Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Monoclonal antibodies: versatile platforms for cancer immunotherapy

Key Points

  • The past century has witnessed the evolution of the 'magic bullet' from concept to clinical reality. Therapeutic antibodies have been established as 'standard of care' agents for several human cancers.

  • Therapeutic antibodies possess unique and multiple clinically relevant antitumour mechanisms: these include antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and the induction of T cell immunity through cross-presentation.

  • Antibodies directed against elements of the tumour microenvironment might synergize with antibodies targeting tumour antigens and provide enhanced therapeutic benefit.

  • Fc receptors for IgG (FcγRs) provide a key link between therapeutic antibodies and the cellular immune system and enable monoclonal antibodies to induce adaptive immune responses. Antibody-induced antitumour adaptive immunity against tumour-specific antigens might already contribute to the patterns of delayed and prolonged antitumour responses seen when antibodies are used alone or in combination with chemotherapy.

  • Monoclonal antibodies can exert synergistic antitumour effects in combination with other immunomodulatory approaches such as chemotherapy, radiotherapy, targeted therapy agents, vaccines or other immunomodulators.

  • Advances in protein engineering have provided platforms for the development of novel antibody constructs, such as bispecific T cell engager (BiTE) molecules, as well as engineered protein scaffolds, such as designed ankyrin repeat domains (DARPins) and adnectins.

Abstract

Antibodies are important therapeutic agents for cancer. Recently, it has become clear that antibodies possess several clinically relevant mechanisms of action. Many clinically useful antibodies can manipulate tumour-related signalling. In addition, antibodies exhibit various immunomodulatory properties and, by directly activating or inhibiting molecules of the immune system, antibodies can promote the induction of antitumour immune responses. These immunomodulatory properties can form the basis for new cancer treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IgG structure and function.
Figure 2: Antitumour mechanisms mediated by IgG–FcγR interactions.

Similar content being viewed by others

References

  1. Ehrlich, P. Collected studies on immunity. (New York: J. Wiley & Sons, 1906).

    Google Scholar 

  2. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Dunkelberger, J. R. & Song, W. C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Zipfel, P. F. & Skerka, C. Complement regulators and inhibitory proteins. Nature Rev. Immunol. 9, 729–740 (2009).

    Article  CAS  Google Scholar 

  5. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors: old friends and new family members. Immunity 24, 19–28 (2006). A comprehensive review of FcγR biology and the importance of FcγR interactions in modulating the immune response.

    Article  CAS  PubMed  Google Scholar 

  6. Roopenian, D. C. & Akilesh, S. FcRn: the neonatal Fc receptor comes of age. Nature Rev. Immunol. 7, 715–725 (2007).

    Article  CAS  Google Scholar 

  7. Yeung, Y. A. et al. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J. Immunol. 182, 7663–7671 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Qiao, S. W. et al. Dependence of antibody-mediated presentation of antigen on FcRn. Proc. Natl Acad. Sci. USA 105, 9337–9342 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotechnol. 23, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  10. Sunada, H., Magun, B. E., Mendelsohn, J. & MacLeod, C. L. Monoclonal antibody against epidermal growth factor receptor is internalized without stimulating receptor phosphorylation. Proc. Natl Acad. Sci. USA 83, 3825–3829 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, S. et al. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7, 301–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kim, R. Cetuximab and panitumumab: are they interchangeable? Lancet Oncol. 10, 1140–1141 (2009).

    Article  PubMed  Google Scholar 

  13. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Kuenen, B. et al. A phase I pharmacologic study of necitumumab (IMC-11F8), a fully human IgG1 monoclonal antibody directed against EGFR in patients with advanced solid malignancies. Clin. Cancer Res. 16, 1915–1923 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Li, D. et al. Therapeutic anti-EGFR antibody 806 generates responses in murine de novo EGFR mutant-dependent lung carcinomas. J. Clin. Invest. 117, 346–352 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gan, H. K. et al. Targeting a unique EGFR epitope with monoclonal antibody 806 activates NF-κB and initiates tumor vascular normalization. J. Cell. Mol. Med. 13, 3993–4001 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Scott, A. M. et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc. Natl Acad. Sci. USA 104, 4071–4076 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, J. S., Lan, K. & Hung., M. C. Strategies to target HER2/neu overexpression for cancer therapy. Drug Resist. Updat. 6, 129–136 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hudis, C. A. Trastuzumab — mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Franklin, M. C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Scheuer, W. et al. Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Res. 69, 9330–9336 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Schoeberl, B. et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci. Signal. 2, ra31 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Hollmen, M., Maatta, J. A., Bald, L., Sliwkowski, M. X. & Elenius, K. Suppression of breast cancer cell growth by a monoclonal antibody targeting cleavable ErbB4 isoforms. Oncogene 28, 1309–1319 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Rev. Cancer 8, 579–591 (2008).

    Article  CAS  Google Scholar 

  26. Krupitskaya, Y. & Wakelee, H. A. Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr. Opin. Investig. Drugs 10, 597–605 (2009).

    CAS  PubMed  Google Scholar 

  27. Mackey, J. et al. TRIO-012: a multicenter, multinational, randomized, double-blind phase III study of IMC-1121B plus docetaxel versus placebo plus docetaxel in previously untreated patients with HER2-negative, unresectable, locally recurrent or metastatic breast cancer. Clin. Breast Cancer 9, 258–261 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, Y. et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin. Cancer Res. 12, 6573–6584 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Hirschi, K. K., Rohovsky, S. A. & D'Amore, P. A. PDGF, TGF-β, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J. Cell Biol. 141, 805–814 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shen, J. et al. Development of a fully human anti-PDGFRβ antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia 11, 594–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quezada, S. A., Jarvinen, L. Z., Lind, E. F. & Noelle, R. J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 229, 152–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Khalil, M. & Vonderheide, R. H. Anti-CD40 agonist antibodies: preclinical and clinical experience. Update Cancer Ther. 2, 61–65 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oflazoglu, E. et al. Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br. J. Cancer 100, 113–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Advani, R. et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J. Clin. Oncol. 27, 4371–4377 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996). The first report that CTLA4 blockade can enhance antitumour immunity and promote tumour clearance.

    Article  CAS  PubMed  Google Scholar 

  37. Shrikant, P., Khoruts, A. & Mescher, M. F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11, 483–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarnaik, A. A. & Weber, J. S. Recent advances using anti-CTLA-4 for the treatment of melanoma. Cancer J. 15, 169–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Small, E. J. et al. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13, 1810–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Weber, J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol. Immunother. 58, 823–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grutter, C. et al. A cytokine-neutralizing antibody as a structural mimetic of 2 receptor interactions. Proc. Natl Acad. Sci. USA 105, 20251–20256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Petrausch, U. et al. Disruption of TGF-β signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. J. Immunol. 183, 3682–3689 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  47. Hong, H. et al. Depletion of CD4+CD25+ regulatory T cells enhances natural killer T cell-mediated anti-tumour immunity in a murine mammary breast cancer model. Clin. Exp. Immunol. 159, 93–99 (2009).

    Article  PubMed  CAS  Google Scholar 

  48. Rech, A. J. & Vonderheide, R. H. Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann. N. Y Acad. Sci. 1174, 99–106 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Lazar, G. A. et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl Acad. Sci. USA 103, 4005–4010 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kubota, T. et al. Engineered therapeutic antibodies with improved effector functions. Cancer Sci. 100, 1566–1572 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nature Med. 6, 443–446 (2000). This study shows that Fc receptor-dependent mechanisms contribute substantially to the antitumour effects of antibodies, indicating that an optimal antibody against tumours should bind preferentially to activating Fc receptors and minimally to the inhibitory FcγRIIB.

    Article  CAS  PubMed  Google Scholar 

  52. Cartron, G. et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99, 754–758 (2002). The first study to show that responsiveness to antibody therapy is associated with polymorphisms in genes encoding FcγRIII in patients. It strongly implicates the importance of Fc–FcγR dependent interactions, such as ADCC, in the antitumour activity of rituximab.

    Article  CAS  PubMed  Google Scholar 

  53. Weng, W. K. & Levy, R. Two immunoglobulin G. fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Musolino, A. et al. Immunoglobulin G. fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J. Clin. Oncol. 26, 1789–1796 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Bibeau, F. et al. Impact of FcγRIIa–FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J. Clin. Oncol. 27, 1122–1129 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Horton, H. M. et al. Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia. Cancer Res. 68, 8049–8057 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Zalevsky, J. et al. The impact of Fc engineering on an anti-CD19 antibody: increased Fcγ receptor affinity enhances B-cell clearing in nonhuman primates. Blood 113, 3735–3743 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Lundin, J. et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood 100, 768–773 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Di Gaetano, N. et al. Complement activation determines the therapeutic activity of rituximab in vivo. J. Immunol. 171, 1581–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Cragg, M. S. & Glennie, M. J. Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 103, 2738–2743 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Racila, E. et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin. Cancer Res. 14, 6697–6703 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coiffier, B. et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood 111, 1094–1100 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, S. Y. et al. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood 4, 5322–5330 (2009).

    Article  CAS  Google Scholar 

  64. Cartron, G., Watier, H., Golay, J. & Solal-Celigny, P. From the bench to the bedside: ways to improve rituximab efficacy. Blood 104, 2635–2642 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Berard, F. et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med. 192, 1535–1544 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoffmann, T. K., Meidenbauer, N., Dworacki, G., Kanaya, H. & Whiteside, T. L. Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res. 60, 3542–3549 (2000).

    CAS  PubMed  Google Scholar 

  68. Dhodapkar, K. M., Krasovsky, J., Williamson, B. & Dhodapkar, M. V. Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J. Exp. Med. 195, 125–133 (2002). An important study describing cross-presentation as one potential mechanism of action of cancer-specific monoclonal antibodies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dhodapkar, K. M. et al. Selective blockade of inhibitory Fcγ receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl Acad. Sci. USA 102, 2910–2915 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haynes, N. M., van der Most, R. G., Lake, R. A. & Smyth, M. J. Immunogenic anti-cancer chemotherapy as an emerging concept. Curr. Opin. Immunol. 20, 545–557 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004). An important clinical trial that led to the approval of combined bevacizumab with chemotherapy for the treatment of metastatic colorectal cancer.

    Article  CAS  PubMed  Google Scholar 

  72. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001). A Phase III clinical trial that was important for the approval of combined trastuzumab with chemotherapy to treat patients with HER2-overexpressing metastatic breast cancer.

    Article  CAS  PubMed  Google Scholar 

  73. Taylor, C. et al. Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin. Cancer Res. 13, 5133–5143 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Forstpointner, R. et al. The addition of rituximab to a combination of fludarabine, cyclophosphamide, mitoxantrone (FCM) significantly increases the response rate and prolongs survival as compared with FCM alone in patients with relapsed and refractory follicular and mantle cell lymphomas: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 104, 3064–3071 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. McBride, W. H. et al. A sense of danger from radiation. Radiat. Res. 162, 1–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Bonner, J. A. et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 11, 21–28 (2009).

    Article  PubMed  CAS  Google Scholar 

  78. Willett, C. G. et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J. Clin. Oncol. 27, 3020–3026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gulley, J. L. et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin. Cancer Res. 11, 3353–3362 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Roses, R. E., Xu, M., Koski, G. K. & Czerniecki, B. J. Radiation therapy and Toll-like receptor signaling: implications for the treatment of cancer. Oncogene 27, 200–207 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Khan, K. D. et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma. Clin. Cancer Res. 12, 7046–7053 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Alpaugh, R. K. et al. Phase IB trial for malignant melanoma using R24 monoclonal antibody, interleukin-2/α-interferon. Med. Oncol. 15, 191–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. van der Kolk, L. E., Grillo-Lopez, A. J., Baars, J. W. & van Oers, M. H. Treatment of relapsed B-cell non-Hodgkin's lymphoma with a combination of chimeric anti-CD20 monoclonal antibodies (rituximab) and G-CSF: final report on safety and efficacy. Leukemia 17, 1658–1664 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Gilman, A. L. et al. Phase I study of ch14.18 with granulocyte-macrophage colony-stimulating factor and interleukin-2 in children with neuroblastoma after autologous bone marrow transplantation or stem-cell rescue: a report from the Children's Oncology Group. J. Clin. Oncol. 27, 85–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Huang, X. et al. Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2–IgG fusion protein. Cancer Res. 62, 5727–5735 (2002).

    CAS  PubMed  Google Scholar 

  86. Matar, P. et al. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin. Cancer Res. 10, 6487–6501 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Ramalingam, S. et al. Dual inhibition of the epidermal growth factor receptor with cetuximab, an IgG1 monoclonal antibody, and gefitinib, a tyrosine kinase inhibitor, in patients with refractory non-small cell lung cancer (NSCLC): a phase I study. J. Thorac. Oncol. 3, 258–264 (2008).

    Article  PubMed  Google Scholar 

  88. Scaltriti, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Blackwell, K. L. et al. Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J. Clin. Oncol. 28, 1124–1130 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Takaku, S. et al. Blockade of TGF-β enhances tumor vaccine efficacy mediated by CD8+T cells. Int. J. Cancer 126, 1666–1674 (2009).

    Google Scholar 

  92. Terabe, M. et al. Synergistic enhancement of CD8+ T cell-mediated tumor vaccine efficacy by an anti-transforming growth factor-β monoclonal antibody. Clin. Cancer Res. 15, 6560–6569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Disis, M. L. et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J. Clin. Oncol. 27, 4685–4692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wolf, E., Hofmeister, R., Kufer, P., Schlereth, B. & Baeuerle, P. A. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov. Today 10, 1237–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Brischwein, K. et al. MT110: a novel bispecific single-chain antibody construct with high efficacy in eradicating established tumors. Mol. Immunol. 43, 1129–1143 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Gebauer, M. & Skerra, A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13, 245–255 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Mamluk, R. et al. Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. mAbs 2, 199–208 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Jahrsdorfer, B. & Weiner, G. J. Immunostimulatory CpG oligodeoxynucleotides and antibody therapy of cancer. Semin. Oncol. 30, 476–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Metelitsa, L. S. et al. Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcγRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood 99, 4166–4173 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Pages, F. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29, 1093–1102 (2009).

    Article  PubMed  CAS  Google Scholar 

  101. Tassi, E. et al. Non-redundant role for IL-12 and IL-27 in modulating Th2 polarization of carcinoembryonic antigen specific CD4 T cells from pancreatic cancer patients. PLoS ONE 4, e7234 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  Google Scholar 

  105. McLaughlin, P. et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351, 337–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Weiner, L. M. et al. Dose and schedule study of panitumumab monotherapy in patients with advanced solid malignancies. Clin. Cancer Res. 14, 502–508 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Wierda, W. G. et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J. Clin. Oncol. 1 Mar 2010 (doi:10.1200/JCO.2009.25.3187).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sievers, E. L. et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93, 3678–3684 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Witzig, T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 20, 2453–2463 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Kaminski, M. S. et al. Radioimmunotherapy with iodine 131I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood 96, 1259–1266 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Gough, M. J. et al. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor. Cancer Res. 68, 5206–5215 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Berger, R. et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 14, 3044–3051 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Molckovsky, A. & Siu, L. L. First-in-class, first-in-human phase I results of targeted agents: Highlights of the 2008 American Society of Clinical Oncology meeting. J. Hematol. Oncol. 1, 20–29 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Murillo, O. et al. Therapeutic antitumor efficacy of anti-CD137 agonistic monoclonal antibody in mouse models of myeloma. Clin. Cancer Res. 14, 6895–6906 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rudge, G., Barrett, S. P., Scott, B. & van Driel, I. R. Infiltration of a mesothelioma by IFN-γ-producing cells and tumor rejection after depletion of regulatory T cells. J. Immunol. 178, 4089–4096 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Shahied, L. S. et al. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J. Biol. Chem. 279, 53907–53914 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.M.W. and S.W. are supported by the US National Institutes of Health (grants CA51008, CA50633 and CA121033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis M. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Louis M. Weiner's homepage

GC1008 clincal trial

MT110 clincal trial

Glossary

Monoclonal antibodies

Antibodies containing uniform variable regions and thus specific for a single epitope. Originally, monoclonal antibodies were derived from a single B lymphocyte clone. Genetic manipulation now allows genes from multiple sources of B lymphocytes (for example, mouse and human) to be combined.

Chimeric antibody

An antibody encoded by genes from more than one species, usually with antigen-binding regions from mouse genes and constant regions from human genes. The aim of this process is to prevent a mouse-specific antibody response in humans treated with the antibody.

Humanized antibody

A genetically engineered mouse antibody in which the protein sequence has been modified to increase the similarity of the antibody to human antibodies. This is to prevent a mouse-specific antibody response in humans treated with the antibody.

Human epidermal growth factor receptor 2

(HER2; also known as ERBB2). A type I membrane glycoprotein that is a member of the ERBB family of tyrosine kinase receptors. This tumour-associated antigen is overexpressed in 10–40% of breast cancer and other carcinomas.

Complement-dependent cytotoxicity

(CDC). A mechanism of killing cells in which antibody, bound to the target cell surface, fixes complement, which results in assembly of the membrane attack complex that punches holes in the target cell membrane resulting in subsequent cell lysis.

Immunoreceptor tyrosine-based activation motif

(ITAM). A sequence that is present in the cytoplasmic domains of the invariant chains of various cell-surface immune receptors. Following phosphorylation of their tyrosine residues, ITAMs function as docking sites for SRC homology 2 (SH2)-domain-containing tyrosine kinases and adaptor molecules, thereby facilitating intracellular-signalling cascades.

Immunoreceptor tyrosine-based inhibitory motif

(ITIM). A motif that is present in the cytoplasmic domain of several inhibitory receptors. After ligand binding, ITIMs are tyrosine phosphorylated and recruit inhibitory phosphatases.

Antibody-dependent cell-mediated cytotoxicity

(ADCC). A mechanism by which NK cells kill other cells; for example, virus-infected target cells that are coated with antibodies. The Fc portions of the coating antibodies interact with Fc receptors that are expressed by NK cells, thereby initiating signalling cascades that result in the release of cytotoxic granules (containing perforin and granzyme B), which induce apoptosis of the antibody-coated cell.

Cross-presentation

The ability of certain antigen-presenting cells to load peptides that are derived from exogenous antigens onto MHC class I molecules and present these at the cell surface. This property is atypical, as most cells exclusively present peptides derived from endogenous proteins on MHC class I molecules.

Angiogenesis

The process of developing new blood vessels. Angiogenesis is important in the normal development of the embryo and fetus. It is also important for tumour growth.

FOLFIRI chemotherapy

A chemotherapy regimen for the treatment of colorectal cancer, made up of the drug folinic acid (Leucovorin), fluorouracil (5-FU) and irinotecan (Camptosar).

Heregulin

A family of ligands known to bind the HER3 and HER4 receptors, also capable of inducing phosphorylation of HER2.

Regulatory T (TReg) cell

A type of CD4+ T cell that is characterized by its expression of forkhead box P3 (FOXP3) and high levels of CD25. TReg cells can suppress many types of immune responses.

Tumour-associated antigens

Antigens that are expressed by tumour cells. These belong to three main categories: tissue-differentiation antigens (which are also expressed by non-malignant cells), mutated or aberrantly expressed molecules and cancer testis antigens, which are normally expressed only by spermatocytes and occasionally in the placenta.

Bispecific antibody

Antibodies engineered to express two distinct antigen binding sites. They are most often used therapeutically to physically cross-link a tumour cell and an immune effector cell.

Co-stimulation

Receptor-mediated signals required in addition to antigen-receptor engagement to achieve complete lymphocyte activation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, L., Surana, R. & Wang, S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 10, 317–327 (2010). https://doi.org/10.1038/nri2744

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2744

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer