Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory circuits of T cell function in cancer

Key Points

  • T cell dysfunction ('exhaustion') occurs in chronic infection and cancer

  • Mechanisms of T cell dysfunction are partly disease specific and are partly shared between different diseases

  • T cell dysfunction depends on antigens, co-stimulation, T cell inhibitory cells, metabolic pathways and soluble factors of the tumour microenvironment

  • T cells are regulated by signals of the T cell receptor and co-activating, inhibitory and cytokine receptors

  • T cell inhibition frequently occurs via evolutionarily conserved mechanisms known to function in most inflammatory diseases, assuring efficient downregulation of lymphocyte cytotoxicity to avoid extended tissue damage

  • T cell inhibition can also occur via mechanisms that cancer cells acquired by somatic mutations

Abstract

Recent progress in cancer immunotherapy emphasizes the importance of understanding immune-regulatory pathways in tumours. Dysfunction of antitumour T cells may be due to mechanisms that are evolutionarily conserved or acquired by somatic mutations. The dysfunctional state of T cells has been termed 'exhaustion', on the basis of similarities to dysfunctional T cells in chronic infections. However, despite shared properties, recent studies have identified marked differences between T cell dysfunction in cancer and chronic infection. In this Review, we discuss T cell-intrinsic molecular alterations and metabolic communication in the tumour microenvironment. Identification of the underlying molecular drivers of T cell dysfunction is essential for the continued progress of cancer research and therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microenvironmental factors instructing T cell dysfunction.
Figure 2: T cell inhibition through mechanisms that are evolutionarily conserved or acquired by somatic mutations.
Figure 3: Modular regulation in dysfunctional T cells.
Figure 4: Therapeutic benefit depends on targeting T cell inhibition.

Similar content being viewed by others

References

  1. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smyth, M. J., Dunn, G. P. & Schreiber, R. D. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol. 90, 1–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Duan, S. & Thomas, P. G. Balancing immune protection and immune pathology by CD8+ T-Cell responses to influenza infection. Front. Immunol. 7, 25 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, P. P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 5, 677–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zippelius, A. et al. Effector function of human tumor-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865–2873 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest. 121, 2350–2360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giordano, M. et al. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. EMBO J. 34, 2042–2058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Nishikawa, H. & Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 27, 1–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Roychoudhuri, R. et al. BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature 498, 506–510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quezada, S. A. et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 205, 2125–2138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mizukami, Y. et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of FOXP3+ regulatory T cells in gastric cancer. Int. J. Cancer 122, 2286–2293 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Ho, P. C. et al. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res. 74, 3205–3217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perrot, I. et al. Dendritic cells infiltrating human non-small cell lung cancer are blocked at immature stage. J. Immunol. 178, 2763–2769 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, Q. et al. Activated CD69+ T cells foster immune privilege by regulating IDO expression in tumor-associated macrophages. J. Immunol. 188, 1117–1124 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Ye, X. Z. et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J. Immunol. 189, 444–453 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Imtiyaz, H. Z. et al. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation. J. Clin. Invest. 120, 2699–2714 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Vonderheide, R. H. & Glennie, M. J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res. 19, 1035–1043 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Marsh, T., Pietras, K. & McAllister, S. S. Fibroblasts as architects of cancer pathogenesis. Biochim. Biophys. Acta 1832, 1070–1078 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ko, S. Y. et al. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J. Clin. Invest. 122, 3603–3617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Dirat, B. et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71, 2455–2465 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Carlos, T. M. Leukocyte recruitment at sites of tumor: dissonant orchestration. J. Leukoc. Biol. 70, 171–184 (2001).

    CAS  PubMed  Google Scholar 

  37. Piali, L., Fichtel, A., Terpe, H. J., Imhof, B. A. & Gisler, R. H. Endothelial vascular cell adhesion molecule 1 expression is suppressed by melanoma and carcinoma. J. Exp. Med. 181, 811–816 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mulligan, J. K., Rosenzweig, S. A. & Young, M. R. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2. J. Immunother. 33, 126–135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghesquiere, B., Wong, B. W., Kuchnio, A. & Carmeliet, P. Metabolism of stromal and immune cells in health and disease. Nature 511, 167–176 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Card, C. M., Yu, S. S. & Swartz, M. A. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Invest. 124, 943–952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015). This study reveals that glucose competition between cancer and T cells can be detrimental for antitumour T cells. It also shows that PDL1 expression by cancer cells contributes to glucose competition by elevating aerobic glycolysis in cancer cells but dampening it in T cells. This study and reference 43 uncover that deregulated cellular energetics, especially aerobic glycolysis, in cancer cells leads to failure of antitumour T cell responses and that metabolic reprogramming of tumour-specific T cells can increase the therapeutic benefit of adoptive cell therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, E. et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat. Immunol. 17, 95–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190, 3049–3053 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Yan, Y. et al. IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J. Immunol. 185, 5953–5961 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Rodriguez, P. C. et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanaka, K. et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest. 125, 1591–1602 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fischer, K. et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Robey, I. F. et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Estrella, V. et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 73, 1524–1535 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuroda, E. & Yamashita, U. Mechanisms of enhanced macrophage-mediated prostaglandin E2 production and its suppressive role in TH1 activation in TH2-dominant BALB/c mice. J. Immunol. 170, 757–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Eruslanov, E., Daurkin, I., Ortiz, J., Vieweg, J. & Kusmartsev, S. Pivotal advance: tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J. Leukoc. Biol. 88, 839–848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, J. H. et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kurtova, A. V. et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517, 209–213 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Restifo, N. P., Smyth, M. J. & Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer 16, 121–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Khalili, J. S. et al. Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin. Cancer Res. 18, 5329–5340 (2012). This paper shows that melanoma cells with the oncogenic mutation BRAF(V600E) produce IL-1, leading to T cell inhibition via PDL1 and cyclo-oxygenase 2 (COX2) upregulation in stromal cells of the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Peng, D. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015). This paper describes an immune evasion strategy of ovarian cancer cells, through epigenetic silencing of the T H 1-type cytokines CXCL9 and CXCL10, thereby avoiding the attraction of antitumour T cells in humans and mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Restifo, N. P. et al. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl Cancer Inst. 88, 100–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  PubMed  Google Scholar 

  69. Raulet, D. H. Missing self recognition and self tolerance of natural killer (NK) cells. Semin. Immunol. 18, 145–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Bessoles, S. et al. Adaptations of natural killer cells to self-MHC class I. Front. Immunol. 5, 349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Winograd, R. et al. Induction of T-cell immunity overcomes complete resistance to PD1 and CTLA4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3, 399–411 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kataoka, K. et al. Aberrant PDL1 expression through 3′-UTR disruption in multiple cancers. Nature 534, 402–406 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 161, 1681–1696 (2015).

  75. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Taube, J. M. et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl Med. 4, 127ra37 (2012). This study shows that, in the TME of human melanoma, PDL1 is expressed in microanatomical regions with rich TIL infiltration, suggesting that PDL1 upregulation is due to local immune responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Woo, S. R., Corrales, L. & Gajewski, T. F. Innate immune recognition of cancer. Annu. Rev. Immunol. 33, 445–474 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Yang, X. et al. Targeting the tumor microenvironment with interferon-β bridges innate and adaptive immune responses. Cancer Cell 25, 37–48 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baitsch, L., Fuertes-Marraco, S. A., Legat, A., Meyer, C. & Speiser, D. E. The three main stumbling blocks for anticancer T cells. Trends Immunol. 33, 364–372 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Nguyen, L. T. & Ohashi, P. S. Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nat. Rev. Immunol. 15, 45–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl Med. 5, 200ra116 (2013). This study shows that CD8+ T cells drive immune-inhibitory mechanisms in human and mouse tumours, indicating that immunosuppression can result from natural conserved immune regulation rather than from properties of cancer cells acquired by mutation and Darwinian selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mahoney, K. M. & Atkins, M. B. Prognostic and predictive markers for the new immunotherapies. Oncology 28 (Suppl. 3), 39–48 (2014).

    PubMed  Google Scholar 

  84. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006). This paper shows that exhausted T cells in chronic LCMV infection express high levels of PD1 and that the blockade of PD1 enhances CD8+ T cell responses and antiviral immunity.

    Article  CAS  PubMed  Google Scholar 

  85. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998). This study describes immune responses in mice chronically infected with LCMV. It shows that CD8+ T cells are either deleted or lose effector functions, reducing their capacity to eradicate the virus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaech, S. M. & Wherry, E. J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Speiser, D. E. et al. T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? Nat. Rev. Immunol. 14, 768–774 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Okamura, T. et al. CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor EGR2. Proc. Natl Acad. Sci. USA 106, 13974–13979 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schietinger, A., Delrow, J. J., Basom, R. S., Blattman, J. N. & Greenberg, P. D. Rescued tolerant CD8 T cells are preprogrammed to reestablish the tolerant state. Science 335, 723–727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith, T. R., Verdeil, G., Marquardt, K. & Sherman, L. A. Contribution of TCR signaling strength to CD8+ T cell peripheral tolerance mechanisms. J. Immunol. 193, 3409–3416 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Thomas, D. A. & Massague, J. TGFβ directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Delisle, J. S. et al. The TGFβ-SMAD3 pathway inhibits CD28-dependent cell growth and proliferation of CD4 T cells. Genes Immun. 14, 115–126 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Stephen, T. L. et al. Transforming growth factor β-mediated suppression of antitumor T cells requires FOXP1 transcription factor expression. Immunity 41, 427–439 (2014). This study establishes that FOXP1 cooperates with SMAD2 and SMAD3 to mediate TGFβ-driven suppression in tumour-infiltrated lymphocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quigley, M. et al. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD1 inhibits T cell function by upregulating BATF. Nat. Med. 16, 1147–1151 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fuertes Marraco, S. A., Neubert, N. J., Verdeil, G. & Speiser, D. E. Inhibitory receptors beyond T cell exhaustion. Front. Immunol. 6, 310 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Odorizzi, P. M., Pauken, K. E., Paley, M. A., Sharpe, A. & Wherry, E. J. Genetic absence of PD1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J. Exp. Med. 212, 1125–1137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Walker, L. S. & Sansom, D. M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Kuo, C. T. & Leiden, J. M. Transcriptional regulation of T lymphocyte development and function. Annu. Rev. Immunol. 17, 149–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015). This study shows that NFAT, in the absence of AP-1, induces a panel of genes associated with T cell exhaustion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xiao, G., Deng, A., Liu, H., Ge, G. & Liu, X. Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1. Proc. Natl Acad. Sci. USA 109, 15419–15424 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baitsch, L. et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization. PLoS ONE 7, e30852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9, 263–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Giordano, M. et al. The tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc. Natl Acad. Sci. USA 111, 11115–11120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Intlekofer, A. M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sekiya, T. et al. NR4A receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 14, 230–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Fassett, M. S., Jiang, W., D'Alise, A. M., Mathis, D. & Benoist, C. Nuclear receptor NR4A1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc. Natl Acad. Sci. USA 109, 3891–3896 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Raveney, B. J., Oki, S. & Yamamura, T. Nuclear receptor NR4A2 orchestrates TH17 cell-mediated autoimmune inflammation via IL-21 signalling. PLoS ONE 8, e56595 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shin, H. et al. A role for the transcriptional repressor BLIMP1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shaffer, A. L. et al. BLIMP1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Shaffer, A. L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13, 199–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Heinemann, C. et al. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nat. Commun. 5, 3770 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Gonin, J. et al. Expression of IL-27 by tumor cells in invasive cutaneous and metastatic melanomas. PLoS ONE 8, e75694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hisada, M. et al. Potent antitumor activity of interleukin-27. Cancer Res. 64, 1152–1156 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Oniki, S. et al. Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res. 66, 6395–6404 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Waugh, K. A., Leach, S. M. & Slansky, J. E. Targeting transcriptional regulators of CD8+ T cell dysfunction to boost anti-tumor immunity. Vaccines 3, 771–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kujawski, M. et al. Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects. Cancer Res. 70, 9599–9610 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yue, C. et al. STAT3 in CD8+ T cells inhibits their tumor accumulation by downregulating CXCR3/CXCL10 axis. Cancer Immunol. Res. 3, 864–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Triplett, T. A. et al. STAT3 signaling is required for optimal regression of large established tumors in mice treated with anti-OX40 and TGFβ receptor blockade. Cancer Immunol. Res. 3, 526–535 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Siveen, K. S. et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim. Biophys. Acta 1845, 136–154 (2014).

    CAS  PubMed  Google Scholar 

  124. Sznol, M. & Chen, L. Antagonist antibodies to PD1 and B7-H1 (PDL1) in the treatment of advanced human cancer. Clin. Cancer Res. 19, 1021–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015). This paper shows the extraordinary long-term therapeutic effects of CTLA4-specific antibody in melanoma patients, with a plateau in the survival curve beginning at 2–3 years after treatment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    Article  PubMed  Google Scholar 

  128. Sanchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6, 71–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Lesokhin, A. M., Callahan, M. K., Postow, M. A. & Wolchok, J. D. On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation. Sci. Transl Med. 7, 280sr1 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Khalil, D. N., Smith, E. L., Brentjens, R. J. & Wolchok, J. D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 13, 273–290 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057–5069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. June, C. H., Riddell, S. R. & Schumacher, T. N. Adoptive cellular therapy: a race to the finish line. Sci. Transl Med. 7, 280ps7 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Klebanoff, C. A. et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17, 5343–5352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Klebanoff, C. A. et al. Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J. Clin. Invest. 126, 318–334 (2016).

    Article  PubMed  Google Scholar 

  137. Sukumar, M. et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123, 4479–4488 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Crompton, J. G. et al. AKT inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Sukumar, M. et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy. Cell. Metab. 23, 63–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Intlekofer, A. M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Grange, M. et al. Activated STAT5 promotes long-lived cytotoxic CD8+ T cells that induce regression of autochthonous melanoma. Cancer Res. 72, 76–87 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Grange, M. et al. Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGFβ1 signaling. J. Immunol. 191, 3712–3724 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Dow, L. E. et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pauken, K. E. & Wherry, E. J. SnapShot: T cell exhaustion. Cell 163, 1038–1038.e1 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Hugo, W. et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell 162, 1271–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    Article  CAS  PubMed  Google Scholar 

  147. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012). This paper summarizes 124 published articles, revealing the broad principle that intratumoral infiltration of memory CD8+ T cells and CD4+ T H 1 cells is associated with favourable prognosis in the majority of solid human cancers.

    Article  CAS  PubMed  Google Scholar 

  148. Michalek, R. D. et al. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc. Natl Acad. Sci. USA 108, 18348–18353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, R. et al. The transcription factor MYC controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. O'Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cui, G. et al. IL-7-Induced glycerol transport and TAG synthesis promotes memory CD8+ T cell longevity. Cell 161, 750–761 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. van der Windt, G. J. et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl Acad. Sci. USA 110, 14336–14341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Blagih, J. et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42, 41–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Siska, P. J. & Rathmell, J. C. T cell metabolic fitness in antitumor immunity. Trends Immunol. 36, 257–264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chang, C. H. & Pearce, E. L. Emerging concepts of T cell metabolism as a target of immunotherapy. Nat. Immunol. 17, 364–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity 37, 1130–1144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31, 137–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Fan, X. & Rudensky, A. Y. Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 563–567 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Speiser, D. E. & Flatz, L. Cancer immunotherapy drives implementation science in oncology. Hum. Vaccin. Immunother. 10, 3107–3110 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the vast and invaluable work that could not be cited here because of space limitations. The authors thank M. de Palma and T. Murray for revising the manuscript, and G. Coukos, M. Delorenzi, M. Gilliet, O. Michielin, Ch. Münz, N. Neubert, P. Romero, L. Tillé and D. Zehn and their group members for collaboration. The authors acknowledge all members of their teams and their collaborators and patients for their dedication, contributions and discussions. This work was supported in part by funds from Ludwig Cancer Research, the Cancer Research Institute, the Wilhelm Sander Foundation, the Swiss Cancer Research (3507-09-2014), the Swiss National Science Foundation (CRSII3_141879, 320030_152856), Novartis Foundation for medical-biological Research, Melanoma Research Alliance, Harry J. Lloyd Charitable Trust, SwissTransMed (KIP 18) and a grant from Alfred and Annemarie von Sick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Speiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Type 1 immune responses

Viral or intracellular bacterial infections trigger innate immune responses accompanied by the activation of cytotoxic CD8+ T cells and CD4+ T helper 1 cells. Similar T cell populations are believed to mediate the antitumour lymphocyte effects.

Dysfunctional T cells

T cells in chronic infection show reduced proliferation and cytokine production because of repetitive antigen stimulation and dysbalanced co-stimulatory and inhibitory signals. T cells in cancer may show similar functional alterations in the tumour microenvironment because of similar and/or different molecular signals.

Professional antigen-presenting cells

(APCs). Priming and strong boosting of T cells requires professional APCs, particularly dendritic cells, which achieve this goal via the expression of co-stimulatory membrane ligands (for example, CD80 and CD86) and the secretion of cytokines (for example, interleukin-12 and interferons).

Tumour-infiltrating T lymphocytes

(TILs). Intratumoural T cells. In mice and humans, the main immune cell populations that can destroy cancers ('antitumour T cells') are cytotoxic CD8+ T cells and CD4+ T helper 1 (TH1) cells.

M2-like macrophages

A macrophage subset that is stimulated by interleukin-4 (IL-4) or IL-13 and that expresses arginase 1, the mannose receptor CD206 and the IL-4 receptor α-chain.

M1-like macrophages

A macrophage subset that is activated by Toll-like receptor ligands (such as lipopolysaccharide) and interferon-γ. M1-like macrophages express pro-inflammatory cytokines and inducible nitric oxide synthase, among other things.

Anergic T cells

T cells primed through T cell receptor (TCR) stimulation without any co-stimulation become unresponsive to further stimulation with antigen; they stop proliferating and producing cytokines.

Senescent T cells

T cells that have accomplished excessive numbers of divisions reach a point of irreversible cell cycle arrest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speiser, D., Ho, PC. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol 16, 599–611 (2016). https://doi.org/10.1038/nri.2016.80

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2016.80

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer