cancer cells may interfere with antitumour immunity, which indicates that manipulating UPR signalling could boost antitumour immune responses.

  • The UPR is amenable to therapeutic manipulation to either promote its beneficial homeostasis-inducing properties and/or inhibit its inflammation-inducing activities in the setting of unresolved endoplasmic reticulum (ER) stress.

Abstract

The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The accumulation of unfolded proteins in the ER lumen activates the three arms of the UPR.
Figure 2: XBP1 has a crucial role in plasma cell differentiation and DC differentiation and function.
Figure 3: TLR signalling and the UPR coordinate immune responses in macrophages.
Figure 4: UPR signalling in intestinal epithelial cells.
Figure 5: The UPR as an inflammatory nidus.

Similar content being viewed by others

References

  1. Oakes, S. A. & Papa, F. R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10, 173–194 (2015).

    CAS  PubMed  Google Scholar 

  2. Wang, M. & Kaufman, R. J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 14, 581–597 (2014).

    CAS  PubMed  Google Scholar 

  3. Sevier, C. S. & Kaiser, C. A. Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol. 3, 836–847 (2002).

    CAS  PubMed  Google Scholar 

  4. Tu, B. P. & Weissman, J. S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164, 341–346 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    PubMed  Google Scholar 

  7. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    CAS  PubMed  Google Scholar 

  8. Wang, M. & Kaufman, R. J. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326–335 (2016).

    CAS  PubMed  Google Scholar 

  9. Smith, M. H., Ploegh, H. L. & Weissman, J. S. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334, 1086–1090 (2011).

    CAS  PubMed  Google Scholar 

  10. Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    CAS  PubMed  Google Scholar 

  13. Harding, H. P., Zhang, Y. & Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274 (1999).

    CAS  PubMed  Google Scholar 

  14. Scheuner, D. et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176 (2001).

    CAS  PubMed  Google Scholar 

  15. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13, 89–102 (2012).

    CAS  PubMed  Google Scholar 

  17. Tirasophon, W., Welihinda, A. A. & Kaufman, R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12, 1812–1824 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Korennykh, A. V. et al. The unfolded protein response signals through high-order assembly of Ire1. Nature 457, 687–693 (2009).

    CAS  PubMed  Google Scholar 

  19. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    CAS  PubMed  Google Scholar 

  20. Hassler, J. R. et al. The IRE1α/XBP1s pathway is essential for the glucose response and protection of β cells. PLoS Biol. 13, e1002277 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Hollien, J. & Weissman, J. S. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313, 104–107 (2006).

    CAS  PubMed  Google Scholar 

  22. Maurel, M., Chevet, E., Tavernier, J. & Gerlo, S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 39, 245–254 (2014).

    CAS  PubMed  Google Scholar 

  23. Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, J. H. et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 318, 944–949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Rutkowski, D. T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    PubMed  PubMed Central  Google Scholar 

  26. Ghosh, R. et al. Allosteric inhibition of the IRE1α RNase preserves cell viability and function during endoplasmic reticulum stress. Cell 158, 534–548 (2014). This study shows that the oligomerization state of the cytosolic domains of IRE1α, which increases under chronic ER stress, crucially determines the balance between the adaptive UPR and the terminal UPR.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lerner, A. G. et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell. Metab. 16, 250–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Upton, J. P. et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic caspase-2. Science 338, 818–822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu, S. et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013).

    CAS  PubMed  Google Scholar 

  31. Claudio, N., Dalet, A., Gatti, E. & Pierre, P. Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J. 32, 1214–1224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ravindran, R. et al. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature 531, 523–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    CAS  PubMed  Google Scholar 

  35. Palam, L. R., Baird, T. D. & Wek, R. C. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J. Biol. Chem. 286, 10939–10949 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Marciniak, S. J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Song, B., Scheuner, D., Ron, D., Pennathur, S. & Kaufman, R. J. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J. Clin. Invest. 118, 3378–3389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chitnis, N. S. et al. miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol. Cell 48, 353–364 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Woo, C. W., Kutzler, L., Kimball, S. R. & Tabas, I. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat. Cell Biol. 14, 192–200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, J. et al. ATF6α optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev. Cell 13, 351–364 (2007).

    CAS  PubMed  Google Scholar 

  42. Kouroku, Y. et al. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14, 230–239 (2007).

    CAS  PubMed  Google Scholar 

  43. Talloczy, Z. et al. Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc. Natl Acad. Sci. USA 99, 190–195 (2002).

    CAS  PubMed  Google Scholar 

  44. Tashiro, E. et al. Trierixin, a novel Inhibitor of ER stress-induced XBP1 activation from Streptomyces sp. 1. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo) 60, 547–553 (2007).

    CAS  Google Scholar 

  45. Rutkowski, D. T. & Hegde, R. S. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J. Cell Biol. 189, 783–794 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Turner, C. A. Jr, Mack, D. H. & Davis, M. M. Blimp-1, anovel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    CAS  PubMed  Google Scholar 

  47. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    CAS  PubMed  Google Scholar 

  48. Shaffer, A. L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81–93 (2004).

    CAS  PubMed  Google Scholar 

  49. Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    CAS  PubMed  Google Scholar 

  50. Todd, D. J. et al. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J. Exp. Med. 206, 2151–2159 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Iwakoshi, N. N. et al. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nature Immunol. 4, 321–329 (2003).

    CAS  Google Scholar 

  52. van Anken, E. et al. Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18, 243–253 (2003).

    CAS  PubMed  Google Scholar 

  53. Hu, C. C., Dougan, S. K., McGehee, A. M., Love, J. C. & Ploegh, H. L. XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. 28, 1624–1636 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Benhamron, S. et al. Regulated IRE1-dependent decay participates in curtailing immunoglobulin secretion from plasma cells. Eur. J. Immunol. 44, 867–876 (2014).

    CAS  PubMed  Google Scholar 

  55. Brunsing, R. et al. B- and T-cell development both involve activity of the unfolded protein response pathway. J. Biol. Chem. 283, 17954–17961 (2008).

    CAS  PubMed  Google Scholar 

  56. Zhang, K. et al. The unfolded protein response sensor IRE1α is required at 2 distinct steps in B cell lymphopoiesis. J. Clin. Invest. 115, 268–281 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kharabi Masouleh, B. et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc. Natl Acad. Sci. USA 111, E2219–E2228 (2014).

    PubMed  Google Scholar 

  58. Kamimura, D. & Bevan, M. J. Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J. Immunol. 181, 5433–5441 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Iwakoshi, N. N., Pypaert, M. & Glimcher, L. H. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204, 2267–2275 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Osorio, F. et al. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat. Immunol. 15, 248–257 (2014). This study shows how XBP1 deletion in mature conventional DCs hyperactivates IRE1α and RIDD, thereby degrading mRNAs that encode proteins that are important for cross-presentation, and thus interfering with DC function.

    CAS  PubMed  Google Scholar 

  61. Iwawaki, T., Akai, R., Kohno, K. & Miura, M. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10, 98–102 (2004).

    CAS  PubMed  Google Scholar 

  62. Granados, D. P. et al. ER stress affects processing of MHC class I-associated peptides. BMC Immunol. 10, 10 (2009).

    PubMed  PubMed Central  Google Scholar 

  63. Qian, S. B. et al. Tight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products. J. Immunol. 177, 227–233 (2006).

    CAS  PubMed  Google Scholar 

  64. Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161, 1527–1538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Furuta, G. T., Atkins, F. D., Lee, N. A. & Lee, J. J. Changing roles of eosinophils in health and disease. Ann. Allergy Asthma Immunol. 113, 3–8 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chu, V. T. et al. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40, 582–593 (2014).

    CAS  PubMed  Google Scholar 

  68. Bettigole, S. E. et al. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16, 829–837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martinon, F., Chen, X., Lee, A. H. & Glimcher, L. H. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11, 411–418 (2010). This study shows that the IRE1α–XBP1 arm of the UPR is crucially involved in macrophage cytokine responses to TLR ligation in a pathway that involves TRAF6 and the NAPDH oxidase NOX2.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiu, Y. et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β cells. Sci. Signal. 3, ra7 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Qiu, Q. et al. Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J. 32, 2477–2490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, C. et al. Cellular stress amplifies TLR3/4- induced CXCL1/2 gene transcription in mononuclear phagocytes via RIPK1. J. Immunol. 193, 879–888 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim, S. et al. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production. J. Immunol. 194, 4498–4506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Iwasaki, Y. et al. Activating transcription factor 4 links metabolic stress to interleukin-6 expression in macrophages. Diabetes 63, 152–161 (2014).

    CAS  PubMed  Google Scholar 

  75. Woo, C. W. et al. Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by Toll-like receptor signalling. Nat. Cell Biol. 11, 1473–1480 (2009). This study shows that TLR–TRIF signalling in macrophages suppresses CHOP to inhibit ER stress-induced apoptosis during the host response to pathogen invasion.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Clevers, H. C. & Bevins, C. L. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75, 289–311 (2013).

    CAS  PubMed  Google Scholar 

  77. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Adolph, T. E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013). This study shows that XBP1 deletion in epithelial cells, or specifically in Paneth cells, induces ileitis. In addition, further loss of compensatory autophagy, resulting from concomitant deletion of ATG16L1 in XBP1-deficient epithelial cells, induces transmural Crohn's disease-like ileitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bettigole, S. E. & Glimcher, L. H. Endoplasmic reticulum stress in immunity. Annu. Rev. Immunol. 33, 107–138 (2015).

    CAS  PubMed  Google Scholar 

  80. Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8, 851–864 (2008).

    CAS  PubMed  Google Scholar 

  81. Koritzinsky, M. et al. Two phases of disulfide bond formation have differing requirements for oxygen. J. Cell Biol. 203, 615–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hosogai, N. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56, 901–911 (2007).

    CAS  PubMed  Google Scholar 

  83. Wang, G., Yang, Z. Q. & Zhang, K. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am. J. Transl Res. 2, 65–74 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Chen, X. et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature 508, 103–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kumar, V. & Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 143, 512–519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tsunoda, S. et al. Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. eLife 3, e03421 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Malhotra, J. D. et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc. Natl Acad. Sci. USA 105, 18525–18530 (2008).

    CAS  PubMed  Google Scholar 

  88. Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Malhotra, J. D. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277–2293 (2007).

    CAS  PubMed  Google Scholar 

  90. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    CAS  Google Scholar 

  91. Oslowski, C. M. et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell. Metab. 16, 265–273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Celli, J. & Tsolis, R. M. Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat. Rev. Microbiol. 13, 71–82 (2015).

    CAS  PubMed  Google Scholar 

  93. Walsh, D. & Mohr, I. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 9, 860–875 (2011).

    CAS  PubMed  Google Scholar 

  94. Li, S., Kong, L. & Yu, X. The expanding roles of endoplasmic reticulum stress in virus replication and pathogenesis. Crit. Rev. Microbiol. 41, 150–164 (2015).

    PubMed  Google Scholar 

  95. Hassan, I. et al. Inositol-requiring enzyme 1 inhibits respiratory syncytial virus replication. J. Biol. Chem. 289, 7537–7546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bhattacharyya, S., Sen, U. & Vrati, S. Regulated IRE1-dependent decay pathway is activated during Japanese encephalitis virus-induced unfolded protein response and benefits viral replication. J. Gen. Virol. 95, 71–79 (2014).

    CAS  PubMed  Google Scholar 

  97. Mulvey, M., Arias, C. & Mohr, I. Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J. Virol. 81, 3377–3390 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tardif, K. D., Mori, K., Kaufman, R. J. & Siddiqui, A. Hepatitis C virus suppresses the IRE1–XBP1 pathway of the unfolded protein response. J. Biol. Chem. 279, 17158–17164 (2004).

    CAS  PubMed  Google Scholar 

  99. Zheng, Y. et al. Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response. J. Microbiol. 43, 529–536 (2005).

    CAS  PubMed  Google Scholar 

  100. Richardson, C. E., Kooistra, T. & Kim, D. H. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463, 1092–1095 (2010). This study shows that XBP1 induction is crucial for the ability of C. elegans to survive the consequences of mounting an immune response to microorganisms.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. van't Wout, E. F. et al. Virulence factors of Pseudomonas aeruginosa induce both the unfolded protein and integrated stress responses in airway epithelial cells. PLoS Pathog. 11, e1004946 (2015).

    Google Scholar 

  102. Pillich, H., Loose, M., Zimmer, K. P. & Chakraborty, T. Activation of the unfolded protein response by Listeria monocytogenes. Cell. Microbiol. 14, 949–964 (2012).

    CAS  PubMed  Google Scholar 

  103. Paton, A. W. et al. AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443, 548–552 (2006).

    CAS  PubMed  Google Scholar 

  104. Kono, H. & Rock, K. L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8, 279–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Zitvogel, L., Kepp, O. & Kroemer, G. Decoding cell death signals in inflammation and immunity. Cell 140, 798–804 (2010).

    CAS  PubMed  Google Scholar 

  106. Luo, Y., Li, S. J., Yang, J., Qiu, Y. Z. & Chen, F. P. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem. Biophys. Res. Commun. 438, 732–738 (2013).

    CAS  PubMed  Google Scholar 

  107. Zhu, X. M. et al. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int. J. Biochem. Cell Biol. 44, 1097–1105 (2012).

    CAS  PubMed  Google Scholar 

  108. Garg, A. D. et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31, 1062–1079 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Senovilla, L. et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 337, 1678–1684 (2012).

    CAS  PubMed  Google Scholar 

  110. Lu, M. et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science 345, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang, K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587–599 (2006). This study shows that inflammatory signals in the liver activate the UPR, resulting in S1P- and/or S2P-mediated cleavage of CREBH to free its nuclear fraction and to allow the transcription of acute-phase response genes.

    CAS  PubMed  Google Scholar 

  112. Hu, P., Han, Z., Couvillon, A. D., Kaufman, R. J. & Exton, J. H. Autocrine tumor necrosis factorα links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26, 3071–3084 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Deng, J. et al. Translational repression mediates activation of nuclear factor κB by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24, 10161–10168 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Tam, A. B., Mercado, E. L., Hoffmann, A. & Niwa, M. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS ONE 7, e45078 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nakajima, S. et al. Selective abrogation of BiP/GRP78 blunts activation of NF-κB through the ATF6 branch of the UPR: involvement of C/EBPβ and mTOR-dependent dephosphorylation of Akt. Mol. Cell. Biol. 31, 1710–1718 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamazaki, H. et al. Activation of the Akt–NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J. Immunol. 183, 1480–1487 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859–868 (2003).

    CAS  PubMed  Google Scholar 

  118. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000). This study demonstrates that ER stress-induced IRE1α activation results in the recruitment of TRAF2 to activate JNK and downstream inflammatory signalling.

    CAS  PubMed  Google Scholar 

  119. Hu, P., Han, Z., Couvillon, A. D. & Exton, J. H. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279, 49420–49429 (2004).

    CAS  PubMed  Google Scholar 

  120. Li, Y. et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-κB- and map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280, 21763–21772 (2005).

    CAS  PubMed  Google Scholar 

  121. Meares, G. P. et al. PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol. Cell. Biol. 34, 3911–3925 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. Shkoda, A. et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132, 190–207 (2007).

    CAS  PubMed  Google Scholar 

  123. Kaser, A., Zeissig, S. & Blumberg, R. S. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Van Limbergen, J., Wilson, D. C. & Satsangi, J. The genetics of Crohn's disease. Annu. Rev. Genomics Hum. Genet. 10, 89–116 (2009).

    CAS  PubMed  Google Scholar 

  125. Barrett, J. C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40, 955–962 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. McGovern, D. P. et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42, 332–337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    CAS  PubMed  Google Scholar 

  128. Kiefer, K. et al. Coordinated regulation of the orosomucoid-like gene family expression controls de novo ceramide synthesis in mammalian cells. J. Biol. Chem. 290, 2822–2830 (2015).

    CAS  PubMed  Google Scholar 

  129. Zheng, W. et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun. 7, 11–18 (2006).

    CAS  PubMed  Google Scholar 

  130. Zhao, F. et al. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev. Biol. 338, 270–279 (2010).

    CAS  PubMed  Google Scholar 

  131. Deuring, J. J. et al. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease. Gut 63, 1081–1091 (2013).

    PubMed  Google Scholar 

  132. Lassen, K. G. et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl Acad. Sci. USA 111, 7741–7746 (2014).

    CAS  PubMed  Google Scholar 

  133. Murthy, A. et al. A Crohn's disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462 (2014).

    CAS  PubMed  Google Scholar 

  134. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  135. Bogaert, S. et al. Involvement of endoplasmic reticulum stress in inflammatory bowel disease: a different implication for colonic and ileal disease? PLoS ONE 6, e25589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tsuru, A. et al. Negative feedback by IRE1β optimizes mucin production in goblet cells. Proc. Natl Acad. Sci. USA 110, 2864–2869 (2013).

    CAS  PubMed  Google Scholar 

  137. Bertolotti, a. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 107, 585–593 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Asada, R. et al. The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine. J. Biol. Chem. 287, 8144–8153 (2008).

    Google Scholar 

  139. Hino, K., Saito, A., Asada, R., Kanemoto, S. & Imaizumi, K. Increased susceptibility to dextran sulfate sodium-induced colitis in the endoplasmic reticulum stress transducer OASIS deficient mice. PLoS ONE 9, e88048 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Cao, S. S. et al. Phosphorylation of eIF2α is dispensable for differentiation but required at a posttranscriptional level for paneth cell function and intestinal homeostasis in mice. Inflamm. Bowel Dis. 20, 712–722 (2014).

    PubMed  Google Scholar 

  141. Heazlewood, C. K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).

    PubMed  PubMed Central  Google Scholar 

  142. Eri, R. D. et al. An intestinal epithelial defect conferring ER stress results in inflammation involving both innate and adaptive immunity. Mucosal Immunol. 4, 354–364 (2011).

    CAS  PubMed  Google Scholar 

  143. Hammer, R. E., Maika, S. D., Richardson, J. A., Tang, J. P. & Taurog, J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63, 1099–1112 (1990).

    CAS  PubMed  Google Scholar 

  144. Lee, A. H., Heidtman, K., Hotamisligil, G. S. & Glimcher, L. H. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc. Natl Acad. Sci. USA 108, 8885–8890 (2011).

    CAS  PubMed  Google Scholar 

  145. Harding, H. P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153–1163 (2001).

    CAS  PubMed  Google Scholar 

  146. Ron, D. Proteotoxicity in the endoplasmic reticulum: lessons from the Akita diabetic mouse. J. Clin. Invest. 109, 443–445 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest. 103, 27–37 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Oyadomari, S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest. 109, 525–532 (2002). This study reveals that inflammation decreases levels of protective XBP1s in the liver through S -nitrosylation of the RNase domain of IRE1α, thereby negatively affecting glucose homeostasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  150. Yang, L. et al. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science 349, 500–506 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Kaneto, H. et al. Oxidative stress and the JNK pathway in diabetes. Curr. Diabetes Rev. 1, 65–72 (2005).

    CAS  PubMed  Google Scholar 

  152. Reimold, A. M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang, K. et al. The unfolded protein response transducer IRE1α prevents ER stress-induced hepatic steatosis. EMBO J. 30, 1357–1375 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Milic, S. & Stimac, D. Nonalcoholic fatty liver disease/steatohepatitis: epidemiology, pathogenesis, clinical presentation and treatment. Dig. Dis. 30, 158–162 (2012).

    PubMed  Google Scholar 

  155. Wenfeng, Z. et al. Kupffer cells: increasingly significant role in nonalcoholic fatty liver disease. Ann. Hepatol. 13, 489–495 (2014).

    PubMed  Google Scholar 

  156. Malhi, H. & Kaufman, R. J. Endoplasmic reticulum stress in liver disease. J. Hepatol 54, 795–809 (2011).

    CAS  PubMed  Google Scholar 

  157. Dela Pena, A. et al. NF-κB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 129, 1663–1674 (2005).

    CAS  PubMed  Google Scholar 

  158. Gupte, A. A., Lyon, C. J. & Hsueh, W. A. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis. Curr. Diab.Rep. 13, 362–371 (2013).

    CAS  PubMed  Google Scholar 

  159. Mahadevan, N. R., Fernandez, A., Rodvold, J. J., Almanza, G. & Zanetti, M. Prostate cancer cells undergoing ER stress in vitro and in vivo activate transcription of pro-inflammatory cytokines. J. Inflamm. Res. 3, 99–103 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    CAS  PubMed  Google Scholar 

  161. Clarke, H. J., Chambers, J. E., Liniker, E. & Marciniak, S. J. Endoplasmic reticulum stress in malignancy. Cancer Cell 25, 563–573 (2014).

    CAS  PubMed  Google Scholar 

  162. Blais, J. D. et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol. Cell. Biol. 26, 9517–9532 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Auf, G. et al. Inositol-requiring enzyme 1α is a key regulator of angiogenesis and invasion in malignant glioma. Proc. Natl Acad. Sci. USA 107, 15553–15558 (2010).

    CAS  PubMed  Google Scholar 

  164. Wang, Y. et al. The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res. 72, 5396–5406 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mahadevan, N. R. et al. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc. Natl Acad. Sci. USA 108, 6561–6566 (2011).

    CAS  PubMed  Google Scholar 

  166. Mahadevan, N. R. et al. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8+ T cell priming. PLoS ONE 7, e51845 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Marino, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Suh, D. H., Kim, M. K., Kim, H. S., Chung, H. H. & Song, Y. S. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann. NY Acad. Sci. 1271, 20–32 (2012).

    CAS  PubMed  Google Scholar 

  169. Kroemer, G., Marino, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. B'Chir, W. et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683–7699 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Hetz, C. et al. XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Qin, L., Wang, Z., Tao, L. & Wang, Y. ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 6, 239–247 (2010).

    CAS  PubMed  Google Scholar 

  173. Hart, L. S. et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J. Clin. Invest. 122, 4621–4634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxiathrough regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    CAS  PubMed  Google Scholar 

  175. Bernales, S., Schuck, S. & Walter, P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287 (2007).

    PubMed  Google Scholar 

  176. Khaminets, A. et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354–358 (2015).

    CAS  PubMed  Google Scholar 

  177. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  178. Cao, S. S. et al. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology 144, 989–1000 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, H. J. et al. Inhibition of endoplasmic reticulum stress alleviates lipopolysaccharide-induced lung inflammation through modulation of NF-κB/HIF-1α signaling pathway. Sci. Rep. 3, 1142 (2013).

    PubMed  PubMed Central  Google Scholar 

  180. Mujtaba, T. & Dou, Q. P. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov. Med. 12, 471–480 (2011).

    PubMed  PubMed Central  Google Scholar 

  181. Mimura, N. et al. Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119, 5772–5781 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Papandreou, I. et al. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Ali, M. M. et al. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. EMBO J. 30, 894–905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Jha, B. K. et al. Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J. Biol. Chem. 286, 26319–26326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Connor, J. H. et al. Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. Mol. Cell Biol. 21, 6841–6850 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Brandl, K. et al. Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response. Proc. Natl Acad. Sci. USA 106, 3300–3305 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Wang for assistance with preparation of this Review and apologize to those whose work was not included owing to size limitations. This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); NIH grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Randal J. Kaufman or Richard S. Blumberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

ER-associated degradation

(ERAD). A pathway that removes terminally misfolded proteins from the endoplasmic reticulum (ER) through their retrotranslocation to the cytosol, which targets them for degradation by the ubiquitin–proteasome system.

Unfolded protein response

(UPR). A highly conserved pathway that regulates the balance between the folding capacity of the endoplasmic reticulum (ER) and protein synthesis.

Integrated stress response

(ISR). An ancient stress response that modulates protein biosynthesis by integrating various types of stress signals, including endoplasmic reticulum (ER) stress, amino acid deprivation, virus infection and oxidative stress.

Paneth cells

Highly specialized small-intestinal epithelial cells that shape the composition of the microbiota through the secretion of antimicrobial proteins and that sustain and modulate epithelial stem cells by the secretion of niche factors.

Acute phase response

(APR). A group of systemic and innate physiological processes in the early response to infection or injury.

Crohn's disease

An inflammatory disease of the small and large intestines that is thought to arise from an inappropriate immune response towards the intestinal microbiota in a genetically susceptible host.

Ulcerative colitis

A chronic disease of the colon with unknown aetiology, characterized by inflammation and ulceration in the colon.

Non-alcoholic fatty liver disease

(NAFLD). Liver disease characterized by the accumulation of fat (steatosis) in the liver, which is often associated with obesity. Although NAFLD is benign, it can progress towards steatohepatitis and even cirrhosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grootjans, J., Kaser, A., Kaufman, R. et al. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 16, 469–484 (2016). https://doi.org/10.1038/nri.2016.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing