Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity

Key Points

  • Co-signalling molecules, including co-stimulators and co-inhibitors, form a co-signalling network to positively and negatively regulate immune responses.

  • Co-signalling molecules can potentially function as either receptors or ligands, and the functional outcome depends on the cells that express them.

  • Several pathways of co-inhibitors in the B7–CD28 family have been identified — CD80/CD86–CTLA4 (cytotoxic T lymphocyte antigen 4), B7-H1/B7-DC–PD1 (programmed cell death 1), B7-H4 and BTLA (B and T lymphocyte attenuator).

  • Co-inhibitory functions are normal mechanisms that maintain homeostasis in the host.

  • Cancer and autoimmune diseases have exploited co-inhibitors in their pathogenic processes.

  • Manipulation of co-inhibitory pathways provides a promising approach for the development of new therapeutics for human diseases, including cancer, autoimmune diseases, viral infection and transplantation rejection.

Abstract

Co-signalling molecules are cell-surface glycoproteins that can direct, modulate and fine-tune T-cell receptor (TCR) signals. On the basis of their functional outcome, co-signalling molecules can be divided into co-stimulators and co-inhibitors, which promote or suppress T-cell activation, respectively. By expression at the appropriate time and location, co-signalling molecules positively and negatively control the priming, growth, differentiation and functional maturation of a T-cell response. We are now beginning to understand the power of co-inhibitors in the context of lymphocyte homeostasis and the pathogenesis of human diseases. In this article, I focus on several newly described co-inhibitory pathways in the B7–CD28 family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The B7–CD28-family molecules with co-inhibitory functions.
Figure 2: Models of co-signalling in T-cell activation.
Figure 3: The co-signal network model.
Figure 4: The B7–CD28 family co-inhibitor axis.

Similar content being viewed by others

References

  1. Schwartz, R. H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. Chen, L. Immunological ignorance of silent antigens as an explanation of tumor evasion. Immunol. Today 19, 27–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Croft, M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nature Rev. Immunol. 3, 609–620 (2003).

    Article  CAS  Google Scholar 

  4. Salomon, B. & Bluestone, J. A. Complexities of CD28/B7: CTLA-4 co-stimulatory pathway in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Baxter, A. G. & Hodgkin, P. D. Activation rules: the two-signal theories of immune activation. Nature Rev. Immunol. 2, 439–446 (2002).

    Article  CAS  Google Scholar 

  6. Pardoll, D. Dose the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995). References 7 and 8 show that cytotoxic T lymphocyte antigen 4 (CTLA4) is crucial for the control of autoimmunity, because lack of CTLA4 by gene targeting induces lymphoproliferative diseases and organ destruction in the fetus.

    Article  CAS  PubMed  Google Scholar 

  9. Mandelbrot, D. A., McAdam, A. J. & Sharpe, A. H. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen (CTLA-4). J. Exp. Med. 189, 435–440 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chambers, C. A., Kuhns, M. S., Egen, J. G. & Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Sugita, S. & Streilein, J. W. Iris pigment epithelium expressing CD86 (B7-2) directly suppresses T cell activation in vitro via binding to cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 198, 161–171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lohr, J., Knoechel, B., Jiang, S., Sharpe, A. H. & Abbas, A. K. The inhibitory function of B7 co-stimulators in T cell responses to foreign and self-antigens. Nature Immunol. 4, 664–669 (2003).

    Article  CAS  Google Scholar 

  13. Taylor, P. A. et al. B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via R–T interactions. J. Immunol. 172, 34–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Shrikant, P., Khoruts, A. & Mescher, M. F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11, 483–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Sotomayor E. M., Borrello, I., Tubb, E., Allison, J. P. & Levitsky, H. I. In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc. Natl Acad. Sci. USA 96, 11476–11481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, W., Jin, W. & Wahl, S. M. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. J. Exp. Med. 188, 1849–1857 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Egen J. G. & Allison, J. P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse in regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Darlington, P. J. et al. Surface cytotoxic T lymphocyte-associated antigen 4 partitions within lipid rafts and relocates to the immunological synapse under conditions of inhibition of T cell activation. J. Exp. Med. 195, 1337–1347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schwartz, J. C., Zhang, X., Nathenson, S. G. & Almo, S. C. Structural mechanisms of co-stimulation. Nature Immunol. 3, 427–434 (2002).

    Article  CAS  Google Scholar 

  23. Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Chikuma, S., Imboden, J. B. & Bluestone, J. A. Negative regulation of cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 197, 129–135 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salomon, B. et al. B7/CD28 co-stimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi, T et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abrams, J. R. et al. CTLA4Ig-mediated blockade of T-cell co-stimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103, 1243–1252 (1999). The first clinical evidence that CTLA4–immunoglobulin fusion protein is effective for the treatment of patients with advanced psoriasis vulgaris.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abrams, J. R. et al. Blockade of T lymphocyte co-stimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J. Exp. Med. 192, 681–694 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).

    Article  CAS  Google Scholar 

  32. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003). References 31 and 32 describe a new reverse signalling mechanism for CTLA4 in the suppression of immune responses.

    Article  CAS  Google Scholar 

  33. Mellor, A. L. & Munn, D. H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today 20, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Fallarino, F. et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9, 1069–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999). This is the first study showing the development of systemic autoimmune diseases in programmed cell death 1 ( Pd1 )-knockout mice.

    Article  CAS  PubMed  Google Scholar 

  38. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291, 319–322 (2001),

    Article  CAS  PubMed  Google Scholar 

  39. Okazaki, T. et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nature Med. 9, 1477–1483 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salama, A. D. et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsushima, F et al. Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses. Eur. J. Immunol. 33, 2773–2782 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Blazar, B. R. et al. Blockade of programmed death-1 engagement accelerate graft-verus-host disease lethality by an IFN-γ-dependent mechanism. J. Immunol. 171, 1272–1277 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T. & Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med. 198, 39–50 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shinohara, T., Taniwaki, M., Ishida, Y., Kawaichi, M. & Honjo, T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 23, 704–706 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Finger, L. R. et al. The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in T cell progenitors. Gene 197, 177–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Okazaki, T., Maeda, A., Nishimura, H., Kurosaki, T. & Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl Acad. Sci. USA 98, 13866–13871 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nature Immunol. 2, 261–268 (2001).

    Article  CAS  Google Scholar 

  49. Blank, C. et al. Absence of programmed death receptor 1 alters thymic development and enhances generation of CD4/CD8 double negative TCR-transgenic T cells. J. Immunol. 171, 4574–4581 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by novel B7 family member leads to negative regulation lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulate T-cell proliferation and interleukin-10 secretion. Nature Med. 5, 1365–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med. 8, 793–800 (2002). This study demonstrates broad expression of B7-H1 by human cancers and shows that tumour-associated B7-H1 could prevent tumour immunity by inducing apoptosis of effector T cells in vitro and in vivo . This paper also indicates that B7-H1 has an additional receptor other than PD1.

    Article  CAS  PubMed  Google Scholar 

  53. Tamura, H. et al. B7-H1 co-stimulation preferentially enhances CD28-independent T-helper cell function. Blood 97, 1809–1816 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yamazaki, T. et al. Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538–5545 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Mazanet M. M. & Hughes, C. C. B7-H1 is expressed by human endothelial cells and suppresses T cell cytokine synthesis. J. Immunol. 169, 3581–3588 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Petroff, M. G., Chen, L., Phillips, T. A. & Hunt, J. S. B7 family molecules: novel immunomodulators at the maternal–fetal interface. Placenta 23 (Suppl A), S95–S101 (2002).

    Article  PubMed  Google Scholar 

  57. Trabattoni, D. et al. B7-H1 is upregulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101, 2514–2520 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Petroff, M. G et al. B7 family molecules are favorably positioned at the human maternal–fetal interface. Biol. Reprod. 68, 1496–1504 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Selenko-Gebauer, N et al. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J. Immunol. 170, 3637–3644 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Cao, Y. et al. Keratinocytes induce local tolerance to skin graft by activating interleukin-10-secreting T cells in the context of co-stimulation molecule B7-H1. Transplantation 75, 1390–1396 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Ishida, M. et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol. Lett. 84, 57–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Brown, J. A. et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J. Immunol. 170, 1257–1266 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Tseng, S. Y. et al. B7-DC, a new dendritic cell molecule with potent co-stimulatory properties for T cells. J. Exp. Med. 193, 839–846 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shin, T et al. Cooperative B7-1/2 (CD80/CD86) and B7-DC co-stimulation of CD4+ T cells independent of the PD-1 receptor. J. Exp. Med. 198, 31–38 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Loke, P. & Allison, J. P. PD-L1 and PD-L2 are differentially regulated by TH1 and TH2 cells. Proc. Natl Acad. Sci. USA 100, 5336–5341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kanai, T. et al. Blockade of B7-H1 suppresses the development of chronic intestinal inflammation. J. Immunol. 171, 4156–4163 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Subudhi, S. K. et al. Local expression of B7-H1 promotes organ-specific autoimmunity and transplant rejection. J. Clin. Invest. 113, 694–700 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, X. et al. B7DC/PDL2 promotes tumor immunity by a PD-1-independent mechanism. J. Exp. Med. 197, 1721–1730 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, S. et al. Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple most co-stimulatory function from PD-1 interaction. J. Exp. Med. 197, 1083–1091 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dong, H. et al. Co-stimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J. Clin. Invest. 111, 363–370 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nguyen, L. T. et al. Crosslinking the B7 family molecule B7-DC directly activates immune functions of dendritic cells. J. Exp. Med. 196, 1393–1398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Radhakrishnan, S. et al. Naturally occurring human IgM antibody that binds B7 DC and potentiates T cell stimulation by dendritic cells. J. Immunol. 170, 1830–1838 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Wick, M. J., Leithauser, F. & Reimann, J. The hepatic immune system. Crit. Rev. Immunol. 22, 47–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Crispe, I. N. Hepatic T cells and liver tolerance. Nature Rev. Immunol. 3, 51–62 (2003).

    Article  CAS  Google Scholar 

  75. Dong, H. et al. B7-H1 determines accumulation and deletion of intrahepatic CD8+ T lymphocytes. Immunity 20, 327–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Sica, G. L. et al. B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18, 849–861 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Prasad, D. V., Richards, S., Mai, X. M. & Dong, C. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity 18, 863–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Zang, X., Loke, P., Kim, J., Murphy, K., Waitz, R. & Allison, J. P. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc. Natl Acad. Sci. USA 100, 10388–10392 (2003). References 76–78 identify a new B7 homologue with suppressive function in vivo (references 76 and 77) and in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Choi, I. H. et al. Genomic organization and expression analysis of B7-H4: an immune inhibitory molecule of the B7 family. J. Immunol. 171, 4650–4654 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Watanabe, N. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature Immunol. 4, 670–679 (2003). This study reports the cloning of B and T lymphocyte attenuator (BTLA) and shows that Btla -knockout mice have enhanced T-cell responses. It also claims that BTLA is a receptor for B7-H4.

    Article  CAS  Google Scholar 

  81. Chapoval, A. I. et al. B7-H3: a co-stimulatory molecule for T cell activation and IFN-γ production. Nature Immunol. 2, 269–274 (2001).

    Article  CAS  Google Scholar 

  82. Sun, M. et al. Characterization of mouse and human B7-H3 gene. J. Immunol. 168, 6294–6297 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Chapoval, A. I. & Chen, L. in The B7–CD28 Family Molecules (ed. L. Chen) 91–99 (Kluwer Academic, Plenum Publishers, New York, 2003).

    Google Scholar 

  84. Suh, W. K. et al. The B7 family member B7-H3 preferentially downregulates T helper type 1-mediated immune responses. Nature Immunol. 4, 899–906 (2003).

    Article  CAS  Google Scholar 

  85. Ling, V. et al. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics 82, 365–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Steinberger, P. et al. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol. 172, 2352–2359 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Hodi, F. S. et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA 100, 4712–4717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA 100, 8372–8377 (2003). References 87 and 88 show that infusion of humanized CTLA4-specific antagonist monoclonal antibody induces clinical responses in advanced stages of melanoma accompanied by marked self-reactivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wintterle, S. et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63, 7462–7467 (2003).

    CAS  PubMed  Google Scholar 

  90. Strome, S. E. et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 63, 6501–6505 (2003).

    CAS  PubMed  Google Scholar 

  91. Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dong, H. & Chen, L. B7-H1 pathway and its role in the evasion of tumor immunity. J. Mol. Med. 81, 281–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Curiel, T. J. et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med. 9, 562–567 (2003). This paper reports that dendritic cells (DCs) isolated from human ovarian cancers have upregulated expression of B7-H1, which suppresses T-cell responses. Blockade of DC-associated B7-H1 by specific monoclonal antibody enhances tumour immunity.

    Article  CAS  PubMed  Google Scholar 

  94. Ozkaynak, E. et al. Programmed death-1 targeting can promote allograft survival. J. Immunol. 169, 6546–6553 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Gao, W., Demirci, G., Strom, T. B. & Li, X. C. Stimulating PD-1-negative signals concurrent with blocking CD154 co-stimulation induces long-term isle allograft survival. Transplantation 76, 994–999 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Wiendl, H. et al. Human muscle cells express a B7-related molecule, B7-H1, with strong negative immune regulatory potential: a novel mechanism of counterbalancing the immune attack in idiopathic inflammatory myopathies. FASEB J. 17, 1892–1894 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Rudd, C. E. & Schneider, H. Unifying concepts in CD28, ICOS and CTLA-4 co–receptor signaling. Nature Rev. Immunol. 3, 544–556 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

B7-DC

B7-H1

B7-H3

B7-H4

BTLA

CD28

CD80

CD86

CD154

CTLA4

GM-CSF

ICOS

IDO

IFN-γ

IL-4

IL-10

PD1

SHP1

SHP2

TNF

TRAIL

Glossary

IMMUNOLOGICAL SYNAPSE

A structure that is formed at the cell surface between a T cell and an antigen-presenting cell; also known as the supra-molecular activation cluster (SMAC). Important molecules involved in T-cell activation — including the T-cell receptor, numerous signal transduction molecules and molecular adaptors — accumulate at this site. Mobilization of the actin cytoskeleton of the cell is required for immunological-synapse formation.

CO-STIMULATORS

Molecules that stimulate naive or activated T cells in the presence of a T-cell receptor signal by binding to a co-stimulatory receptor, leading to the induction of T-cell growth, differentiation and functional maturation.

CO-INHIBITORS

Molecules that inhibit T-cell responses by binding co-inhibitory receptors only in the presence of a T-cell receptor signal. This can inhibit T-cell growth and functional maturation, and induce tolerance/anergy of T cells.

REVERSE SIGNALLING

In some cases, a ligand can receive a signal from its counter-receptor, so that the ligand could function as a typical receptor.

GRAFT-VERSUS-HOST DISEASE

(GVHD). An immune response mounted against the recipient of an allograft by immunocompetent donor T cells derived from the graft. Typically, it is seen in the context of allogeneic bone-marrow transplantation.

IMMUNORECEPTOR TYROSINE-BASED INHIBITORY MOTIF

(ITIM). A structural motif containing tyrosine residues that is found in the cytoplasmic tails of several inhibitory receptors. The prototype six-amino-acid ITIM sequence is (Ile/Val/Leu/Ser)-Xaa-Tyr-Xaa-Xaa-(Leu/Val). Ligand-induced clustering of these inhibitory receptors results in tyrosine phosphorylation, often by SRC-family tyrosine kinases, which provides a docking site for the recruitment of cytoplasmic phosphatases that have an SH2 domain.

IMMUNORECEPTOR TYROSINE-BASED SWITCH MOTIF

(ITSM). A structural motif containing tyrosine residues that is found in the cytoplasmic tails of several CD2-family molecules, such as CD84, CD229, CD244, NTB-A and CS1. The prototype six-amino- acid ITSM sequence is Thr-Xaa-Tyr-Xaa-Xaa-(Val/Ile). The receptors with ITSMs are bound and regulated by small SH2-domain-containing adaptor proteins such as SH2D1A and EAT2, leading to association with other SH2-domain-containing molecules, which functions as a signalling 'switch'.

NEGATIVE SELECTION

The deletion of self-reactive thymocytes in the thymus. Thymocytes expressing T-cell receptors that strongly recognize self-peptide bound to self-MHC undergo apoptosis in response to the signalling generated by high-affinity binding.

EXPRESSED-SEQUENCE TAG DATABASE

By searching the expressed-sequence tag database, several overlapping sequence fragments can be assembled into a full-length gene.

2C-TCR-TRANSGENIC MICE

A transgenic mouse strain in which most CD8+ T cells express a transgenic T-cell receptor (TCR) that recognizes an allogeneic antigen.

TRANSPLANT ATHEROSCLEROSIS

Thickened and hardened lesions of arteries in transplants, usually caused by chronic rejection responses.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nat Rev Immunol 4, 336–347 (2004). https://doi.org/10.1038/nri1349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing