Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adoptive immunotherapy for cancer: building on success

Key Points

  • Adoptive cell transfer (ACT) of tumour-specific T cells to a lymphodepleted host mediates objective clinical responses in a substantial percentage of patients with metastatic solid tumours.

  • CD4+ forkhead box P3 (FOXP3)+ regulatory T (TReg) cells are interleukin-2 (IL-2)-dependent negative immunoregulators of immune responses to self- and non-self-antigens in vivo. They might suppress antitumour responses, contributing to the poor clinical responses in patients with cancer (especially those who receive immunotherapy in non-lymphodepleting settings).

  • Homeostatic cytokines such as IL-7 and IL-15 increase CD8+ T-cell functions and are required for their maintenance and memory CD8+ T-cell generation. Competing immune cells, including T cells, B cells and natural killer (NK) cells, might function as sinks for these cytokines, attenuating antitumour responses in non-lymphodepleting settings.

  • Lymphodepleting regimens including systemic chemotherapy and total body irradiation can have an impact on antigen-presenting cell (APC) function and numbers. Although these regimens might deplete the absolute number of APCs, they can also promote the functional maturation of these cells.

  • Preclinical mouse models of ACT therapy have elucidated the phenotype and the functional characteristics of CD8+ T cells associated with superior antitumour treatment. These attributes include lymph-node homing capacity, cytokine secretion, responsiveness to homeostatic signals, replicative history and proliferative potential.

  • In patients, T-cell engraftment after ACT is associated with expression of the co-stimulatory molecules CD28 and CD27 and IL-7 receptor α-chain and it might indicate a selective survival of less-differentiated T cells.

  • Persistence of adoptively transferred T cells correlates with successful antitumour responses and is associated with T-cell proliferative capacity as a function of telomere length.

  • T-cell receptor (TCR) transduction of naive T cells or haematopoietic stem cells can be used to generate de novo, less-differentiated, central-memory-like tumour-specific CD8+ T cells for ACT.

  • More robust lymphodepleting preconditioning regimens might augment the survival and antitumour function of adoptively transferred T cells.

  • Criteria used for selection of T cells for ACT, interferon-γ release and cytolytic function, might be expanded to include TCR affinity, phenotypic analyses, alternative cytokine production (such as IL-2) and the measurement of telomere length.

Abstract

Adoptive cell transfer after host preconditioning by lymphodepletion represents an important advance in cancer immunotherapy. Here, we describe how a lymphopaenic environment enables tumour-reactive T cells to destroy large burdens of metastatic tumour and how the state of differentiation of the adoptively transferred T cells can affect the outcome of treatment. We also discuss how the translation of these new findings might further improve the efficacy of adoptive cell transfer through the use of vaccines, haematopoietic-stem-cell transplantation, modified preconditioning regimens, and alternative methods for the generation and selection of the T cells to be transferred.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current clinical protocols for adoptive cell therapy.
Figure 2: Antitumour response induced by lymphodepletion and adoptive cell therapy.
Figure 3: Mechanisms underlying the impact of lymphodepletion on adoptively transferred T cells.
Figure 4: Inverse relationship of in vitro and in vivo antitumour functions of adoptively transferred naive and effector T-cell subsets.
Figure 5: Generation of less-differentiated, central-memory-like tumour-antigen-specific CD8+ T cells by TCR transduction.

Similar content being viewed by others

References

  1. Boon, T., Coulie, P. G., Van Den Eynde, B. J. & Van Der, B. P. Human T cell responses against melanoma. Annu. Rev. Immunol. 24, 175–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg, S. A. Progress in human tumour immunology and immunotherapy. Nature 411, 380–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pardoll, D. M. & Topalian, S. L. The role of CD4+ T cell responses in antitumour immunity. Curr. Opin. Immunol. 10, 588–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, R. F., Peng, G. & Wang, H. Y. Regulatory T cells and Toll-like receptors in tumour immunity. Semin. Immunol. 18, 136–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol. 6, 345–352 (2005).

    Article  CAS  Google Scholar 

  6. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Chambers, C. A. & Allison, J. P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumour activity of tumour-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA 101, 1969–1974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, Y., Bleakley, M. & Yee, C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J. Immunol. 175, 2261–2269 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med. 10, 909–915 (2004). This paper highlights the ineffectiveness of current cancer vaccine strategies and the need to develop alternative immunotherapeutic strategies.

    Article  CAS  PubMed  Google Scholar 

  11. Waldmann, T. A. Effective cancer therapy through immunomodulation. Annu. Rev. Med. 57, 65–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumour immunotherapy. Trends Immunol. 26, 111–117 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schreiber, H., Wu, T. H., Nachman, J. & Kast, W. M. Immunodominance and tumour escape. Semin. Cancer Biol. 12, 25–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Khong, H. T. & Restifo, N. P. Natural selection of tumour variants in the generation of 'tumour escape' phenotypes. Nature Immunol. 3, 999–1005 (2002).

    Article  CAS  Google Scholar 

  15. Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer 3, 666–675 (2003).

    Article  CAS  Google Scholar 

  16. Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumour effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bollard, C. M. et al. Cytotoxic T lymphocyte therapy for Epstein–Barr virus+ Hodgkin's disease. J. Exp. Med. 200, 1623–1633 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rosenberg, S. A. et al. Treatment of patients with metastatic melanoma with autologous tumour-infiltrating lymphocytes and interleukin 2. J. Natl Cancer Inst. 86, 1159–1166 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Cheever, M. A., Greenberg, P. D. & Fefer, A. Specificity of adoptive chemoimmunotherapy of established syngeneic tumours. J. Immunol. 125, 711–714 (1980). This pioneering paper reports the increased antitumour efficacy of tumour-reactive T cells in a lymphodepleted host.

    CAS  PubMed  Google Scholar 

  20. North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumour depends on elimination of tumour-induced suppressor T cells. J. Exp. Med. 155, 1063–1074 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumour lymphocytes. Science 298, 850–854 (2002). This paper describes the first successful clinical trail of ACT with TILs following non-myeloablative chemotherapy for the treatment of patients with melanoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Walker, M. R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J. Clin. Invest 112, 1437–1443 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Antony, P. A. et al. CD8+ T cell immunity against a tumour/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174, 2591–2601 (2005). This paper elucidates the role of CD4+CD25+ T cells in preventing an otherwise productive antitumour immune response against an established syngeneic tumour.

    Article  CAS  PubMed  Google Scholar 

  25. Woo, E. Y. et al. Regulatory CD4+CD25+T cells in tumours from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61, 4766–4772 (2001).

    CAS  PubMed  Google Scholar 

  26. Viguier, M. et al. Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol. 173, 1444–1453 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004). This paper was the first to correlate the presence of T Reg cells and clinical outcome in patients with cancer.

    Article  CAS  PubMed  Google Scholar 

  28. Sato, E. et al. Intraepithelial CD8+ tumour-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favourable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Powell, D. J. Jr., Parker, L. L. & Rosenberg, S. A. Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. J. Immunother. 28, 403–411 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nature Med. 11, 1238–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Ahmadzadeh, M. & Rosenberg, S. A. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409–2414 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Beilke, J. N., Kuhl, N. R., Van Kaer, L. & Gill, R. G. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nature Med. 11, 1059–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  Google Scholar 

  35. Rodriguez, P. C. et al. Arginase I production in the tumour microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Bronte, V. et al. Boosting antitumour responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seung, L. P., Rowley, D. A., Dubey, P. & Schreiber, H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumour rejection. Proc. Natl Acad. Sci. USA 92, 6254–6258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192, 549–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Dummer, W., Ernst, B., LeRoy, E., Lee, D. & Surh, C. Autologous regulation of naive T cell homeostasis within the T cell compartment. J. Immunol. 166, 2460–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumour-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005). This paper establishes the direct role of the endogenous homeostatic cytokines IL-7 and IL-15 in increasing CD8+T-cell effector functions in a lymphodepleted environment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).

    Article  CAS  Google Scholar 

  44. Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288, 675–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kieper, W. C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med. 195, 1533–1539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA 97, 11445–11450 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Overwijk, W. W. et al. Tumour regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, L. X. et al. Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumour regression and editing. Cancer Res. 65, 10569–10577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prlic, M., Blazar, B. R., Farrar, M. A. & Jameson, S. C. In vivo survival and homeostatic proliferation of natural killer cells. J. Exp. Med. 197, 967–976 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koka, R. et al. Interleukin (IL)-15Rα-deficient natural killer cells survive in normal but not IL-15R α-deficient mice. J. Exp. Med. 197, 977–984 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signalling is required for CD4+regulatory T cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol. 6, 1142–1151 (2005).

    Article  CAS  Google Scholar 

  54. Antony, P. A. et al. Interleukin-2 dependent mechanisms of tolerance and immunity in vivo. J. Immunol. (in the press) References 53 and 54 highlight the role of IL-2 in maintaining the homeostasis and competitive fitness of T Reg cells in vivo.

  55. Kohm, A. P. et al. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J. Immunol. 176, 3301–3305 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. de la, R. M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480–2488 (2004).

    Article  CAS  Google Scholar 

  57. Russo, V. et al. Dendritic cells acquire the MAGE-3 human tumour antigen from apoptotic cells and induce a class I-restricted T cell response. Proc. Natl Acad. Sci. USA 97, 2185–2190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown, S., Konopa, J., Zhou, D. & Thompson, J. Expression of TNFα by CD3+ and F4/80+ cells following irradiation preconditioning and allogeneic spleen cell transplantation. Bone Marrow Transplant. 33, 359–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Y., Louboutin, J. P., Zhu, J., Rivera, A. J. & Emerson, S. G. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J. Clin. Invest. 109, 1335–1344 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hill, G. R. et al. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood 90, 3204–3213 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Sherman, M. L., Datta, R., Hallahan, D. E., Weichselbaum, R. R. & Kufe, D. W. Regulation of tumour necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. J. Clin. Invest. 87, 1794–1797 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xun, C. Q., Thompson, J. S., Jennings, C. D., Brown, S. A. & Widmer, M. B. Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood 83, 2360–2367 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Rigby, S. M., Rouse, T. & Field, E. H. Total lymphoid irradiation nonmyeloablative preconditioning enriches for IL-4-producing CD4+-TNK cells and skews differentiation of immunocompetent donor CD4+ cells. Blood 101, 2024–2032 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kedl, R. M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumour efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005). This paper elucidates the gene-expression, phenotypic and functional profiles of CD8+ T cells that mediate a highly effective antitumour response in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Robbins, P. F. et al. Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173, 7125–7130 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, J. et al. Survival, persistence, and progressive differentiation of adoptively transferred tumour-reactive T cells associated with tumour regression. J. Immunother. 28, 258–267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou, J. et al. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumour regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175, 7046–7052 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002). This paper shows the progressive differentiation of CD8+ T cells from patients with acute and chronic viral infections.

    Article  CAS  PubMed  Google Scholar 

  70. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  Google Scholar 

  71. Papagno, L. et al. Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 Infection. PLoS. Biol. 2, e20 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Willinger, T., Freeman, T., Hasegawa, H., McMichael, A. J. & Callan, M. F. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol. 175, 5895–5903 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Fearon, D. T., Manders, P. & Wagner, S. D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293, 248–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  76. Wang, L. X. et al. Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells. J. Transl. Med. 2, 41 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sussman, J. J., Parihar, R., Winstead, K. & Finkelman, F. D. Prolonged culture of vaccine-primed lymphocytes results in decreased antitumour killing and change in cytokine secretion. Cancer Res. 64, 9124–9130 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, B. J., Cui, X., Sempowski, G. D., Liu, C. & Chao, N. J. Transfer of allogeneic CD62L memory T cells without graft-versus-host disease. Blood 103, 1534–1541 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Bondanza, A. et al. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood 107, 1828–1836 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol. 4, 1191–1198 (2003). This paper prospectively identifies the sub-population of antigen-specific effector CD8+ T cells expressing IL-7Rα that will persist as a pool of memory T cells.

    Article  CAS  Google Scholar 

  81. Klebanoff, C. A. et al. Central memory self/tumour-reactive CD8+ T cells confer superior antitumour immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA 102, 9571–9576 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dudley, M. E. et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumour antigen-specific T lymphocytes in patients with metastatic melanoma. J. Immunother. 25, 243–251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang, H., Li, F., Gordon, J. R. & Xiang, J. Synergistic enhancement of antitumour immunity with adoptively transferred tumour-specific CD4+ and CD8+ T cells and intratumoural lymphotactin transgene expression. Cancer Res. 62, 2043–2051 (2002).

    CAS  PubMed  Google Scholar 

  84. Kershaw, M. H. et al. Redirecting migration of T cells to chemokine secreted from tumours by genetic modification with CXCR2. Hum. Gene Ther. 13, 1971–1980 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kagamu, H., Touhalisky, J. E., Plautz, G. E., Krauss, J. C. & Shu, S. Isolation based on L-selectin expression of immune effector T cells derived from tumour-draining lymph nodes. Cancer Res. 56, 4338–4342 (1996).

    CAS  PubMed  Google Scholar 

  86. Speiser, D. E. et al. Self antigens expressed by solid tumours do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med. 186, 645–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Powell D. J. Jr, Dudley, M. E., Robbins, P. F. & Rosenberg, S. A. Transition of late stage effector T cells to CD27+ CD28+ tumour-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105, 241–250 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nature Rev. Immunol. 3, 939–951 (2003).

    Article  CAS  Google Scholar 

  89. Topp, M. S. et al. Restoration of CD28 expression in CD28 CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J. Exp. Med. 198, 947–955 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000).

    Article  CAS  Google Scholar 

  91. Hendriks, J., Xiao, Y. & Borst, J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369–1380 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Arens, R. et al. Tumour rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J. Exp. Med. 199, 1595–1605 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang J. et al. Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J. Immunol. (in the press).

  94. Ochsenbein, A. F. et al. CD27 expression promotes long-term survival of functional effector-memory CD8+ cytotoxic T lymphocytes in HIV-infected patients. J. Exp. Med. 200, 1407–1417 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity. 17, 537–547 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, K. & Rosenberg, S. A. Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J. Immunother. 26, 190–201 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hodes, R. J., Hathcock, K. S. & Weng, N. P. Telomeres in T and B cells. Nature Rev. Immunol. 2, 699–706 (2002).

    Article  CAS  Google Scholar 

  98. Speiser, D. E. & Romero, P. Toward improved immunocompetence of adoptively transferred CD8+ T cells. J. Clin. Invest 115, 1467–1469 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity. 8, 615–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Teague, R. M. et al. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumours. Nature Med. 12, 335–341 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Opferman, J. T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Hsu, C. et al. Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J. Immunol. 175, 7226–7234 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, S., Riley, J. L., Rosenberg, S. A. & Parkhurst, M. R. Comparison of common γ-chain cytokines, interleukin-2, interleukin-7, and interleukin-15 for the in vitro generation of human tumour-reactive T lymphocytes for adoptive cell transfer therapy. J. Immunother. (in the press).

  104. Powell, D. J. Jr. & Rosenberg, S. A. Phenotypic and functional maturation of tumour antigen-reactive CD8+ T lymphocytes in patients undergoing multiple course peptide vaccination. J. Immunother. 27, 36–47 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med. 190, 705–715 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zippelius, A. et al. Effector function of human tumour-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res. 64, 2865–2873 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Dutoit, V. et al. Degeneracy of antigen recognition as the molecular basis for the high frequency of naive A2/Melan-A peptide multimer+ CD8+ T cells in humans. J. Exp. Med. 196, 207–216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Roszkowski, J. J. et al. Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res. 65, 1570–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Hughes, M. S. et al. Transfer of a TCR gene derived from a patient with a marked antitumour response conveys highly active T-cell effector functions. Hum. Gene Ther. 16, 457–472 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Zhao, Y. et al. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumour cell lines. J. Immunol. 174, 4415–4423 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Kuball, J. et al. Cooperation of human tumour-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2. 1-specific TCR. Immunity. 22, 117–129 (2005). This paper describes an effective way to generate highly avid TCRs specific for self/tumour antigens using HLA-A2-transgenic mice.

    Article  CAS  PubMed  Google Scholar 

  112. Cohen, C. J. et al. Recognition of fresh human tumour by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J. Immunol. 175, 5799–5808 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nature Biotechnol. 23, 349–354 (2005).

    Article  CAS  Google Scholar 

  114. Cavalieri, S. et al. Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood 102, 497–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Schmitt, T. M. et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nature Immunol. 5, 410–417 (2004).

    Article  CAS  Google Scholar 

  116. Clark, R. A., Yamanaka, K. I., Bai, M., Dowgiert, R. & Kupper, T. S. Human skin cells support thymus-independent T cell development. J. Clin. Invest. 115, 3239–3249 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain (null) mice. Blood 106, 1565–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schlissel, M. S. Regulating antigen-receptor gene assembly. Nature Rev. Immunol. 3, 890–899 (2003).

    Article  CAS  Google Scholar 

  119. Willemsen, R. A. et al. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther. 7, 1369–1377 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Pinthus, J. H. et al. Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J. Clin. Invest 114, 1774–1781 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Carding, S. R. & Egan, P. J. γδ T cells: functional plasticity and heterogeneity. Nature Rev. Immunol. 2, 336–345 (2002).

    Article  CAS  Google Scholar 

  122. Kershaw, M. H., Teng, M. W., Smyth, M. J. & Darcy, P. K. Supernatural T cells: genetic modification of T cells for cancer therapy. Nature Rev. Immunol. 5, 928–940 (2005).

    Article  CAS  Google Scholar 

  123. Charo, J. et al. Bcl-2 overexpression enhances tumour-specific T-cell survival. Cancer Res. 65, 2001–2008 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Palmer, D. C. et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumour destruction. J. Immunol. 173, 7209–7216 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Hwang, L. N., Yu, Z., Palmer, D. C. & Restifo, N. P. The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumour. Cancer Res. 66, 1132–1138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rapoport, A. P. et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nature Med. 11, 1230–1237 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nature Immunol. 3, 558–563 (2002).

    Article  CAS  Google Scholar 

  128. Ichii, H., Sakamoto, A., Kuroda, Y. & Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol. 173, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Manders, P. M. et al. Inaugural article: BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc. Natl Acad. Sci. USA 102, 7418–7425 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Willinger, T. et al. Human naive CD8 T cells downregulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J. Immunol. 176, 1439–1446 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell 119, 75–86 (2004). This paper represents the proof of principle that lymphocyte differentiation states can be reverted by manipulation of key transcriptional factors.

    Article  CAS  PubMed  Google Scholar 

  132. Wrzesinski, C. & Restifo, N. P. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumour immunotherapy. Curr. Opin. Immunol. 17, 195–201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dannull, J. et al. Enhancement of vaccine-mediated antitumour immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Attia, P., Maker, A. V., Haworth, L. R., Rogers-Freezer, L. & Rosenberg, S. A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 28, 582–592 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother. 29, 208–214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Valencia, X. et al. TNF down-modulates the function of human CD4+CD25hi T regulatory cells. Blood 14 Mar 2006 (doi:1182/blood-2005-11-4567).

  137. Atkins, M. B., Kunkel, L., Sznol, M. & Rosenberg, S. A. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am. 6, S11–S14 (2000).

    PubMed  Google Scholar 

  138. Boyman, O., Kovar, M., Rubinstein, M., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 15 Feb 2006 (doi:10.1126/science.1122927).

  139. Speiser, D. E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunol. 26 Mar 2006 (doi:1038/ni1321).

  141. Martins, G. A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nature Immunol. 26 Mar 2006 (doi:1038/ni1320).

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the Center for Cancer Research, NCI, NIH. The authors would like to thank all the members of the translational immunology team at the NCI especially M. E. Dudley, J. C. Yang, P. F. Robbins, R. A. Morgan, R. M. Sherry, M. R. Parkhurst, J. R Wunderlich and S. L. Topalian.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luca Gattinoni or Nicholas P. Restifo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Nicholas Restifo's laboratory

Steven Rosenberg's laboratory

Glossary

Common cytokine-receptor γ-chain

c). A signalling subunit of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15 and IL-21.

Standard oncological criteria

Clinical criteria that determine whether or not a treatment for cancer is effective. The World Health Organization originally defined an objective clinical response as a 50% decrease in the sum of the products of perpendicular diameters of all lesions without an increase greater than 25% in any lesions or appearance of new lesions. Subsequent updated criteria are known as response evaluation criteria in solid tumours (RECIST). RECIST defines an objective clinical response as a 30% decrease in the sum of the longest diameters of target lesions, without an increase greater than 20% in any target lesions or appearance of new lesions.

Tumour-infiltrating lymphocytes

(TILs). The heterogeneous population of T cells found in a tumour bed. These cells are characterized by a diversity of phenotypes, antigen specificities, avidities and functional characteristics. They can be activated and expanded ex vivo and re-infused into the tumour-bearing host.

Non-myeloablative regimen

Treatment that induces a severe, but transient, leukopaenia without permanent damage to haematopoietic stem cells, thereby allowing spontaneous recovery of the haematological function of the host.

Homeostatic proliferation

A process of activation and proliferation of leukocytes in the lymphopaenic environment. T-cell homeostatic proliferation is driven by T-cell receptor interactions with self-peptide–MHC complexes and T-cell responsiveness to cytokines such as interleukin-7 (IL-7), IL-15 and possibly IL-21.

Pmel-1 mouse model of ACT

A mouse model of adoptive cell transfer (ACT) therapy for established B16 melanomas and autoimmunity against the melanocyte-associated differentiation antigen gp100. Treatment consists of adoptive transfer of gp100-specific CD8+ T cells derived from the T-cell receptor (TCR) transgenic mouse pmel-1 in combination with altered ligand vaccine and cytokines that signal through a receptor that contains the common cytokine-receptor γ-chain (γc).

Cross-presentation

The process whereby antigen-presenting cells take up, process and present extracellular antigens, in association with MHC class I molecules, to CD8+ T cells.

Toll-like receptor

A member of the family of evolutionarily conserved receptors that was first described in Drosophila melanogaster. These receptors mediate innate immunity and inflammatory responses that can subsequently modulate adaptive immunity in mammals.

Trans-presentation

A process by which the interleukin-15 receptor α-chain (IL-15Rα) presents active IL15 in trans to opposing cells expressing a complex, with a low affinity for IL-15, that contains IL-15Rα and the common cytokine-receptor γ-chain (γc), thereby transducing a signal.

Telomere

The segment at the end of chromosome arms, which consists of a series of repeated DNA sequences (TTAGGG in all vertebrates) that regulate chromosomal replication at each cell division.

Telomerase

A ribonucleoprotein enzyme that uses its internal RNA component as a template to synthesize telomeric DNA directly onto the ends of chromosome arms.

Phage display

A technique in which bacteriophages are engineered to express on their cell surface a fusion protein comprised of a foreign peptide or protein and their capsid proteins.

Complementarity-determining region

The hypervariable amino-acid sequences in T-cell-receptor variable regions that interact with complementary amino acids on the peptide–MHC complex.

Myeloablative regimen

Treatment that causes severe bone-marrow suppression requiring administration of haematopoietic stem cells to reconstitute the haematological function of the host and to assure host survival.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gattinoni, L., Powell, D., Rosenberg, S. et al. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 6, 383–393 (2006). https://doi.org/10.1038/nri1842

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri1842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing