Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myeloid-derived suppressor cells as regulators of the immune system

Key Points

  • Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells of myeloid origin.

  • MDSCs expand during various pathological conditions, including cancer, inflammation and trauma, and are characterized by the increased production of reactive oxygen and nitrogen species, and by arginase 1 activity.

  • Two subsets of MDSCs have been identified based on their morphology and cell-surface expression of specific molecules. The granulocytic subset has a CD11b+LY6G+LY6Clow phenotype and the monocytic subset has a CD11b+LY6GLY6Chi phenotype. Although both subsets can suppress T cells, their mechanisms of suppression are different.

  • The expansion of MDSCs is promoted by numerous factors that include prostaglandins, stem-cell factor, macrophage colony-stimulating factor, granulocyte/macrophage colony-stimulating factor, interleukin-6 (IL-6) and vascular endothelial growth factor.

  • The expansion of MDSCs in pathological conditions is associated with their activation. The main factors that cause MDSC activation are interferon-γ, ligands for Toll-like receptors, IL-4, IL-13 and transforming growth factor-β.

  • Immunosuppressive functions of MDSCs require direct cell–cell contact and can result in antigen-specific or antigen-non-specific suppression of T-cell responses.

  • Arginase 1, inducible nitric oxide synthase, reactive oxygen species and peroxynitrite are thought to have a role in MDSC-mediated T-cell suppression.

  • Agents that may be effective for targeting MDSCs for therapy include all-trans retinoic acid, amino-bisphosphonates, inhibitors of cyclooxygenase 2 and phosphodiesterase 5, and some chemotherapeutic drugs.

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand during cancer, inflammation and infection, and that have a remarkable ability to suppress T-cell responses. These cells constitute a unique component of the immune system that regulates immune responses in healthy individuals and in the context of various diseases. In this Review, we discuss the origin, mechanisms of expansion and suppressive functions of MDSCs, as well as the potential to target these cells for therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The origin of MDSCs.
Figure 2: Signalling pathways involved in the expansion of MDSCs.
Figure 3: Suppressive mechanisms mediated by different subsets of MDSCs.
Figure 4: The mechanisms of MDSC-mediated immune suppression differ in peripheral lymphoid organs and at the site of a tumour.

Similar content being viewed by others

References

  1. Young, M. R. I., Newby, M. & Wepsic, T. H. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 47, 100–106 (1987).

    CAS  PubMed  Google Scholar 

  2. Buessow, S. C., Paul, R. D. & Lopez, D. M. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice. J. Natl Cancer Inst. 73, 249–255 (1984).

    CAS  PubMed  Google Scholar 

  3. Seung, L., Rowley, D., Dubeym, P. & Schreiber, H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc. Natl Acad. Sci. USA 92, 6254–6258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M. & Ostrand-Rosenberg, S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J. Immunol. 179, 977–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer 8, 618–631 (2008).

    Article  CAS  Google Scholar 

  6. Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bronte, V. et al. Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood 96, 3838–3846 (2000).

    CAS  PubMed  Google Scholar 

  8. Kusmartsev, S. & Gabrilovich, D. I. Inhibition of myeloid cell differentiation in cancer: The role of reactive oxygen species. J. Leukoc. Biol. 74, 186–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Li, Q., Pan, P. Y., Gu, P., Xu, D. & Chen, S. H. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res. 64, 1130–1139 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kusmartsev, S., Nefedova, Y., Yoder, D. & Gabrilovich, D. I. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 172, 989–999 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ochoa, A. C., Zea, A. H., Hernandez, C. & Rodriguez, P. C. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13, 721s–726s (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Almand, B. et al. Increased production of immature myeloid cells in cancer patients. A mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Schmielau, J. & Finn, O. J. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res. 61, 4756–4760 (2001).

    CAS  PubMed  Google Scholar 

  14. Hestdal, K. et al. Characterization and regulation of RB6–8C5 antigen expression on murine bone marrow cells. J. Immunol. 147, 22–28 (1991).

    CAS  PubMed  Google Scholar 

  15. Dietlin, T. A. et al. Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J. Leukoc. Biol. 81, 1205–1212 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, B. et al. CD11b+Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228–5237 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Movahedi, K. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T-cell suppressive activity. Blood 111, 4233–4244 (2008). Together with reference 6, this paper describes functional differences between subsets of MDSCs.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, R. et al. CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells. Cancer Res. 66, 6807–6815 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, B. et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66, 1123–1131 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Gallina, G. et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J. Clin. Invest. 116, 2777–2790 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mirza, N. et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Goni, O., Alcaide, P. & Fresno, M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1+)CD11b+ immature myeloid suppressor cells. Int. Immunol. 14, 1125–1134 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Giordanengo, L. et al. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur. J. Immunol. 32, 1003–1011 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Voisin, M. B., Buzoni-Gatel, D., Bout, D. & Velge-Roussel, F. Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect. Immun. 72, 5487–5492 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Delano, M. J. et al. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 204, 1463–1474 (2007). This is the first demonstration of a direct role for TLR signalling in the expansion of MDSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sunderkotter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172, 4410–4417 (2004).

    Article  PubMed  Google Scholar 

  28. Terrazas, L. I., Walsh, K. L., Piskorska, D., McGuire, E. & Harn, D. A. Jr. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J. Immunol. 167, 5294–5303 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Garcia, L. et al. Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol. 27, 395–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Brys, L. et al. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J. Immunol. 174, 6095–6104 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Mencacci, A. et al. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J. Immunol. 169, 3180–3190 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Ezernitchi, A. V. et al. TCR ζ down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J. Immunol. 177, 4763–4772 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Kerr, E. C., Raveney, B. J., Copland, D. A., Dick, A. D. & Nicholson, L. B. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J. Autoimmun. 31, 354–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Marhaba, R. et al. The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J. Immunol. 179, 5071–5081 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Haile, L. A. et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135, 871–881 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Makarenkova, V. P., Bansal, V., Matta, B. M., Perez, L. A. & Ochoa, J. B. CD11b+/Gr-1+ myeloid suppressor cells cause T cell dysfunction after traumatic stress. J. Immunol. 176, 2085–2094 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Bronte, V. et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 161, 5313–5320 (1998).

    CAS  PubMed  Google Scholar 

  38. Cauley, L., Miller, E., Yen, M. & Swain, S. Superantigen-induced CD4 T cell tolerance mediated by myeloid cells and IFN-γ. J. Immunol. 165, 6056–6066 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Pan, P. Y. et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111, 219–228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sinha, P., Clements, V. K., Fulton, A. M. & Ostrand-Rosenberg, S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67, 4507–4513 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Serafini, P. et al. High-dose GM-CSF-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64, 6337–6343 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bunt, S. K. et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 67, 10019–10026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    CAS  PubMed  Google Scholar 

  44. Bromberg, J. Stat proteins and oncogenesis. J. Clin. Invest. 109, 1139–1142 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nefedova, Y. et al. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525–9535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nefedova, Y. et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 172, 464–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Med. 11, 1314–1321 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Foell, D., Wittkowski, H., Vogl, T. & Roth, J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J. Leukoc. Biol. 81, 28–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Cheng, P. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235–2249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sinha, P. et al. Proinflammatory s100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666–4675 (2008). References 49 and 50 describe a new role for S100 proteins in the regulation of MDSC expansion in cancer.

    Article  CAS  PubMed  Google Scholar 

  51. Turovskaya, O. et al. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 29, 2035–2043 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kusmartsev, S. & Gabrilovich, D.I. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J. Immunol. 174, 4880–4891 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kusmartsev, S., Nagaraj, S. & Gabrilovich, D. I. Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J. Immunol. 175, 4583–4592 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Bronte, V. et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J. Immunol. 170, 270–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Rutschman, R. et al. Cutting Edge: Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166, 2173–2177 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Sinha, P., Clements, V. K. & Ostrand-Rosenberg, S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 65, 11743–11751 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Terabe, M. et al. Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J. Exp. Med. 198, 1741–1752 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Serafini, P., Mgebroff, S., Noonan, K. & Borrello, I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68, 5439–5449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  Google Scholar 

  60. Rodriguez, P. C. & Ochoa, A. C. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectives. Immunol. Rev. 222, 180–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rodriguez, P. C. et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J. Exp. Med. 202, 931–939 (2005). This study shows that prostaglandin E2 has an important role in MDSC-mediated T-2011 cell suppression and suggests a new therapeutic target for the treatment of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodriguez, P. C. et al. Regulation of T cell receptor CD3ζ chain expression by L-arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bingisser, R., Tilbrook, P., Holt, P. & Kees, U. Macrophage-derived nitric oxide regulates T-cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160, 5729–5734 (1998).

    CAS  PubMed  Google Scholar 

  65. Harari, O. & Liao, J. K. Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr. Pharm. Des. 10, 893–898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rivoltini, L. et al. Immunity to cancer: attack and escape in T lymphocyte–tumor cell interaction. Immunol. Rev. 188, 97–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Szuster-Ciesielska, A., Hryciuk-Umer, E., Stepulak, A., Kupisz, K. & Kandefer-Szerszen, M. Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxidative enzyme activity in their blood. Acta Oncol. 43, 252–258 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Waris, G. & Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog. 5, 14 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Mantovani, G. et al. Antioxidant agents are effective in inducing lymphocyte progression through cell cycle in advanced cancer patients: assessment of the most important laboratory indexes of cachexia and oxidative stress. J. Mol. Med. 81, 664–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Agostinelli, E. & Seiler, N. Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids 31, 341–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Sauer, H., Wartenberg, M. & Hescheler, J. Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11, 173–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Vickers, S. M., MacMillan-Crow, L. A., Green, M., Ellis, C. & Thompson, J. A. Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch. Surg. 134, 245–251 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Cobbs, C. S. et al. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 63, 8670–8673 (2003).

    CAS  PubMed  Google Scholar 

  74. Bentz, B. G., Haines, G. K. 3rd & Radosevich, J. A. Increased protein nitrosylation in head and neck squamous cell carcinogenesis. Head Neck 22, 64–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Dairou, J., Dupret, J. M. & Rodrigues-Lima, F. Impairment of the activity of the xenobiotic-metabolizing enzymes arylamine N-acetyltransferases 1 and 2 (NAT1/NAT2) by peroxynitrite in mouse skeletal muscle cells. FEBS Lett. 579, 4719–4723 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ekmekcioglu, S. et al. Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin. Cancer Res. 6, 4768–4775 (2000).

    CAS  PubMed  Google Scholar 

  77. Kinnula, V. L. et al. Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am. J. Respir. Cell Mol. Biol. 31, 147–153 (2004).

    Article  CAS  Google Scholar 

  78. Nakamura, Y. et al. Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin. Cancer Res. 12, 1201–1207 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Bronte, V. et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med. 201, 1257–1268 (2005). This paper shows that peroxynitrite could be involved in T-2011 cell suppression in tumour tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nagaraj, S. et al. Altered recognition of antigen is a novel mechanism of CD8+ T cell tolerance in cancer. Nature Med. 13, 828–835 (2007). This paper describes the mechanism of MDSC-mediated CD8+T-2011 cell tolerance that involves post-translational modification of the TCR by peroxynitrite.

    Article  CAS  PubMed  Google Scholar 

  81. Dugast, A. S. et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J. Immunol. 180, 7898–7906 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Kusmartsev, S., Li, Y. & Chen, S.-H. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Watanabe, S. et al. Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J. Immunol. 181, 3291–3300 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Stoll, S., Delon, J., Brotz, T. M. & Germain, R. N. Dynamic imaging of T cell–dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

    Article  PubMed  Google Scholar 

  85. Miller, M. J., Safrina, O., Parker, I. & Cahalan, M. D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gabrilovich, D. I., Velders, M., Sotomayor, E. & Kast, W. M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Willimsky, G. et al. Immunogenicity of premalignant lesions is the primary cause of general cytotoxic T lymphocyte unresponsiveness. J. Exp. Med. 205, 1687–1700 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Monu, N. & Frey, A. B. Suppression of proximal T cell receptor signaling and lytic function in CD8+ tumor-infiltrating T cells. Cancer Res. 67, 11447–11454 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fricke, I. et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin. Cancer Res. 13, 4840–4848 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Antonia, S. J. et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 12, 878–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Muller, A. J. & Prendergast, G. C. Indoleamine 2, 3-dioxygenase in immune suppression and cancer. Curr. Cancer Drug Targets 7, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Hengesbach, L. & Hoag, K. Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J. Nutr. 134, 2653–2659 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kuwata, T. et al. Vitamin A deficiency in mice causes a systemic expansion of myeloid cells. Blood 95, 3349–3356 (2000).

    CAS  PubMed  Google Scholar 

  95. Walkley, C., Yuan, Y., Chandraratna, R. & McArthur, G. Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis. Leukemia 16, 1763–1772 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).

    CAS  PubMed  Google Scholar 

  97. Nefedova, Y. et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67, 11021–11028 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Lathers, D., Clark, J., Achille, N. & Young, M. Phase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3. Cancer Immunol. Immunother. 53, 422–430 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Fricke, I. et al. Treatment of cancer patients with VEGF-Trap overcomes defects in DC differentiation but is insufficient to improve antigen-specific immune responses. Clin. Cancer Res. 13, 4840–4848 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Kusmartsev, S. et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J. Immunol. 181, 346–353 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. & Colombo, M. P. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438–11446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Talmadge, J. E. et al. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int. Immunopharmacol. 7, 140–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Zea, A. H. et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. De Santo, C. et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl Acad. Sci. USA 102, 4185–4190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Suzuki, E., Kapoor, V., Jassar, A. S., Kaiser, L. R. & Albelda, S. M. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin. Cancer Res. 11, 6713–6721 (2005). References 21 and 104–106 show different therapeutic options of eliminating MDSCs or their activity for the treatment of cancer.

    Article  CAS  PubMed  Google Scholar 

  107. Ko, H. J. et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res. 67, 7477–7486 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Ishida, T. et al. Dendritic cells transduced with wild type p53 gene elicit potent antitumor immune responses. Clinic. Exper. Immunol. 117, 244–251 (1999).

    Article  CAS  Google Scholar 

  109. Ishida, T., Oyama, T., Carbone, D. & Gabrilovich, D. I. Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hematopoietic progenitors. J. Immunol. 161, 4842–4851 (1998).

    CAS  PubMed  Google Scholar 

  110. Shojaei, F. & Ferrara, N. Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Res. 68, 5501–5504 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. van Cruijsen, H. et al. Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clin. Dev. Immunol. 2007, 17315 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol. 25, 911–920 (2007).

    Article  CAS  Google Scholar 

  113. Bronte, V. et al. Unopposed production of granulocyte–macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cellmaturation. J. Immunol. 162, 5728–5737 (1999).

    CAS  PubMed  Google Scholar 

  114. Young, M., Wright, M. & Young, M. Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol. Immunother. 33, 146–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  115. Young, M. R. & Lathers, D. M. Myeloid progenitor cells mediate immune suppression in patients with head and neck cancers. Int. J. Immunopharmacol. 21, 241–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Fu, Y., Watson, G., Jimenez, J., Wang, Y. & Lopez, D. Expansion of immunoregulatory macrophages by granulocyte–macrophage colony-stimulating factor derived from a murine mammary tumor. Cancer Res. 50, 227–234 (1990).

    CAS  PubMed  Google Scholar 

  117. Daud, A. I. et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J. Clin. Oncol. 26, 3235–3241 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Filipazzi, P. et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte–macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25, 2546–2553 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Sawanobori, Y. et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111, 5457–5466 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage-colony-stimulating factor. Blood 92, 4778–4791 (1998).

    CAS  PubMed  Google Scholar 

  121. Birkle, S., Zeng, G., Gao, L., Yu, R. K. & Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie 85, 455–463 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Shurin, G. V. et al. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 61, 363–369 (2001).

    CAS  PubMed  Google Scholar 

  123. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Huang, B. et al. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 252, 86–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nature Immunol. 9, 1225–1235 (2008).

    Article  CAS  Google Scholar 

  127. Yang, L. et al. Abrogation of TGFβ signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Young, M. R. I., Wright, M. A., Matthews, J. P., Malik, I. & Pandit, R. Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J. Immunol. 156, 1916–1921 (1996).

    CAS  PubMed  Google Scholar 

  129. Beck, C., Schreiber, K., Schreiber, H. & Rowley, D. A. C-kit+ FcR+ myelocytes are increased in cancer and prevent the proliferation of fully cytolytic T cells in the presence of immune serum. Eur. J. Immunol. 33, 19–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Bunt, S. K., Sinha, P., Clements, V. K., Leips, J. & Ostrand-Rosenberg, S. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J. Immunol. 176, 284–290 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Song, X. et al. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1β-secreting cells. J. Immunol. 175, 8200–8208 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Drevets, D. A. et al. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J. Immunol. 172, 4418–4424 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Gabrilovich laboratory for their contributions. We apologize to those colleagues whose data we could not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Gabrilovich.

Related links

Glossary

Sepsis

A systemic response to severe infection or tissue damage that leads to a hyperactive and unbalanced network of pro-inflammatory mediators. Vascular permeability, cardiac function and metabolic balance are affected, resulting in tissue necrosis, multi-organ failure and death.

Complete Freund's adjuvant

An oil that contains an emulsifying agent and killed mycobacteria, which increase the immune response to an immunogen. For administration, a water-in-oil emulsion is made with a solution that contains the immunogen of interest.

Experimental autoimmune encephalomyelitis

(EAE). An animal model of the human autoimmune disease multiple sclerosis. EAE is induced in experimental animals by immunization with myelin or peptides that are derived from myelin. The animals develop a paralytic disease with inflammation and demyelination in the brain and spinal cord.

Myelopoiesis

The process of differentiation of common myeloid progenitor cells to polymorphonuclear leukocytes and monocytes.

Tumour immunosurveillance

The process of recognition of tumour antigens and elimination of the tumours by the immune system.

T-cell anergy

A state of T-cell unresponsiveness to stimulation with antigen. It can be induced by stimulation with a large amount of specific antigen in the absence of the engagement of co-stimulatory molecules.

Regulatory T (TReg) cells

A specialized type of CD4+ T cell that can suppress the responses of other immune cells. These cells provide a crucial mechanism for the maintenance of peripheral self tolerance and are characterized by the expression of CD25 and the transcription factor forkhead box P3.

Tumour-associated macrophage

A cell that differentiates from circulating blood monocytes and myeloid-derived suppressor cells that have infiltrated tumours. These cells can have positive or negative effects on tumorigenesis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabrilovich, D., Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9, 162–174 (2009). https://doi.org/10.1038/nri2506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing