Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many important facets of T-cell repertoire diversity

Key Points

  • Intense investigation has elucidated the molecular mechanisms that generate the structural diversity of the T-cell receptor (TCR) repertoire. The first reliable estimates of actual TCR diversity were recently published, however, the biological impact of TCR diversity is still being investigated.

  • Potential TCR diversity, which is in the order of 1 × 1015 before thymic selection, and 1 × 1013 after thymic selection, stands in sharp contrast with the estimated actual, expressed diversity in a given organism at a given time point — 2 × 106 in mice and 2 × 107 in humans. This limit is imposed in part by the fact that there are fewer T cells in the body than there are potential TCR molecules.

  • However, the potential of 1 × 1013 TCRs is used, but in different organisms over time. It was shown that even genetically identical animals express highly diverse TCR repertoires, with as little as 20% overlap between them.

  • Structural TCR diversity is broadened by TCR crossreactivity — the propensity of a TCR to react with more than one peptide–MHC (pMHC) ligand. However, sharp differences exist in our estimates of TCR crossreactivity (some authors estimate that a single TCR might recognize more than 1 × 106 pMHC ligands) and in the threshold at which this crossreactivity becomes important in pathogen resistance.

  • T cells also show functional diversification (that is, the ability to mobilize distinct effector and regulatory functions) and this diversity is probably important for combating pathogens.

  • T-cell diversity contributes to immune defence in two ways: it provides an initial pool from which the best and most efficient T cells will be selected to attack the pathogen; and it provides the flexible TCR reserve should the pathogen attempt to escape by mutation.

  • Evidence from models with experimental or spontaneous restrictions in TCR diversity shows that in most models, even modest reductions in structural diversity tend to result in impaired responses to antigens and pathogens. This indicates that in most cases, TCR crossreactivity cannot compensate for the loss of structural diversity, indicating that the biological relevance of TCR crossreactivity for pathogen resistance is rather limited.

  • There is a natural reduction in TCR diversity on aging and a pathophysiological reduction in TCR diversity after infection with HIV/highly active antiretroviral therapy and after bone-marrow transplantation. These conditions represent outstanding (and clinically relevant) models to further investigate the in vivo relevance of a broad TCR repertoire and functional T-cell diversification.

  • A given combination of T-cell structural and functional diversity and T-cell precursor numbers will probably prove to be crucial for successful pathogen resistance, and TCR crossreactivity could also have a role. The challenge is to use incisive methods to uncover this balance and dissect its precise components, to achieve optimal protective responses by vaccination and immune modulation.

Abstract

In the thymus, a diverse and polymorphic T-cell repertoire is generated by random recombination of discrete T-cell receptor (TCR)-αβ gene segments. This repertoire is then shaped by intrathymic selection events to generate a peripheral T-cell pool of self-MHC restricted, non-autoaggressive T cells. It has long been postulated that some optimal level of TCR diversity allows efficient protection against pathogens. This article focuses on several recent advances that address the required diversity for the generation of an optimal immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the interaction between T-cell receptor (TCR) and peptide–MHC (pMHC).
Figure 2: T-cell diversity.
Figure 3: Overview of the concepts of affinity and avidity.

Similar content being viewed by others

References

  1. Burnet, F. M. The cellular basis of immunology. Jpn. J. Microbiol. 5, 1–10 (1961).

    CAS  PubMed  Google Scholar 

  2. Weill, J. C. et al. Ig gene hypermutation: a mechanism is due. Adv. Immunol. 80, 183–202 (2002).

    CAS  PubMed  Google Scholar 

  3. Sano, G. et al. Swift development of protective effector functions in naive CD8+ T cells against malaria liver stages. J. Exp. Med. 194, 173–180 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belz, G. T., Xie, W. & Doherty, P. C. Diversity of epitope and cytokine profiles for primary and secondary influenza a virus-specific CD8+ T cell responses. J. Immunol. 166, 4627–4633 (2001).

    CAS  PubMed  Google Scholar 

  5. Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193, 987–993 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Echchakir, H. et al. Cytotoxic T lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution. Proc. Natl Acad. Sci. USA 99, 9358–9363 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Garcia, K. C., Teyton, L. & Wilson, I. A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    CAS  PubMed  Google Scholar 

  8. Rudolph, M. G. & Wilson, I. A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 14, 52–65 (2002).

    CAS  PubMed  Google Scholar 

  9. Malissen, B. Glimpses at TCR trans-species crossreactivity. Immunity. 19, 463–464 (2003).

    CAS  PubMed  Google Scholar 

  10. Reiser, J. B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nature Immunol. 4, 241–247 (2003).

    CAS  Google Scholar 

  11. Buslepp, J., Wang, H., Biddison, W. E., Appella, E. & Collins, E. J. A correlation between TCR Vα docking on MHC and CD8 dependence: implications for T cell selection. Immunity. 19, 595–606 (2003).

    CAS  PubMed  Google Scholar 

  12. Tonegawa, S. et al. Somatic reorganization of immunoglobulin genes during lymphocyte differentiation. Cold Spring Harb. Symp. Quant. Biol. 45, 839–858 (1981).

    CAS  PubMed  Google Scholar 

  13. Davis, M. M. & Bjorkman, P. J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395 (1988).

    CAS  PubMed  Google Scholar 

  14. Padovan, E. et al. Expression of two TCR α-chains: dual receptor T cells. Science 262, 422 (1993).

    CAS  PubMed  Google Scholar 

  15. Heath, W. R. & Miller, J. F. Expression of two α-chains on the surface of T cells in TCR transgenic mice. J. Exp. Med. 178, 1807 (1993).

    CAS  PubMed  Google Scholar 

  16. Petrie, H. T. et al. Multiple rearrangements in T cell receptor α-chain genes maximize the production of useful thymocytes. J. Exp. Med. 178, 615–622 (1993).

    CAS  PubMed  Google Scholar 

  17. Ignatowicz, L., Kappler, J. & Marrack, P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–529 (1996).

    CAS  PubMed  Google Scholar 

  18. Tourne, S., Naoko, N., Viville, S., Benoist, C. & Mathis, D. The influence of invariant chain on the positive selection of single T cell receptor specificities. Eur. J. Immunol. 25, 1851–1856 (1995).

    CAS  PubMed  Google Scholar 

  19. Zerrahn, J., Held, W. & Raulet, D. H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    CAS  PubMed  Google Scholar 

  20. Bouneaud, C., Kourilsky, P. & Bousso, P. I Impact of negative selection of the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    CAS  PubMed  Google Scholar 

  21. Doherty, P. C., Riberdy, J. M. & Belz, G. T. Quantitative analysis of the CD8+ T-cell response to readily eliminated and persistent viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 355, 1093–1101 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Arstila, T. P. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999). This paper presents the first reliable experiments that estimate peripheral T-cell receptor (TCR) diversity in humans.

    CAS  PubMed  Google Scholar 

  23. Even, J. et al. T cell repertoires in healthy and diseased human tissues analyzed by T cell receptor β-chain CDR3 size determination: evidence for oligoclonal expansions in tumours and inflammatory diseases. Res. Immunol. 146, 65–80 (1995).

    CAS  PubMed  Google Scholar 

  24. Pannetier, C., Even, J. & Kourilsky, P. T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol. Today 16, 176–181 (1995).

    CAS  PubMed  Google Scholar 

  25. Casrouge, A. et al. Size estimates of the αβ TCR repertoire of naive mouse splenocytes. J. Immunol. 164, 5782–5787 (2001). This paper presents the first experimentally sound estimate of peripheral TCR diversity in mice.

    Google Scholar 

  26. Bousso, P. et al. Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 9, 169–178 (1998). Together with reference 27, this study documents marked variability of the T-cell repertoire in individual animals, and provides rationale to reconcile the numerical figures between theoretical and measured repertoire diversity.

    CAS  PubMed  Google Scholar 

  27. Maryanski, J. L. et al. Individuality of Ag-selected and preimmune TCR repertoires. Immunol. Res. 23, 75–84 (2001).

    CAS  PubMed  Google Scholar 

  28. Lin, M. Y. & Welsh, R. M. Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J. Exp. Med. 188, 1993–2005 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nossal, G. J. V. Negative selection of lymphocytes. Cell 76, 229–240 (1994).

    CAS  PubMed  Google Scholar 

  30. Fink, P. J. & Bevan, M. J. Positive selection of thymocytes. Adv. Immunol. 59, 99–133 (1995).

    CAS  PubMed  Google Scholar 

  31. Nikolich-Zugich, J. & Bevan, M. J. Role of self-peptides in positively selecting the T-cell repertoire. Nature 344, 65–67 (1990).

    Google Scholar 

  32. Messaoudi, I., Guevara Patino, J. A., Dyall, R., LeMaoult, J. & Nikolich-Zugich, J. Direct link between MHC polymorphism, T-cell avidity and diversity in immune defense. Science 298, 1797–1801 (2002). This study provides a rare direct glimpse into the relationship between TCR diversity and pathogen resistance.

    CAS  PubMed  Google Scholar 

  33. Dyall, R., Messaoudi, I., Janetzki, S. & Nikolich-Zugich, J. MHC polymorphism can enrich the cell repertoire of the species by shifts in intrathymic selection. J. Immunol. 164, 1695–1698 (2000).

    CAS  PubMed  Google Scholar 

  34. Kappler, J. W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–281 (1987).

    CAS  PubMed  Google Scholar 

  35. Slifka, M. K. et al. Preferential escape of subdominant CD8+ T cells during negative selection results in an altered antiviral T cell hierarchy. J. Immunol. 170, 1231–1239 (2003). This work delineates the relationship between immunodominance and tolerance with regard to TCR diversity.

    CAS  PubMed  Google Scholar 

  36. Holler, P. D., Chlewicki, L. K. & Kranz, D. M. TCRs with high affinity for foreign pMHC show self-reactivity. Nature Immunol. 4, 55–62 (2003).

    CAS  Google Scholar 

  37. Sourdive, D. J. D. et al. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J. Exp. Med. 188, 71–82 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sim, B. C., Zerva, L., Greene, M. I. & Gascoigne, N. R. Control of MHC restriction by TCR Vα CDR1 and CDR2. Science 273, 963–966 (1996).

    CAS  PubMed  Google Scholar 

  39. Turner, S., Cose, S. C. & Carbone, F. R. TCR α-chain usage can determine antigen-selected TCR β-chain repertoire diversity. J. Immunol. 157, 4979–4985 (1996).

    CAS  PubMed  Google Scholar 

  40. Wallace, M. E. et al. Junctional biases in the naive TCR repertoire control the CTL response to an immunodominant determinant of HSV-1. Immunity 12, 547–556 (2000).

    CAS  PubMed  Google Scholar 

  41. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant αβ-T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    CAS  PubMed  Google Scholar 

  42. Blish, C. A. et al. Chronic modulation of the TCR repertoire in the lymphoid periphery. J. Immunol. 162, 3131–3140 (1999).

    CAS  PubMed  Google Scholar 

  43. McGargill, M. A., Derbinski, J. M. & Hogquist, K. A. Receptor editing in developing T cells. Naure. Immunol. 1, 336–341 (2000).

    CAS  Google Scholar 

  44. Buch, T., Rieux-Laucat, F., Forster, I. & Rajewsky, K. Failure of HY-specific thymocytes to escape negative selection by receptor editing. Immunity 16, 707–718 (2002).

    CAS  PubMed  Google Scholar 

  45. Schonrich, G. et al. Downregulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65, 293–304 (1991).

    CAS  PubMed  Google Scholar 

  46. Teh, H. -S., Kishi, H., Scott, B. & von Boehmer, H. Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169, 795–806 (1989).

    CAS  PubMed  Google Scholar 

  47. Murray, J. S. How the MHC selects TH1/TH2 immunity. Immunol. Today 19, 157–163 (1998).

    CAS  PubMed  Google Scholar 

  48. Zinkernagel, R. M. Uncertainties — discrepancies in immunology. Immunol. Rev. 185, 103–125 (2002).

    CAS  PubMed  Google Scholar 

  49. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    CAS  PubMed  Google Scholar 

  50. Regner, M. Crossreactivity in T-cell antigen recognition. Immunol. Cell Biol. 79, 91–100 (2001).

    CAS  PubMed  Google Scholar 

  51. Hiemstra, H. S., van Veelen, P. A. & Schloot, N. C. Definition of natural T cell antigens with mimicry epitopes obtained from dedicated synthetic peptide libraries. J. Immunol. 161, 4078–4082 (1998).

    CAS  PubMed  Google Scholar 

  52. Selin, L. K., Nahill, S. R. & Welsh, R. M. Crossreactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179, 1933 (1994).

    CAS  PubMed  Google Scholar 

  53. Manjunath, N. et al. A transgenic mouse model to analyze CD8+ effector cell differentiation in vivo. Proc. Natl Acad. Sci. USA 96, 13932–13937 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gudmundsdottir, H., Wells, A. D. & Turka, L. A. Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 162, 5212–5223 (1999).

    CAS  PubMed  Google Scholar 

  55. Hanke, T. & Raulet D. Cumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptors. J. Immunol. 166, 3002–3007 (2001).

    CAS  PubMed  Google Scholar 

  56. Slifka, M. K. & Whitton, J. L. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J. Immunol. 164, 208–216 (2000).

    CAS  PubMed  Google Scholar 

  57. Slifka, M. K. & Whitton, J. L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nature Immunol. 2, 711–717 (2001).

    CAS  Google Scholar 

  58. Manjunath, N. et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes. J. Clin. Invest. 108, 871–878 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bernaschi, M. & Castiglione, F. Selection of escape mutants from immune recognition during HIV infection. Immunol. Cell Biol. 80, 307–313 (2002).

    CAS  PubMed  Google Scholar 

  60. Klenerman, P., Wu, Y. & Phillips, R. HIV: current opinion in escapology. Curr. Opin. Microbiol. 5, 408–413 (2002).

    CAS  PubMed  Google Scholar 

  61. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    CAS  PubMed  Google Scholar 

  62. Evans, D. T. et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus Env and Nef. Nature Med. 5, 1270–1276 (1999).

    CAS  PubMed  Google Scholar 

  63. Vogel, T. U. et al. Escape in one of two cytotoxic T-lymphocyte epitopes bound by a high-frequency major histocompatibility complex class I molecule, Mamu-A*02: a paradigm for virus evolution and persistence? J. Virol. 76, 11623–11636 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McMichael, A. T cell responses and viral escape. Cell 93, 673–676 (1998).

    CAS  PubMed  Google Scholar 

  65. Gilfillan, S., Dierich, A., Lemeur, M., Benoist, C. & Mathis, D. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261, 1175–1178 (1993).

    CAS  PubMed  Google Scholar 

  66. Cabaniols, J. P., Fazilleau, N., Casrouge, A., Kourilsky, P. & Kanellopoulos, J. Most α/βT cell receptor diversity is due to terminal deoxynucleotidyl transferase. J. Exp. Med. 194, 1385–1390 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gavin, M. A. & Bevan, M. J. Increased peptide promiscuity provides a rationale for the lack of N regions in the neonatal T cell repertoire. Immunity 3, 793–800 (1995).

    CAS  PubMed  Google Scholar 

  68. Kikly, K. & Dennert, G. Evidence for a role for T-cell receptors (TCR) in the effector phase of acute bone marrow graft rejection: TCR Vβ5 transgenic mice lack effector cells able to cause graft rejection. J. Immunol. 149, 3489–3494 (1992).

    CAS  PubMed  Google Scholar 

  69. Bousso, P. et al. Diversity, functionality, and stability of the T cell repertoire derived in vivo from a single human T cell precursor. Proc. Natl Acad. Sci. USA 97, 274–278 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Woodland, D., Kotzin, B. L. & Palmer, E. Functional consequences of a T-cell receptor Dβ2 and Jβ2 gene segment deletion. J. Immunol. 144, 379–385 (1990).

    CAS  PubMed  Google Scholar 

  71. Nanda, N. K., Apple, R. & Sercarz, E. Limitations in plasticity of the T-cell receptor repertoire. Proc. Natl Acad. Sci. USA 88, 9503–9507 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cose, S. C., Kelly, J. M. & Carbone, F. R. Characterization of a diverse primary herpes simplex virus type 1 gB-specific cytotoxic T-cell response showing a preferential Vβ bias. J. Virol. 69, 5849–5852 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wallace, M. E., Keating, R., Heath, W. R. & Carbone, F. R. The cytotoxic T-cell response to herpes simplex virus type 1 infection of C57BL/6 mice is almost entirely directed against a single immunodominant determinant. J. Virol. 73, 7619–7626 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mueller, S. N. et al. The early expression of glycoprotein B from herpes simplex virus can be detected by antigen-specific CD8+ T cells. J. Virol. 77, 2445–2451 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones, C. M., Cose, S. C. & Carbone, F. R. Evidence for cooperation between TCR V region and junctional sequences in determining a dominant cytotoxic T lymphocyte response to herpes simplex virus glycoprotein B. Int. Immunol. 9, 1319–1328 (1997).

    CAS  PubMed  Google Scholar 

  76. Turner, S. J. & Carbone, F. R. A dominant Vβ bias in the CTL response after HSV-1 infection is determined by peptide residues predicted to also interact with the TCR β-chain CDR3. Mol. Immunol. 35, 307–316 (1998).

    CAS  PubMed  Google Scholar 

  77. Ku, C. C., Kotzin, B., Kappler, J. & Marrack, P. CD8+ T-cell clones in old mice. Immunol. Rev. 160, 139–144 (1997).

    CAS  PubMed  Google Scholar 

  78. Caruso, A. et al. Contribution of CD4+, CD8+CD28+, and CD8+CD28 T-cells to CD3+ lymphocyte homeostasis during the natural course of HIV-1 infection. J. Clin. Invest. 101, 137–144 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Effros, R. B. & Pawelec, G. Replicative senescence of T cells: does the Hayflick limit lead to immune exhaustion? Immunol. Today 18, 450–454 (1997).

    CAS  PubMed  Google Scholar 

  80. Gilfillan, S. et al. Efficient immune responses in mice lacking N-region diversity. Eur. J. Immunol. 25, 3115–3122 (1995).

    CAS  PubMed  Google Scholar 

  81. Nanda, N. K., Apple, R. & Sercarz, E. Limitations in plasticity of the T-cell receptor repertoire. Proc. Natl Acad. Sci. USA 88, 9503–9507 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Speiser, D. E., Kyburz, D., Stubi, U., Hengartner, H. & Zinkernagel, R. M. Discrepancy between in vitro measurable and in vivo virus neutralizing cytotoxic T cell reactivities. Low T cell receptor specificity and avidity sufficient for in vitro proliferation or cytotoxicity to peptide-coated target cells but not for in vivo protection. J. Immunol. 149, 972–980 (1992).

    CAS  PubMed  Google Scholar 

  83. Maloy, K. J. et al. Qualitative and quantitative requirements for CD4+ T cell-mediated antiviral protection. J. Immunol. 162, 2867–2874 (1999).

    CAS  PubMed  Google Scholar 

  84. Moskophidis, D., Lechner, F., Hengartner, H. & Zinkernagel, R. M. MHC class I and non-MHC-linked capacity for generating an anti-viral CTL response determines susceptibility to CTL exhaustion and establishment of virus persistence in mice. J. Immunol. 152, 4976–4983 (1994).

    CAS  PubMed  Google Scholar 

  85. Riddell, S. R. et al. Restoration of viral immunity in immunosuppressed humans by the adoptive transfer of T-cell clones. Science 257, 238–241 (1992).

    CAS  PubMed  Google Scholar 

  86. Cohn, M. & Langman, R. E. The protection: the unit of humoral immunity selected by evolution. Immunol. Rev. 115, 11–142 (1990).

    CAS  PubMed  Google Scholar 

  87. Blattman, J. et al. Estmating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002). Together with references 22 and 88, this paper attempts to estimate the numbers and diversity of naive T cells specific for an epitope.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pewe, L., Heard, S. B., Bergmann, C., Dailey, M. O. & Perlman, S. Selection of CTL escape mutants in mice infected with a neurotropic coronavirus: quantitative estimate of TCR diversity in the infected central nervous system. J. Immunol. 163, 6106–6113 (1999).

    CAS  PubMed  Google Scholar 

  89. Berger, D. P., Homann, D. & Oldstone, M. B. A. Defining parameters for successful immunocytotherapy of persistent viral infection. Virology 266, 257–263 (2000).

    CAS  PubMed  Google Scholar 

  90. Dyall, R., Fremont, D. H., Jameson, S. C. & Nikolich-Zugich, J. T cell receptor (TCR) recognition of MHC class I variants: intermolecular second-site reversion of an MHC mutation by substituted peptides provides evidence for peptide/MHC conformational variation. J. Exp. Med. 184, 253–258 (1996).

    CAS  PubMed  Google Scholar 

  91. Saito, Y., Peterson, P. A. & Matsumura, M. Quantitation of peptide anchor residue contributions to class I major histocompatibility complex molecule binding. J. Biol. Chem. 268, 21309–21317 (1993).

    CAS  PubMed  Google Scholar 

  92. Fremont, D. H., Stura, E. A., Masazumi, M., Peterson, P. A. & Wilson, I. A. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl Acad. Sci. USA 92, 2479–2483 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Huard, R., Dyall, R. & Nikolich-Zugich, J. The role of a T cell receptor-contact residue of a major histocompatibility complex (MHC) encoded class I molecule-restricted peptide in MHC–peptide binding. Int. Immunol. 9, 1701–1708 (1997).

    CAS  PubMed  Google Scholar 

  94. Molano, A., Erdjument-Bromage, H., Fremont, D. H., Messaoudi, I. & Nikolich-Zugich, J. Peptide selection by an MHC class I H-2Kb molecule devoid of the central anchor ('C') pocket. J. Immunol. 160, 2815–2823 (1998).

    CAS  PubMed  Google Scholar 

  95. Falk, K. et al. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J. Exp. Med. 174, 425–434 (1991).

    CAS  PubMed  Google Scholar 

  96. Boehncke, W. -H. et al. The importance of dominant negative effects of amino acid side chain substitution in peptide-MHC molecule interactions and T cell recognition. J. Immunol. 150, 331–341 (1993).

    CAS  PubMed  Google Scholar 

  97. Reinherz, E. L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    CAS  PubMed  Google Scholar 

  98. Correia-Neves, M., Waltzinger, C., Mathis, D. & Benoist, C. The shaping of the T cell repertoire. Immunity 14, 21–32 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank D. Parker and S. Murray (OHSU) for critical perusing of the manuscript. Our work is supported by the United States Public Health Service and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janko Nikolich-Žugich.

Related links

Related links

DATABASES

LocusLink

CD4

CD8

TdT

Further information

Janko Nikolich-Zugich's homepage

Mark Slifka's homepage

Glossary

STRUCTURAL DIVERSITY

The availability of T cells that express a wide array of T-cell receptors (TCRs), specific for the same epitope, that differ from each other in the TCR segments used, primary and/or tertiary structure.

FUNCTIONAL DIVERSITY

The ability of activated T cells, all specific for a single epitope, to have one or more distinct effector functions, such as proliferation, cytokine secretion (different cytokines), cytolysis, migration and homing.

STRUCTURAL AVIDITY

Is determined by the direct binding affinities of multiple cell-bound T-cell receptor molecules for peptide–MHC (pMHC); most commonly measured by staining with pMHC multimers.

FUNCTIONAL AVIDITY

Relates the binding avidity of an antigen-specific T cell to a measurable biological function (proliferation, cytokine production or cytolytic activity) at different doses of peptide antigen.

TCR IMMUNODOMINANCE

The preferential recruitment of a T-cell population that expresses restricted T-cell receptor (TCR) elements (Vα, Vβ) in response to a given epitope, mainly determined by the structural characteristics and avidity of the responding T-cell population.

IMMUNODOMINANT EPITOPES

One or a few epitopes that a pathogen-specific T-cell response focuses on. Immunodominance is mainly determined by antigen processing and presentation, the abundance of the antigenic protein, the ability of the epitope to bind the given MHC molecule and the availability of a responding T-cell population.

IMMUNODOMINANCE

A phenomenon that arises from T-cell economy in response to antigen. Out of all possible combinations, only a few T cells will respond to a few epitopes of the pathogen, so as to produce focused, effective responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolich-Žugich, J., Slifka, M. & Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat Rev Immunol 4, 123–132 (2004). https://doi.org/10.1038/nri1292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing