Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation

Key Points

  • Activated T cells acquire the ability to home to extralymphoid sites, including the lungs, skin, gastrointestinal tract and central nervous system, where they can enter extravascular tissues even in the absence of inflammation. They can also enter almost any site of inflammation.

  • Activated effector and central memory T cells use selectins and selectin ligands to enter some of these sites: most prominently E-selectin for the skin, L-selectin for the inflamed pancreas and salivary glands, and P-selectin for the lamina-propria compartment of the gastrointestinal tract.

  • All T cells express P-selectin glycoprotein ligand 1 (PSGL1), but PSGL1 is not functional in naive T cells, in which the necessary glycosyltransferases are not expressed. Regulated glycosyltransferases in T cells include fucosyltransferase-VII (FucT-VII), core 2 β1,6-glucosaminyltransferase-I (C2GlcNAcT-I) and sialyl 3-galactosyltransferase-IV (ST3Gal-IV).

  • T helper 1 (TH1) cells express more FucT-VII, C2GlcNAcT-I and ST3Gal than TH2 cells and bind E-selectin much better, but some TH2 cells can also bind E-selectin. FucT-VII is the limiting enzyme for E-selectin-binding activity, which is detected by binding of monoclonal antibody HECA-452, whereas C2GlcNAcT-I determines P- and L-selectin-ligand activity in T cells.

  • FucT-VII and C2GlcNAcT-I are independently regulated. Whereas FucT-VII is expressed after T-cell receptor ligation through a RAS-dependent pathway with additional signals from the interleukin-12 receptor (IL-12R) through unknown signalling molecules, C2GlcNAcT-I is under the control of the IL-12R through signal transducer and activator of transcription 4 (STAT4).

  • Naive T cells express L-selectin, but cannot enter most extralymphoid sites. Some T cells, including central memory cells, re-express L-selectin after antigen encounter and can home to sites of chronic inflammation, where the L-selectin ligand peripheral node addressin (PNAD), detected by monoclonal antibody MECA-79, is expressed through the induction of high endothelial cell (HEC)-GlcNAc6ST expression, especially in inflamed exocrine and endocrine glands.

  • Endothelial cells express P- and E-selectin constitutively in the skin and inducibly in many organs during acute and chronic inflammation. At sites of inflammation, T-cell interactions are likely to involve selectin-dependent interactions with myeloid leukocytes, platelets, and leukocyte- and platelet-derived microparticles, which complicate the interpretation of experiments using knockout mice or antibody blockade of selectins or their ligands.

Abstract

The ability to home to extralymphoid tissues, such as the skin, lungs and gut, is acquired by many effector and memory T cells after initial antigen encounter. This review discusses the role of E-, P- and L-selectin and their glycoprotein ligands in this process. During activation, some T cells differentiate to bind E-selectin through induced expression of fucosyltransferase-VII and to bind P- and L-selectin through additional expression of core 2 glucosaminyltransferase-I. This inducible expression of selectin ligands, together with the regulation of L-selectin expression, has a role in the recruitment of activated T cells to extralymphoid tissues and sites of inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T-cell trafficking patterns.
Figure 2: Prototypic selectin ligand.
Figure 3: Selectin and selectin-ligand expression by CD4+ T cells.
Figure 4: Regulation of glycosyltransferases that determine selectin-ligand activity.
Figure 5: Selectin-dependent T-cell interactions in extralymphoid blood vessels.

Similar content being viewed by others

References

  1. von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nature Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  2. Butcher, E. C. Leukocyte-endothelial cell recognition — three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Thatte, J., Dabak, V., Williams, M. B., Braciale, T. J. & Ley, K. LFA-1 is required for retention of effector CD8 T cells in mouse lungs. Blood 101, 4916–4922 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Haddad, W. et al. P-selectin and P-selectin glycoprotein ligand 1 are major determinants for TH1 cell recruitment to nonlymphoid effector sites in the intestinal lamina propria. J. Exp. Med. 198, 369–377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Picker, L. J., Michie, S. A., Rott, L. S. & Butcher, E. C. A unique phenotype of skin-associated lymphocytes in humans. Am. J. Pathol. 136, 1053 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ransohoff, R. M., Kivisakk, P. & Kidd, G. Three or more routes for leukocyte migration into the central nervous system. Nature Rev. Immunol. 3, 569–581 (2003).

    Article  CAS  Google Scholar 

  8. Kansas, G. S. Selectins and their ligands: current concepts and controversies. Blood 88, 3259–3287 (1996).

    CAS  PubMed  Google Scholar 

  9. Vestweber, D. & Blanks, J. E. Mechanisms that regulate the function of the selectins and their ligands. Physiol. Rev. 79, 181–213 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Ley, K. The role of selectins in inflammation and disease. Trends Mol. Med. 9, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Crockett-Torabi, E. Selectins and mechanisms of signal transduction. J. Leukocyte Biol. 63, 1–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ouyang, Y. B., Lane, W. S. & Moore, K. L. Tyrosylprotein sulfotransferase purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins. Proc. Natl Acad. Sci. USA 95, 2896–2901 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Somers, W. S., Tang, J., Shaw, G. D. & Camphausen, R. T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103, 467–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Moore, K. L. Structure and function of P-selectin gycoprotein ligand-1. Leuk. Lymphoma 29, 1–15 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hirata, T., Furie, B. C. & Furie, B. P-, E-, and L-selectin mediate migration of activated CD8+ T lymphocytes into inflamed skin. J. Immunol. 169, 4307–4313 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Xia, L. et al. P-selectin glycoprotein ligand-1 deficient mice have impaired leukocyte tethering to E-selectin under flow. J. Clin. Invest. 109, 939–950 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sperandio, M. et al. Severe impairment of leukocyte rolling in core 2 glucosaminyltransferase deficient mice. Blood 97, 3812–3819 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Ellies, L. G. et al. Sialyltransferase specificity in selectin ligand formation. Blood 100, 3618–3625 (2002). This paper describes sialyl 3-galactosyltransferase-IV (ST3Gal-IV)-knockout mice, which have a partial defect in E-selectin-dependent rolling, but not P- or L-selectin-dependent interactions.

    Article  CAS  PubMed  Google Scholar 

  20. Moore, K. L. et al. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J. Biol. Chem. 269, 23318–23327 (1994).

    CAS  PubMed  Google Scholar 

  21. Thatte, A. et al. Binding of function-blocking mAbs to mouse and human P-selectin glycoprotein ligand-1 with and without tyrosine sulfation. J. Leukocyte Biol. 72, 470–477 (2002).

    CAS  PubMed  Google Scholar 

  22. Yang, J. et al. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J. Exp. Med. 190, 1769–1782 (1999). This paper describes the phenotype of mice lacking P-selectin glycoprotein ligand 1 (Psgl1) and shows that Psgl1 is required for most P-selectin-dependent neutrophil rolling in vivo , but is dispensible for most E-selectin-dependent rolling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moore, K. L. et al. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J. Cell Biol. 128, 661–671 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Snapp, K. R. et al. A novel P-selectin glycoprotein ligand-1 (PSGL-1) monoclonal antibody recognizes an epitope within the tyrosine sulfate motif of human PSGL-1 and blocks recognition of both P- and L-selectin. Blood 91, 154–164 (1998).

    CAS  PubMed  Google Scholar 

  25. Fuhlbrigge, R. C., Kieffer, J. D., Armerding, D. & Kupper, T. S. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389, 978–981 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Picker, L. J. et al. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66, 921–933 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Zöllner, O. et al. L-selectin from human, but not from mouse neutrophils binds directly to E-selectin. J. Cell Biol. 136, 707–716 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Walcheck, B. K., Watts, G. & Jutila, M. A. Bovine γδ T cells bind E-selectin via a novel glycoprotein receptor: first characterization of a lymphocyte/E-selectin interaction in an animal model. J. Exp. Med. 178, 853–863 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Steegmaier, M. et al. The E-selectin-ligand ESL-1 is a variant of a receptor for fibroblast growth factor. Nature 373, 615–620 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Varki, A. Selectin ligands. Proc. Natl Acad. Sci. USA 91, 7390–7397 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wagers, A. J., Stoolman, L. M., Craig, R., Knibbs, R. N. & Kansas, G. S. An SLex-deficient variant of HL60 cells exhibits high levels of adhesion to vascular selectins- further evidence that HECA-452 and CSLEX1 monoclonal antibody epitopes are not essential for high avidity binding to vascular selectins. J. Immunol. 160, 5122–5129 (1998).

    CAS  PubMed  Google Scholar 

  32. Berg, E. L. et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule-1. J. Exp. Med. 174, 1461–1466 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Keelan, E. T., Licence, S. T., Peters, A. M., Binns, R. M. & Haskard, D. O. Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. Am. J. Physiol. 266, H278–H290 (1994).

    CAS  PubMed  Google Scholar 

  34. Tu, L. L., Murphy, P. G., Li, X. & Tedder, T. F. L-selectin ligands expressed by human leukocytes are HECA-452 antibody-defined carbohydrate epitopes preferentially displayed by P-selectin glycoprotein ligand-1. J. Immunol. 163, 5070–5078 (1999).

    CAS  PubMed  Google Scholar 

  35. Tu, L., Delahunty, M. D., Ding, H., Luscinskas, F. W. & Tedder, T. F. The cutaneous lymphocyte antigen is an essential component of the L-selectin ligand induced on human vascular endothelial cells. J. Exp. Med. 189, 241–252 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Knibbs, R. N. et al. The fucosyltransferase FucT-VII regulates E-selectin ligand synthesis in human T cells. J. Cell Biol. 133, 911–920 (1996). The first demonstration that fucosyltransferase-VII (FucT-VII) regulates E-selectin binding in T cells.

    Article  CAS  PubMed  Google Scholar 

  37. Knibbs, R. N. et al. α(1,3)-fucosyltransferase VII-dependent synthesis of P- and E-selectin ligands on cultured T lymphoblasts. J. Immunol. 161, 6305–6315 (1998).

    CAS  PubMed  Google Scholar 

  38. Bruehl, R. E., Bertozzi, C. R. & Rosen, S. D. Minimal sulfated carbohydrates for recognition by L-selectin and the MECA-79 antibody. J. Biol. Chem. 275, 32642–32648 (2000). The paper defines the MECA-79 epitope in peripheral node addressin (PNAD) as a 6-sulphated glucosamine.

    Article  CAS  PubMed  Google Scholar 

  39. Rosen, S. D. Endothelial ligands for L-selectin- from lymphocyte recirculation to allograft rejection. Am. J. Pathol. 155, 1013–1020 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Puri, K. D., Finger, E. B., Gaudernack, G. & Springer, T. A. Sialomucin CD34 is the major L-selectin ligand in human tonsil high endothelial venules. J. Cell Biol. 131, 261–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Hemmerich, S. et al. Sulfation of L-selectin ligands by an HEV-restricted sulfotransferase regulates lymphocyte homing to lymph nodes. Immunity 15, 237–247 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Ruddle, N. H. Lymphoid neo-organogenesis- lymphotoxin's role in inflammation and development. Immunol. Res. 19, 119–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Drayton, D. L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N. H. Ectopic LTαβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 197, 1153–1163 (2003). The authors show expression of PNAD in extralymphoid sites, indicating an important role for L-selectin in T-cell trafficking to sites of chronic inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Renkonen, J., Tynninen, O., Hayry, P., Paavonen, T. & Renkonen, R. Glycosylation might provide endothelial zip codes for organ-specific leukocyte traffic into inflammatory sites. Am. J. Pathol. 161, 543–550 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Michie, S. A., Streeter, P. R., Butcher, E. C. & Rouse, R. V. L-selectin and α4β7 integrin homing receptor pathways mediate peripheral lymphocyte traffic to AKR mouse hyperplastic thymus. Am. J. Pathol. 147, 412–421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, B. et al. Lymphocyte homing to bronchus-associated lymphoid tissue (BALT) is mediated by L-selectin/PNAd, α4β1 integrin/VCAM-1, and LFA-1 adhesion pathways. J. Exp. Med. 197, 1255–1267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, X. D. et al. A predominant role of integrin α4 in the spontaneous development of autoimmune diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 12604–12608 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mikulowska-Mennis, A., Xu, B., Berberian, J. M. & Michie, S. A. Lymphocyte migration to inflamed lacrimal glands is mediated by vascular cell adhesion molecule-1/α4β1 integrin, peripheral node addressin/l-selectin, and lymphocyte function-associated antigen-1 adhesion pathways. Am. J. Pathol. 159, 671–681 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, X. -D., Karin, N., Tisch, R., Steinman, L. & McDevitt, H. O. Inhibition of insulitis and prevention of diabetes in nonobese diabetic mice by blocking L-selectin and very late antigen 4 adhesion receptors. Proc. Natl Acad. Sci. USA 90, 10494–10498 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fabien, N., Bergerot, I., Orgiazzi, J. & Thivolet, C. Lymphocyte function associated antigen-1, integrin α4, and L-selectin mediate T-cell homing to the pancreas in the model of adoptive transfer of diabetes in NOD mice. Diabetes 45, 1181–1186 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Alon, R., Feizi, T., Yuen, C. -T., Fuhlbrigge, R. C. & Springer, T. A. Glycolipid ligands for selectins support leukocyte tethering and rolling under physiologic flow conditions. J. Immunol. 154, 5356–5366 (1995).

    CAS  PubMed  Google Scholar 

  52. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996). A description of the lack of most selectin-ligand activity in FucT-VII-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  53. Erdmann, I. et al. Fucosyltransferase VII-deficient mice with defective E-, P-, and L-selectin ligands show impaired CD4+ and CD8+ T cell migration into the skin, but normal extravasation into visceral organs. J. Immunol. 168, 2139–2146 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Wagers, A. J., Waters, C. M., Stoolman, L. M. & Kansas, G. S. Interleukin 12 and interleukin 4 control cell adhesion to endothelial selectins through opposite effects on α1,3-fucosyltransferase VII gene expression. J. Exp. Med. 188, 2225–2231 (1998). The first description of the inverse effect of the T helper 1 (T H 1)-type cytokine interleukin-12 (IL-12) and the T H 2-type cytokine IL-4 on the expression of FucT-VII by T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim, Y. C. et al. Expression of functional selectin ligands on TH cells is differentially regulated by IL-12 and IL-4. J. Immunol. 162, 3193–3201 (1999).

    CAS  PubMed  Google Scholar 

  56. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflamed tissues. Nature 385, 81–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Barry, S. M., Zisoulis, D. G., Neal, J. W., Clipstone, N. A. & Kansas, G. S. Induction of FucT-VII by the Ras/MAP kinase cascade in Jurkat T cells. Blood 102, 1771–1778 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Hosken, N. A., Shibuya, K., Heath, A. W., Murphy, K. M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med 182, 1579–1584 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Blander, J. M., Visintin, I., Janeway, C. A. & Medzhitov, R. α(1,3)-fucosyltransferase VII and α(2,3)-sialyltransferase IV are upregulated in activated CD4 T cells and maintained after their differentiation into TH1 and migration into inflammatory sites. J. Immunol. 163, 3746–3752 (1999).

    CAS  PubMed  Google Scholar 

  61. White, S. J., Underhill, G. H., Kaplan, M. H. & Kansas, G. S. Cutting edge: differential requirements for STAT4 in expression of glycosyltransferases responsible for selectin ligand formation in TH1 cells. J. Immunol. 167, 628–631 (2001). The first description of the regulation of core 2 β1, 6-glucosaminyltransferase-I (C2GlcNAcT-I), but not FucT-VII in T cells through signal transducer and activator of transcription 4 (STAT4).

    Article  CAS  PubMed  Google Scholar 

  62. van Wely, C. A., Blanchard, A. D. & Britten, C. J. Differential expression of α3 fucosyltransferases in TH1 and TH2 cells correlates with their ability to bind P-selectin. Biochem. Biophys. Res. Commun. 247, 307–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Lukacs, N. W. et al. E- and P-selectins are essential for the development of cockroach allergen-induced airway responses. J. Immunol. 169, 2120–2125 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Rossiter, H. et al. Skin disease-related T cells bind to endothelial selectins: expression of cutaneous lymphocyte antigen (CLA) predicts E-selectin but not P-selectin binding. Eur. J. Immunol. 24, 205–210 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Teraki, Y. & Picker, L. J. Independent regulation of cutaneous lymphocyte-associated antigen expression and cytokine synthesis phenotype during human CD4+ memory T cell differentiation. J. Immunol. 159, 6018–6029 (1997).

    CAS  PubMed  Google Scholar 

  66. Ellies, L. G. et al. Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9, 881–890 (1998). The first description of C2GlcNAcT-I-knockout mice with complete absence of L-selectin-ligand activity and reduced P-selectin-ligand activity on myeloid cells.

    Article  CAS  PubMed  Google Scholar 

  67. Snapp, K. R., Heitzig, C. E., Ellies, L. G., Marth, J. D. & Kansas, G. S. Differential requirements for the O-linked branching enzyme core 2 β1-6-N-glucosaminyltransferase in biosynthesis of ligands for E-selectin and P-selectin. Blood 97, 3806–3811 (2001). This was the first paper to show that C2GlcNAcT-I is not required for the binding of T cells to E-selectin, but determines P-selectin-binding activity.

    Article  CAS  PubMed  Google Scholar 

  68. Quelle, F. W. et al. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol. Cell. Biol. 15, 3336–3343 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carlow, D. A., Corbel, S. Y., Williams, M. J. & Ziltener, H. J. IL-2,-4, and-15 differentially regulate O-glycan branching and P-selectin ligand formation in activated CD8 T cells. J. Immunol. 167, 6841–6848 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol. 3, 549–557 (2002).

    Article  CAS  Google Scholar 

  73. Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Tsuji, S. Molecular cloning and functional analysis of sialyltransferases. J. Biochem. 120, 1–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Underhill, G. H., Minges-Wols, H. A., Fornek, J. L., Witte, P. L. & Kansas, G. S. IgG plasma cells display a unique spectrum of leukocyte adhesion and homing molecules. Blood 99, 2905–2912 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Xie, H. J., Lim, Y. C., Luscinskas, F. W. & Lichtman, A. H. Acquisition of selectin binding and peripheral homing properties by CD4+ and CD8+ T cells. J. Exp. Med. 189, 1765–1775 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tietz, W. et al. CD4+ T cells migrate into inflamed skin only if they express ligands for E- and P-selectin. J. Immunol. 161, 963–970 (1998).

    CAS  PubMed  Google Scholar 

  78. Picker, L. J. et al. Control of lymphocyte recirculation in man. II. Differential regulation of the cutaneous lymphocyte-associated antigen, a tissue-selective homing receptor for skin-homing T cells. J. Immunol. 150, 1122–1136 (1993).

    CAS  PubMed  Google Scholar 

  79. Picker, L. J. et al. Control of lymphocyte recirculation in man. I. Differential regulation of the peripheral lymph node homing receptor L-selectin on T cells during the virgin to memory cell transition. J. Immunol. 150, 1105–1121 (1993).

    CAS  PubMed  Google Scholar 

  80. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003). The first demonstration that antigen encounter by T cells in the gut-associated lymphatic tissue determines their later homing to the gut compartment through contact-dependent signals received from dendritic cells.

    Article  CAS  PubMed  Google Scholar 

  81. Dudda, J. C., Simon, J. C. & Martin, S. Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J. Immunol. 172, 857–863 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Bjorkdahl, O. et al. Characterization of CC-chemokine receptor 7 expression on murine T cells in lymphoid tissues. Immunology 110, 170–179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nature Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  86. Lehmann, J. et al. Expression of the integrin αEβ7 identifies unique subsets of CD25+ as well as CD25 regulatory T cells. Proc. Natl Acad. Sci. USA 99, 13031–13036 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huehn, J. et al. Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J. Exp. Med 199, 303–313 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Borges, E. et al. P-selectin glycoprotein ligand-1 (PSGL-1) on T helper 1 but not on T helper 2 cells binds to P-selectin and supports migration into inflamed skin. J. Exp. Med. 185, 573–578 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Biedermann, T. et al. Targeting CLA/E-selectin interactions prevents CCR4-mediated recruitment of human TH2 memory cells to human skin in vivo. Eur. J. Immunol. 32, 3171–3180 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Koelle, D. M. et al. Expression of cutaneous lymphocyte-associated antigen by CD8+ T cells specific for a skin-tropic virus. J. Clin. Invest. 110, 537–548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Luhn, K., Wild, M. K., Eckhardt, M., Gerardy-Schahn, R. & Vestweber, D. The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nature Genet. 28, 69–72 (2001).

    CAS  PubMed  Google Scholar 

  92. Kuijpers, T. W., Etzioni, A., Pollack, S. & Pals, S. T. Antigen-specific immune responsiveness and lymphocyte recruitment in leukocyte adhesion deficiency type II. Int. Immunol. 9, 607–613 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Tang, M. L. K., Hale, L. P., Steeber, D. A. & Tedder, T. F. L-selectin is involved in lymphocyte migration to sites of inflammation in the skin-delayed rejection of allografts in L-selectin-deficient mice. J. Immunol. 158, 5191–5199 (1997).

    CAS  PubMed  Google Scholar 

  94. Kerfoot, S. M. & Kubes, P. Overlapping roles of P-selectin and α4 integrin to recruit leukocytes to the central nervous system in experimental autoimmune encephalomyelitis. J. Immunol. 169, 1000–1006 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Engelhardt, B., Vestweber, D., Hallmann, R. & Schulz, M. E- and P-selectin are not involved in the recruitment of inflammatory cells across the blood–brain barrier in experimental autoimmune encephalomyelitis. Blood 90, 4459–4472 (1997).

    CAS  PubMed  Google Scholar 

  96. Furtado, G. C. et al. Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol. Rev. 182, 122–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Ainslie, M. P., McNulty, C. A., Huynh, T., Symon, F. A. & Wardlaw, A. J. Characterisation of adhesion receptors mediating lymphocyte adhesion to bronchial endothelium provides evidence for a distinct lung homing pathway. Thorax 57, 1054–1059 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wolber, F. M. et al. Endothelial selectins and α4 integrins regulate independent pathways of T lymphocyte recruitment in the pulmonary immune response. J. Immunol. 161, 4396–4403 (1998).

    CAS  PubMed  Google Scholar 

  99. Curtis, J. L. et al. Subset-specific reductions in lung lymphocyte accumulation following intratracheal antigen challenge in endothelial selectin-deficient mice. J. Immunol. 169, 2570–2579 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Keramidaris, E., Merson, T. D., Steeber, D. A., Tedder, T. F. & Tang, M. L. L-selectin and intercellular adhesion molecule 1 mediate lymphocyte migration to the inflamed airway/lung during an allergic inflammatory response in an animal model of asthma. J. Allergy Clin. Immunol. 107, 734–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Massaguer, A. et al. Concanavalin-A-induced liver injury is severely impaired in mice deficient in P-selectin. J. Leukocyte Biol. 72, 262–270 (2002).

    CAS  PubMed  Google Scholar 

  102. Diacovo, T. G., Puri, K. D., Warnock, R. A., Springer, T. A. & von Andrian, U. H. Platelet-mediated lymphocyte delivery to high endothelial venules. Science 273, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Friedline, R. H., Wong, C. P., Steeber, D. A., Tedder, T. F. & Tisch, R. L-selectin is not required for T cell-mediated autoimmune diabetes. J. Immunol. 168, 2659–2666 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Kirveskari, J., Paavonen, T., Hayry, P. & Renkonen, R. De novo induction of endothelial L-selectin ligands during kidney allograft rejection. J. Am. Soc. Nephrol. 11, 2358–2365 (2000).

    CAS  PubMed  Google Scholar 

  105. Eppihimer, M. J., Russell, J., Anderson, D. C., Wolitzky, B. A. & Granger, D. N. Endothelial cell adhesion molecule expression in gene-targeted mice. Am. J. Physiol. 42, H1903–H1908 (1997).

    Google Scholar 

  106. McEver, R. P. & Martin, M. N. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J. Biol. Chem. 259, 9799–9804 (1984).

    CAS  PubMed  Google Scholar 

  107. Falati, S. et al. Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med. 197, 1585–1598 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tchernychev, B., Furie, B. & Furie, B. C. Peritoneal macrophages express both P-selectin and PSGL-1. J. Cell Biol. 163, 1145–1155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frenette, P. S. et al. Platelet–endothelial interactions in inflamed mesenteric venules. Blood 91, 1318–1324 (1998).

    CAS  PubMed  Google Scholar 

  110. Sperandio, M. et al. P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J. Exp. Med. 197, 1355–1363 (2003). This report showed that the L-selectin-binding activity of inflamed microvessels is due to myeloid cells and myeloid-cell-derived microparticles that present PSGL1 to rolling leukocytes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719–726 (2000).

    CAS  PubMed  Google Scholar 

  112. Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nature Med. 9, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Singbartl, K., Thatte, J., Smith, M. L., Day, K. & Ley, K. A CD2–GFP transgenic mouse reveals VLA-4 dependent CD8+ lymphocyte rolling in the inflamed microcirculation. J. Immunol. 166, 7520–7526 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Bullard, D. C. et al. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J. Exp. Med. 183, 2329–2336 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Frenette, P. S., Mayadas, T. N., Rayburn, H., Hynes, R. O. & Wagner, D. D. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell 84, 563–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Forlow, S. B. et al. Increased granulopoiesis through interleukin-17 and granulocyte colony stimulating factor in adhesion molecule-deficient mice. Blood 98, 3309–3314 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCR7

CD34

E-selectin

L-selectin

P-selectin

PSGL1

STAT4

STAT5

STAT6

T-bet

FURTHER INFORMATION

The Leukocyte Adhesion Cascade

Klaus Ley's laboratory webpage

Glossary

TETHERING OR CAPTURE

The initial, transient adhesive contact of a T cell with the endothelium or an adherent leukocyte or platelet.

C-TYPE LECTINS

Calcium-dependent animal lectins that are carbohydrate-binding proteins. The binding activity of C-type lectins is based on the structure of the carbohydrate-recognition domain (CRD), which is highly conserved among this family. Calcium is essential not only for the carbohydrate binding itself, but it also contributes to the structural maintenance of this domain.

LEUKOCYTE ROLLING ASSAYS

Assays in which T cells or other leukocytes are allowed to interact with endothelial cells or recombinant adhesion molecules in the presence of shear stress, usually induced by perfusing blood or cell-culture media. These assays are essential for testing physiologically relevant selectin-mediated interactions.

SIALYL-LEWIS X

(sLex). Sialylated and fucosylated tetrasaccharide (GlcNAc(α1,3Fuc)β1,4Galα2,3Sia) related to selectin ligands.

HIGH ENDOTHELIAL VENULES

(HEVs). The site of entry for lymphocytes from the blood stream into lymph nodes and Peyer's patches.

CENTRAL MEMORY T CELLS

Memory T cells that express L-selectin and CC-chemokine receptor 7, and can be found in the blood and lymphoid organs.

EFFECTOR MEMORY T CELLS

Memory T cells that do not express either L-selectin or CC-chemokine receptor 7 and can be found in extralymphoid sites.

LACRIMAR GLANDS

Tear-producing glands in and around the eyelids.

SJOGREN'S SYNDROME

An inflammatory autoimmune disease of the salivary and lacrimar glands that leads to dryness of the mouth and eyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ley, K., Kansas, G. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat Rev Immunol 4, 325–336 (2004). https://doi.org/10.1038/nri1351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing