Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping and reshaping CD8+ T-cell memory

Key Points

  • Shortly after infection and/or vaccination, rare, antigen-specific CD8+ T cells encounter mature antigen-expressing dendritic cells (DCs), become activated and undergo extensive expansion in numbers following a 'programme' that is largely independent of the duration of the infection and/or functional antigen that is displayed. Most of the primary effector CD8+ T cells die during a programmed contraction phase and the surviving CD8+ T cells initiate the heterogeneous memory pool that slowly undergoes additional phenotypic and functional changes with time.

  • Proliferative expansion, phenotype, and function of CD8+ T-cell responses to infection are altered when the number of T-cell receptor (TCR)-transgenic CD8+ T cells transferred is sufficiently high to prevent the endogenous CD8+ T-cell response to the same epitope. The specific number of TCR-transgenic T cells that can be used to mimic the endogenous response may be influenced by the affinity of the TCR, the number of endogenous precursors and the pathogen or vaccination method used, and must be empirically determined for each experimental model.

  • The requirements for memory CD8+ T-cell maintenance and the functional characteristics of the CD8+ T-cell memory populations are dramatically different following persistent infection (that is, when antigen and pathogens are not cleared from the host) compared with acute infection.

  • Pro-inflammatory cytokines, for example type I interferons (IFNs), IFNγ or interleukin-12, can act directly on responding CD8+ T cells during the expansion and contraction phases of CD8+ T-cell response to infection to affect crucial aspects of memory CD8+ T-cell generation.

  • The early inflammatory milieu dictates the rate at which CD8+ T cells acquire phenotypic and functional characteristics of memory suggesting that the process of memory CD8+ T-cell generation that depends on the nature of the pathogen or vaccination strategy used to elicit the response and that select aspects of memory CD8+ T-cell generation may be manipulable.

  • The characteristics of secondary memory CD8+ T cells are quite different than the primary CD8+ T-cell populations. They undergo protracted contraction, exhibit substantially delayed upregulation of central memory CD8+ T-cell characteristics, show decreased memory turnover (compared with primary memory CD8+ T cells) and exhibit (on per cell basis) enhanced protection against pathogen re-encounter.

Abstract

The ability to develop and sustain populations of memory T cells after infection or immunization is a hallmark of the adaptive immune response and a basis for protective vaccination against infectious disease. Technical advances that allow direct ex vivo identification and characterization of antigen-specific CD8+ T cells at various stages of the response to infection or vaccination in mouse models have fuelled efforts to characterize the factors that control memory CD8+ T-cell generation. Here, we dissect the input signals that shape the characteristics of the memory CD8+ T-cell response and discuss how manipulation of these signals has the potential to reshape CD8+ T-cell memory and improve the efficacy of vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD8+ T-cell response to infection and/or vaccination.
Figure 2: Influence of TCR-transgenic precursor frequency on important attributes of the CD8+ T-cell response to infection.
Figure 3: Memory CD8+ T-cell maintenance after acute or chronic infection.
Figure 4: Inflammatory cytokines and CD8+ T-cell homeostasis after infection.
Figure 5: Inflammation regulates the progression of CD8+ T cells to memory.
Figure 6: Primary and secondary CD8+ T-cell memory.

Similar content being viewed by others

References

  1. Jameson, S. C. Maintaining the norm: T-cell homeostasis. Nature Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  Google Scholar 

  2. Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Casrouge, A. et al. Size estimate of the αβTCR repertoire of naive mouse splenocytes. J. Immunol. 164, 5782–5787 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Kedzierska, K. et al. Quantification of repertoire diversity of influenza-specific epitopes with predominant public or private TCR usage. J. Immunol. 177, 6705–6712 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Pewe, L. L., Netland, J. M., Heard, S. B. & Perlman, S. Very diverse CD8 T cell clonotypic responses after virus infections. J. Immunol. 172, 3151–3156 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heath, W. R. & Carbone, F. R. Cross-presentation, dendritic cells, tolerance and immunity. Annu. Rev. Immunol. 19, 47–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Germain, R. N., Miller, M. J., Dustin, M. L. & Nussenzweig, M. C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nature Rev. Immunol. 6, 497–507 (2006).

    Article  CAS  Google Scholar 

  10. Haring, J. S., Badovinac, V. P. & Harty, J. T. Inflaming the CD8+ T cell response. Immunity 25, 19–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nature Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  Google Scholar 

  12. Mescher, M. F. et al. Signals required for programming effector and memory development by CD8+ T cells. Immunol. Rev. 211, 81–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Badovinac, V. P. & Harty, J. T. Programming, demarcating, and manipulating CD8+ T-cell memory. Immunol. Rev. 211, 67–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Marshall, D. R. et al. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl Acad. Sci. USA 98, 6313–6318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Homann, D., Teyton, L. & Oldstone, M. B. Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory. Nature Med. 7, 913–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Becker, T. C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med. 195, 1541–1548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldrath, A. W. et al. Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J. Exp. Med. 195, 1515–1522 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).

    Article  CAS  Google Scholar 

  20. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hikono, H. et al. T-cell memory and recall responses to respiratory virus infections. Immunol. Rev. 211, 119–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kedzierska, K., La Gruta, N. L., Turner, S. J. & Doherty, P. C. Establishment and recall of CD8+ T-cell memory in a model of localized transient infection. Immunol. Rev. 211, 133–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lefrancois, L. Development, trafficking, and function of memory T-cell subsets. Immunol. Rev. 211, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Marzo, A. L., Yagita, H. & Lefrancois, L. Cutting edge: migration to nonlymphoid tissues results in functional conversion of central to effector memory CD8 T cells. J. Immunol. 179, 36–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Weninger, W., Manjunath, N. & von Andrian, U. H. Migration and differentiation of CD8+ T cells. Immunol. Rev. 186, 221–233 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  28. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Badovinac, V. P. & Harty, J. T. Intracellular staining for TNF and IFN-γ detects different frequencies of antigen-specific CD8+ T cells. J. Immunol. Methods 238, 107–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Busch, D. H., Pilip, I. M., Vijh, S. & Pamer, E. G. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8, 353–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Butz, E. A. & Bevan, M. J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Hataye, J., Moon, J. J., Khoruts, A., Reilly, C. & Jenkins, M. K. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science 312, 114–116 (2006). This study shows that memory CD4+ T-cell responses are influenced by the number of TCR-transgenic CD4+ T cells that are initially transferred prior to immunization.

    Article  CAS  PubMed  Google Scholar 

  35. Kemp, R. A., Powell, T. J., Dwyer, D. W. & Dutton, R. W. Cutting edge: regulation of CD8+ T cell effector population size. J. Immunol. 173, 2923–2927 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Marzo, A. L. et al. Initial T cell frequency dictates memory CD8+ T cell lineage commitment. Nature Immunol. 6, 793–799 (2005). This study together with reference 38 shows that all phases of the CD8+ T-cell response to infection are influenced by the number of TCR-transgenic CD8+ T cells initially transferred prior to infection.

    Article  CAS  Google Scholar 

  37. Probst, H. C., Dumrese, T. & van den Broek, M. F. Cutting edge: competition for APC by CTLs of different specificities is not functionally important during induction of antiviral responses. J. Immunol. 168, 5387–5391 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Reiner, S. L., Sallusto, F. & Lanzavecchia, A. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317, 622–625 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Badovinac, V. P., Porter, B. B. & Harty, J. T. Programmed contraction of CD8+ T cells after infection. Nature Immunol. 3, 619–626 (2002).

    Article  CAS  Google Scholar 

  42. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  43. Mercado, R. et al. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165, 6833–6839 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. van Stipdonk, M. J., Lemmens, E. E. & Schoenberger, S. P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 2, 423–429 (2001). References 41–44 show that the initial antigen-encounter is sufficient to programme CD8+ T-cell expansion, contraction and memory CD8+ T-cell generation.

    Article  CAS  Google Scholar 

  45. Bevan, M. J. Helping the CD8+ T-cell response. Nature Rev. Immunol. 4, 595–602 (2004).

    Article  CAS  Google Scholar 

  46. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297, 2060–2063 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams, M. A., Holmes, B. J., Sun, J. C. & Bevan, M. J. Developing and maintaining protective CD8+ memory T cells. Immunol. Rev. 211, 146–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, J. C., Williams, M. A. & Bevan, M. J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nature Immunol. 5, 927–933 (2004).

    Article  CAS  Google Scholar 

  56. Badovinac, V. P., Messingham, K. A., Griffith, T. S. & Harty, J. T. TRAIL deficiency delays, but does not prevent, erosion in the quality of “helpless” memory CD8 T cells. J. Immunol. 177, 999–1006 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Marzo, A. L. et al. Fully functional memory CD8 T cells in the absence of CD4 T cells. J. Immunol. 173, 969–975 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Ramsburg, E. A., Publicover, J. M., Coppock, D. & Rose, J. K. Requirement for CD4 T cell help in maintenance of memory CD8 T cell responses is epitope dependent. J. Immunol. 178, 6350–6358 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Khanolkar, A., Badovinac, V. P. & Harty, J. T. CD8 T cell memory development: CD4 T cell help is appreciated. Immunol. Res. 39, 94–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. D'Souza, W. N. & Lefrancois, L. IL-2 is not required for the initiation of CD8 T cell cycling but sustains expansion. J. Immunol. 171, 5727–5735 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, A. et al. Efficient induction of primary and secondary T cell-dependent immune responses in vivo in the absence of functional IL-2 and IL-15 receptors. J. Immunol. 170, 236–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007). This paper together with reference 66 identifies a key role for T-bet in controlling the fate determination of CD8+ T cells that are responding to infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamilton, S. E. & Jameson, S. C. CD8+ T cell differentiation: choosing a path through T-bet. Immunity 27, 180–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nature Immunol. 6, 873–879 (2005).

    Article  CAS  Google Scholar 

  69. Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78, 5535–5545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006). This paper reports the use of PD1–PD1 ligand blockade therapy to enhance the numbers and functional status of LCMV-specific CD8+ T cells and facilitate the clearance of chronic LCMV infection.

    Article  CAS  PubMed  Google Scholar 

  72. Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nature Med. 12, 1301–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Ejrnaes, M. et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203, 2461–2472 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA 101, 16004–16009 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fuller, M. J. et al. Cutting edge: emergence of CD127high functionally competent memory T cells is compromised by high viral loads and inadequate T cell help. J. Immunol. 174, 5926–5930 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lang, K. S. et al. Inverse correlation between IL-7 receptor expression and CD8 T cell exhaustion during persistent antigen stimulation. Eur. J. Immunol. 35, 738–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Masopust, D., Ha, S. J., Vezys, V. & Ahmed, R. Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J. Immunol. 177, 831–839 (2006). This paper together with references 128–131 describe the fundamental phenotypic and functional differences of CD8+ T cells that are responding to multiple rounds of antigenic stimulations compared with primary CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  79. Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Vezys, V. et al. Continuous recruitment of naive T cells contributes to heterogeneity of antiviral CD8 T cells during persistent infection. J. Exp. Med. 203, 2263–2269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zajac, A. J., Quinn, D. G., Cohen, P. L. & Frelinger, J. A. Fas-dependent CD4+ cytotoxic T-cell-mediated pathogenesis during virus infection. Proc. Natl Acad. Sci. USA 93, 14730–14735 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Greenwald, R. J., Freeman, G. J. & Sharpe, A. H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    Article  PubMed  CAS  Google Scholar 

  83. Watts, T. H. TNF/TNFR family members in costimulation of T cell responses. Annu. Rev. Immunol. 23, 23–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Curtsinger, J. M. et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J. Immunol. 162, 3256–3562 (1999).

    CAS  PubMed  Google Scholar 

  85. Curtsinger, J. M., Valenzuela, J. O., Agarwal, P., Lins, D. & Mescher, M. F. Type I IFNs provide a third signal to CD8 T cells to stimulate clonal expansion and differentiation. J. Immunol. 174, 4465–4469 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Schmidt, C. S. & Mescher, M. F. Adjuvant effect of IL-12: conversion of peptide antigen administration from tolerizing to immunizing for CD8+ T cells in vivo. J. Immunol. 163, 2561–2567 (1999).

    CAS  PubMed  Google Scholar 

  87. Aichele, P. et al. CD8 T cells specific for lymphocytic choriomeningitis virus require type I IFN receptor for clonal expansion. J. Immunol. 176, 4525–4529 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Curtsinger, J. M., Johnson, C. M. & Mescher, M. F. CD8 T cell clonal expansion and development of effector function require prolonged exposure to antigen, costimulation, and signal 3 cytokine. J. Immunol. 171, 5165–5171 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Kolumam, G. A., Thomas, S., Thompson, L. J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sercan, O., Hammerling, G. J., Arnold, B. & Schuler, T. Innate immune cells contribute to the IFN-γ-dependent regulation of antigen-specific CD8+ T cell homeostasis. J. Immunol. 176, 735–739 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Whitmire, J. K., Tan, J. T. & Whitton, J. L. Interferon-gamma acts directly on CD8+ T cells to increase their abundance during virus infection. J. Exp. Med. 201, 1053–1059 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mitchell, T. C. et al. Immunological adjuvants promote activated T cell survival via induction of Bcl-3. Nature Immunol. 2, 397–402 (2001).

    Article  CAS  Google Scholar 

  93. Thomas, S., Kolumam, G. A. & Murali-Krishna, K. Antigen presentation by nonhemopoietic cells amplifies clonal expansion of effector CD8 T cells in a pathogen-specific manner. J. Immunol. 178, 5802–5811 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Way, S. S., Havenar-Daughton, C., Kolumam, G. A., Orgun, N. N. & Murali-Krishna, K. IL-12 and type-I IFN synergize for IFN-γ production by CD4 T cells, whereas neither are required for IFN-γ production by CD8 T cells after Listeria monocytogenes infection. J. Immunol. 178, 4498–4505 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Thompson, L. J., Kolumam, G. A., Thomas, S. & Murali-Krishna, K. Innate inflammatory signals induced by various pathogens differentially dictate the IFN-I dependence of CD8 T cells for clonal expansion and memory formation. J. Immunol. 177, 1746–1754 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Cousens, L. P. et al. Two roads diverged: interferon α/β- and interleukin 12-mediated pathways in promoting T cell interferon γ responses during viral infection. J. Exp. Med. 189, 1315–1328 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ou, R., Zhou, S., Huang, L. & Moskophidis, D. Critical role for α/β and γ interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J. Virol. 75, 8407–8423 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fuller, M. J., Khanolkar, A., Tebo, A. E. & Zajac, A. J. Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. J. Immunol. 172, 4204–4214 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Fuller, M. J. & Zajac, A. J. Ablation of CD8 and CD4 T cell responses by high viral loads. J. Immunol. 170, 477–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhou, S., Ou, R., Huang, L. & Moskophidis, D. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J. Virol. 76, 829–840 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nguyen, L. T. et al. TNF receptor 1 (TNFR1) and CD95 are not required for T cell deletion after virus infection but contribute to peptide-induced deletion under limited conditions. Eur. J. Immunol. 30, 683–688 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Reich, A., Korner, H., Sedgwick, J. D. & Pircher, H. Immune down-regulation and peripheral deletion of CD8 T cells does not require TNF receptor-ligand interactions nor CD95 (Fas, APO-1). Eur. J. Immunol. 30, 678–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Grayson, J. M., Zajac, A. J., Altman, J. D. & Ahmed, R. Cutting edge: increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164, 3950–3954 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Hildeman, D. A. et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16, 759–767 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Pellegrini, M., Belz, G., Bouillet, P. & Strasser, A. Shutdown of an acute T cell immune response to viral infection is mediated by the proapoptotic Bcl-2 homology 3-only protein Bim. Proc. Natl Acad. Sci. USA 100, 14175–14180 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hildeman, D., Jorgensen, T., Kappler, J. & Marrack, P. Apoptosis and the homeostatic control of immune responses. Curr. Opin. Immunol. 19, 516–521 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Plas, D. R., Rathmell, J. C. & Thompson, C. B. Homeostatic control of lymphocyte survival: potential origins and implications. Nature Immunol. 3, 515–521 (2002).

    Article  CAS  Google Scholar 

  109. Grayson, J. M., Weant, A. E., Holbrook, B. C. & Hildeman, D. Role of Bim in regulating CD8+ T-cell responses during chronic viral infection. J. Virol. 80, 8627–8638 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wojciechowski, S. et al. Bim mediates apoptosis of CD127lo effector T cells and limits T cell memory. Eur. J. Immunol. 36, 1694–1706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wojciechowski, S. et al. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. J. Exp. Med. 204, 1665–1675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Badovinac, V. P., Tvinnereim, A. R. & Harty, J. T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Tewari, K., Nakayama, Y. & Suresh, M. Role of direct effects of IFN-γ on T cells in the regulation of CD8 T cell homeostasis. J. Immunol. 179, 2115–2125 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Whitmire, J. K., Eam, B., Benning, N. & Whitton, J. L. Direct interferon-γ signaling dramatically enhances CD4+ and CD8+ T cell memory. J. Immunol. 179, 1190–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Badovinac, V. P., Porter, B. B. & Harty, J. T. CD8+ T cell contraction is controlled by early inflammation. Nature Immunol. 5, 809–817 (2004).

    Article  CAS  Google Scholar 

  116. Haring, J. S. & Harty, J. T. Aberrant contraction of antigen-specific CD4 T cells after infection in the absence of γ interferon or its receptor. Infect. Immun. 74, 6252–6263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Haring, J. S., Corbin, G. A. & Harty, J. T. Dynamic regulation of IFN-γ signaling in antigen-specific CD8+ T cells responding to infection. J. Immunol. 174, 6791–6802 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Refaeli, Y., Van Parijs, L., Alexander, S. I. & Abbas, A. K. Interferon-γ is required for activation-induced death of T lymphocytes. J. Exp. Med. 196, 999–1005 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pearce, E. L. & Shen, H. Generation of CD8 T cell memory is regulated by IL-12. J. Immunol. 179, 2074–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Chang, J. T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007). This paper suggests that a single T cell can promote diverse cell fates through an asymmetric initial cell division.

    Article  CAS  PubMed  Google Scholar 

  121. Badovinac, V. P. & Harty, J. T. Manipulating the rate of memory CD8+ T cell generation after acute infection. J. Immunol. 179, 53–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Badovinac, V. P., Messingham, K. A., Jabbari, A., Haring, J. S. & Harty, J. T. Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nature Med. 11, 748–756 (2005). This report describes how inflammatory signals influence the rate of memory CD8+ T-cell responses following peptide–DC vaccination.

    Article  CAS  PubMed  Google Scholar 

  124. Lacombe, M. H., Hardy, M. P., Rooney, J. & Labrecque, N. IL-7 receptor expression levels do not identify CD8+ memory T lymphocyte precursors following peptide immunization. J. Immunol. 175, 4400–4407 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Hou, S., Hyland, L., Ryan, K. W., Portner, A. & Doherty, P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369, 652–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  126. Harty, J. T. & Bevan, M. J. Specific immunity to Listeria monocytogenes in the absence of IFN-γ. Immunity 3, 109–117 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Woodland, D. L. Jump-starting the immune system: prime-boosting comes of age. Trends Immunol. 25, 98–104 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Badovinac, V. P., Messingham, K. A., Hamilton, S. E. & Harty, J. T. Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J. Immunol. 170, 4933–4942 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Grayson, J. M., Harrington, L. E., Lanier, J. G., Wherry, E. J. & Ahmed, R. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J. Immunol. 169, 3760–3770 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Jabbari, A. & Harty, J. T. Secondary memory CD8+ T cells are more protective but slower to acquire a central-memory phenotype. J. Exp. Med. 203, 919–932 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Unsoeld, H. & Pircher, H. Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J. Virol. 79, 4510–4513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr S. Perlman for critical reading of this manuscript. We apologize to those colleagues whose work we could not cite owing to space limitations. Work in the Harty laboratory is supported by grants from the National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Harty.

Glossary

MHC class I tetramers

A soluble tetrahedral complex artificially generated by using a fluorochrome-coupled avidin to join four biotinylated MHC class I molecules with a peptide of interest and β2-microglobulin. The resulting MHC class I tetramer can be used as a reagent to identify antigen-specific CD8+ T-cell populations.

Intracellular cytokine staining

(ICS). A tool used for the analysis of the ability of T cells to produce a cytokine in response to a specific stimulus, such as peptide stimulation. In this assay, the usual cytokine secretion pathway is paralyzed and intracellular accumulation of the cytokine is monitored by antibody staining and FACS analysis.

OT-I mouse model

Mice in which the CD8 T cells have a transgenic rearranged T-cell receptor (Vα2, Vβ5) that recognizes a peptide (OVA257–264) derived from chicken albumin in the context of H2-Kb. It can be used to study the response of CD8+ T cells to antigen.

T-bet

A member of the T-box family of transcription factors. It is a master switch in the development of T helper 1 (TH1)-cell responses, through its ability to regulate expression of the interleukin-12 receptor, inhibit signals that promote TH2-cell development and promote the production of interferon-γ.

B-cell-lymphoma-2 family

(BCL-2 family). A family of proteins that contain at least one BCL-2-homology domain (BH). The family is classified into three groups: anti-apoptotic multidomain proteins, such as BCL-2, BCL-XL and MCL1 (myeloid-cell leukaemia sequence 1), which contain four BHs; pro-apoptotic multidomain proteins, such as BAX (BCL-2-associated X protein) and BAK (BCL-2 antagonist/killer), which contain three BHs; and a pro-apoptotic subfamily of proteins that contain only one BH, the BH3-only proteins.

Activation-induced cell death

(AICD). A form of regulated cell death that is induced during lymphocyte activation.

P14 mice

Transgenic mice of which the T cells recognize a peptide derived from lymphocytic choriomeningitis virus in the context of H2-Db.

Prime–boost vaccination

When a single application of a vaccine is insufficient, repeated immunizations are administered using the same vaccine preparation (homologous prime boost) or using different vaccine preparations (heterologous prime boost) to sequentially stimulate a better immune response. Prior exposure to one strain causes an antibody T-cell response to shared epitopes following exposure to a second strain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harty, J., Badovinac, V. Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol 8, 107–119 (2008). https://doi.org/10.1038/nri2251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing