Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the development of lymphoid tissues

Key Points

  • The earliest event in lymph node development is the initial clustering of lymphoid-tissue inducer (LTi) cells at the location where lymph nodes will form. Attraction to this location is regulated by expression of CXC-chemokine ligand 13 (CXCL13). Recent studies suggest that this might be induced by retinoic acid produced by nearby nerve fibres.

  • Both lymph node and Peyer's patch development require the induction of lymphotoxin-α1β2 (LTα1β2) expression by LTi cells, which enables them to interact with lymphotoxin-β receptor (LTβR) expressed by stromal organizer cells. Signalling through LTβR on stromal organizer cells leads to the expression of chemokines, adhesion molecules and cytokines that are required for the attraction, retention and survival of haematopoietic cells in the developing lymphoid tissue.

  • The formation of mucosal-associated lymphoid tissues differs from the formation of lymph nodes and Peyer's patches. For nasopharynx-associated lymphoid tissues, the homeostatic chemokines are not needed, whereas for tear duct-associated lymphoid tissue LTi cells are not necessary, and both can form independently of LTβR signalling.

  • During chronic inflammation tertiary lymphoid structures form directly at the site of inflammation. When they develop in response to a viral infection they contribute to the production of antiviral immunity and can be viewed as beneficial for the host. By contrast, those that develop in autoimmune diseases may support the activation of autoreactive cells.

Abstract

Secondary lymphoid organs are important locations for the initiation of adaptive immune responses. They develop before birth, and their formation requires interaction between lymphotoxin-α1β2-expressing lymphoid-tissue inducer cells and lymphotoxin-β receptor-expressing stromal organizer cells. Here, we discuss new insights into the earliest phases of peripheral lymph node and Peyer's patch formation that occur before lymphotoxin-β receptor signalling and suggest a role for the developing nervous system. In addition, we discuss the differing requirements for the postnatal formation of mucosa-associated lymphoid tissues and tertiary lymphoid structures that develop at sites of chronic inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differentiation of lymphoid-tissue inducer cells from interleukin-7 receptor-α+ lymphoid progenitors.
Figure 2: Phases of lymph node formation.
Figure 3: Phases of Peyer's patch formation.

Similar content being viewed by others

References

  1. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Grabner, R. et al. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wengner, A. M. et al. CXCR5- and CCR7-dependent lymphoid neogenesis in a murine model of chronic antigen-induced arthritis. Arthritis Rheum. 56, 3271–3283 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Shields, J. D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. van de Pavert, S. A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nature Immunol. 10, 1193–1199 (2009). This manuscript documents the crucial role of retinoic acid, potentially derived from nerve fibres, for the development of peripheral lymph nodes through its capacity to induce CXCL13.

    Article  CAS  Google Scholar 

  6. Veiga-Fernandes, H. et al. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446, 547–551 (2007). This paper shows that RET-expressing CD11c+ cells initiate the formation of Peyer's patches on encountering RET ligands.

    Article  CAS  PubMed  Google Scholar 

  7. Mebius, R. E. Organogenesis of lymphoid tissues. Nature Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  8. Yoshida, H. et al. Different cytokines induce surface lymphotoxin-αβ on IL-7 receptor-α cells that differentially engender lymph nodes and Peyer's patches. Immunity 17, 823–833 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Vondenhoff, M. F. et al. LTβR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. J. Immunol. 182, 5439–5445 (2009). Here the authors propose that tight clustering of LTi cells is needed to allow TRANCER triggering on LTi cells, which is needed for the generation of the first LTα 1 β 2 -expressing LTi cells.

    Article  CAS  PubMed  Google Scholar 

  10. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol. 5, 64–73 (2004).

    Article  CAS  Google Scholar 

  11. Coles, M. C. et al. Role of T and NK cells and IL7/IL7R interactions during neonatal maturation of lymph nodes. Proc. Natl Acad. Sci. USA 103, 13457–13462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benezech, C. et al. Ontogeny of stromal organizer cells during lymph node development. J. Immunol. 184, 4521–4530 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Mebius, R. E. et al. The fetal liver counterpart of adult common lymphoid progenitors gives rise to all lymphoid lineages, CD45+CD4+CD3 cells, as well as macrophages. J. Immunol. 166, 6593–6601 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Yoshida, H. et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol. 167, 2511–2521 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Boos, M. D., Yokota, Y., Eberl, G. & Kee, B. L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007). By combining ID2 deficiency, which is required for the generation of LTi cells, with deficiency of E2A-encoded proteins, which are required for differentiation towards the B cell lineage, this article shows that ID2 is needed to suppress the activity of E proteins, as Id2−/−E2a−/− mice have LTi cells and form lymph nodes and Peyer's patches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nature Immunol. 10, 66–74 (2009). Here the authors describe human LTi cells and show that they can produce IL-17 and IL-22.

    Article  CAS  Google Scholar 

  18. Luther, S. A., Ansel, K. M. & Cyster, J. G. Overlapping roles of CXCL13, interleukin 7 receptorα, and CCR7 ligands in lymph node development. J. Exp. Med. 197, 1191–1198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Ohl, L. et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J. Exp. Med. 197, 1199–1204 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakano, H. & Gunn, M. D. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the Plt mutation. J. Immunol. 166, 361–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Vondenhoff, M. F. et al. Lymph sacs are not required for the initiation of lymph node formation. Development 136, 29–34 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Niederreither, K. & Dolle, P. Retinoic acid in development: towards an integrated view. Nature Rev. Genet. 9, 541–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Berggren, K., Ezerman, E. B., McCaffery, P. & Forehand, C. J. Expression and regulation of the retinoic acid synthetic enzyme RALDH-2 in the embryonic chicken wing. Dev. Dyn. 222, 1–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Ji, S. J. et al. Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons. Dev. Biol. 297, 249–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Sockanathan, S. & Jessell, T. M. Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Bekker, M. N. et al. Increased NCAM expression and vascular development in trisomy 16 mouse embryos: relationship with nuchal translucency. Pediatr. Res. 58, 1222–1227 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bekker, M. N. et al. Nuchal edema and venous-lymphatic phenotype disturbance in human fetuses and mouse embryos with aneuploidy. J. Soc. Gynecol. Investig. 13, 209–216 (2006).

    Article  PubMed  Google Scholar 

  30. Gittenberger-de Groot, A. C. et al. Abnormal lymphatic development in trisomy 16 mouse embryos precedes nuchal edema. Dev. Dyn. 230, 378–384 (2004).

    Article  PubMed  Google Scholar 

  31. Niederreither, K. et al. The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development 130, 2525–2534 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Fu, M. et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 137, 631–640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maden, M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nature Rev. Neurosci. 8, 755–765 (2007).

    Article  CAS  Google Scholar 

  34. Zhelyaznik, N. & Mey, J. Regulation of retinoic acid receptors α, β and retinoid X receptor α after sciatic nerve injury. Neuroscience 141, 1761–1774 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Zhelyaznik, N., Schrage, K., McCaffery, P. & Mey, J. Activation of retinoic acid signalling after sciatic nerve injury: up-regulation of cellular retinoid binding proteins. Eur. J. Neurosci. 18, 1033–1040 (2003).

    Article  PubMed  Google Scholar 

  36. Lu, X. et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179–186 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Eichmann, A., Makinen, T. & Alitalo, K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev. 19, 1013–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Jones, C. A. & Li, D. Y. Common cues regulate neural and vascular patterning. Curr. Opin. Genet. Dev. 17, 332–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oliver, G. & Alitalo, K. The lymphatic vasculature: recent progress and paradigms. Annu. Rev. Cell Dev. Biol. 21, 457–483 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Karpanen, T. & Alitalo, K. Molecular biology and pathology of lymphangiogenesis. Annu. Rev. Pathol. 3, 367–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Le, B. B. et al. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nature Neurosci. 9, 340–348 (2006).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, D. et al. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J. Exp. Med. 192, 1467–1478 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Honda, K. et al. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J. Exp. Med. 193, 621–630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cupedo, T., Jansen, W., Kraal, G. & Mebius, R. E. Induction of secondary and tertiary lymphoid structures in the skin. Immunity 21, 655–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Okamoto, N., Chihara, R., Shimizu, C., Nishimoto, S. & Watanabe, T. Artificial lymph nodes induce potent secondary immune responses in naive and immunodeficient mice. J. Clin. Invest. 117, 997–1007 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hashi, H. et al. Compartmentalization of Peyer's patch anlagen before lymphocyte entry. J. Immunol. 166, 3702–3709 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3CD4+CD45+ cells. Immunity 17, 31–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Harmsen, A. et al. Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-α (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα dependent. J. Immunol. 168, 986–990 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Fukuyama, S. et al. Cutting edge: uniqueness of lymphoid chemokine requirement for the initiation and maturation of nasopharynx-associated lymphoid tissue organogenesis. J. Immunol. 177, 4276–4280 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Rangel-Moreno, J. et al. Role of CXC chemokine ligand 13, CC chemokine ligand (CCL) 19, and CCL21 in the organization and function of nasal-associated lymphoid tissue. J. Immunol. 175, 4904–4913 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Krege, J., Seth, S., Hardtke, S., Valos-Misslitz, A. C. & Forster, R. Antigen-dependent rescue of nose-associated lymphoid tissue (NALT) development independent of LTβR and CXCR5 signaling. Eur. J. Immunol. 39, 2765–2778 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Nagatake, T. et al. Id2, RORγt, and LTβR-independent initiation of lymphoid organogenesis in ocular immunity. J. Exp. Med. 206, 2351–2364 (2009). In this study, the authors show that the development of lymphoid structures associated with the tear ducts occurs independently of LTi cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanamori, Y. et al. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J. Exp. Med. 184, 1449–1459 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Lugering, A. et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin. Exp. Immunol. 160, 440–449 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McDonald, K. G., McDonough, J. S., Dieckgraefe, B. K. & Newberry, R. D. Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues. Am. J. Pathol. 176, 2367–2377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Pabst, O. et al. Adaptation of solitary intestinal lymphoid tissue in response to microbiota and chemokine receptor CCR7 signaling. J. Immunol. 177, 6824–6832 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol. 11, 76–83 (2010).

    Article  CAS  Google Scholar 

  63. McDonald, K. G. et al. CC chemokine receptor 6 expression by B lymphocytes is essential for the development of isolated lymphoid follicles. Am. J. Pathol. 170, 1229–1240 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Randall, T. D., Carragher, D. M. & Rangel-Moreno, J. Development of secondary lymphoid organs. Annu. Rev. Immunol. 26, 627–650 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Rangel-Moreno, J. et al. Omental milky spots develop in the absence of lymphoid tissue-inducer cells and support B and T cell responses to peritoneal antigens. Immunity 30, 731–743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  Google Scholar 

  69. Moyron-Quiroz, J. E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nature Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rangel-Moreno, J., Moyron-Quiroz, J. E., Hartson, L., Kusser, K. & Randall, T. D. Pulmonary expression of CXC chemokine ligand 13, CC chemokine ligand 19, and CC chemokine ligand 21 is essential for local immunity to influenza. Proc. Natl Acad. Sci. USA 104, 10577–10582 (2007). By depletion of all secondary lymphoid organs, the authors show the crucial role of the homeostatic chemokines CXCL13, CCL21 and CCL19 for local B and T cell responses in the lungs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anderson, M. S. & Bluestone, J. A. The NOD mouse: a model of immune dysregulation. Ann. Rev. Immunol. 23, 447–485 (2005).

    Article  CAS  Google Scholar 

  73. Penaranda, C., Tang, Q., Ruddle, N. H. & Bluestone, J. A. Prevention of diabetes by FTY720-mediated stabilization of peri-islet tertiary lymphoid organs. Diabetes 59, 1461–1468 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, Y. et al. Recruitment and activation of naive T cells in the islets by lymphotoxin β receptor-dependent tertiary lymphoid structure. Immunity 25, 499–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, Q. et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J. Exp. Med. 193, 1327–1332 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Drayton, D. L., Liao, S., Mounzer, R. H. & Ruddle, N. H. Lymphoid organ development: from ontogeny to neogenesis. Nature Immunol. 7, 344–353 (2006).

    Article  CAS  Google Scholar 

  77. Carragher, D. M., Rangel-Moreno, J. & Randall, T. D. Ectopic lymphoid tissues and local immunity. Semin. Immunol. 20, 26–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Perrier, P. et al. Distinct transcriptional programs activated by interleukin-10 with or without lipopolysaccharide in dendritic cells: induction of the B cell-activating chemokine, CXC chemokine ligand 13. J. Immunol. 172, 7031–7042 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Carlsen, H. S., Baekkevold, E. S., Morton, H. C., Haraldsen, G. & Brandtzaeg, P. Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood 104, 3021–3027 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Columba-Cabezas, S. et al. Suppression of established experimental autoimmune encephalomyelitis and formation of meningeal lymphoid follicles by lymphotoxin β receptor-Ig fusion protein. J. Neuroimmunol. 179, 76–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Lotzer, K. et al. Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin β-receptor NF-κB signaling. Arterioscler. Thromb. Vasc. Biol. 30, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nature Immunol. 8, 1255–1265 (2007).

    CAS  Google Scholar 

  83. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hammerschmidt, S. I. et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J. Exp. Med. 205, 2483–2490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Molenaar, R. et al. Lymph node stromal cells support dendritic cell-induced gut-homing of T cells. J. Immunol. 183, 6395–6402 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008). This paper shows that AIRE-expressing stromal cells in secondary lymphoid organs are involved in deleting autoreactive T cells through expression of self antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fletcher, A. L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cohen, J. N. et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nichols, L. A. et al. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J. Immunol. 179, 993–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nature Immunol. 8, 181–190 (2007). This is the first paper to show the capacity of lymph node stromal cells to present peripheral tissue antigens to CD8+ T cells, leading to their activation and subsequent induction of tolerance.

    Article  CAS  Google Scholar 

  91. Katakai, T. et al. Organizer-like reticular stromal cell layer common to adult secondary lymphoid organs. J. Immunol. 181, 6189–6200 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Cupedo, T. et al. Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J. Immunol. 173, 2968–2975 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. White, A. et al. Lymphotoxin-α-dependent and -independent signals regulate stromal organiser cell homeostasis during lymph node organogenesis. Blood 110, 1950–1959 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Scandella, E. et al. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nature Immunol. 9, 667–675 (2008). This paper shows a role for LTi cells in restoring the organization of the spleen after a viral infection.

    Article  CAS  Google Scholar 

  95. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim, M. Y. et al. CD4+CD3 accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  98. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  100. Marchesi, F. et al. CXCL13 expression in the gut promotes accumulation of IL-22-producing lymphoid tissue-inducer cells, and formation of isolated lymphoid follicles. Mucosal Immunol. 2, 486–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hughes, T. et al. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22. Blood 113, 4008–4010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crellin, N. K., Trifari, S., Kaplan, C. D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med. 207, 281–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vivier, E., Spits, H. & Cupedo, T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nature Rev. Immunol. 9, 229–234 (2009).

    Article  CAS  Google Scholar 

  106. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 31, 15–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Ouyang, W., Kolls, J. K. & Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28, 454–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Mora, J. R., Iwata, M. & von Andrian, U. H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nature Rev. Immunol. 8, 685–698 (2008).

    Article  CAS  Google Scholar 

  111. Schug, T. T., Berry, D. C., Shaw, N. S., Travis, S. N. & Noy, N. Opposing effects of retinoic acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129, 723–733 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Niederreither, K., Fraulob, V., Garnier, J. M., Chambon, P. & Dolle, P. Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech. Dev. 110, 165–171 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Mora, J. R. et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314, 1157–1160 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nature Rev. Mol. Cell Biol. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

  117. Young, H. M. & Newgreen, D. Enteric neural crest-derived cells: origin, identification, migration, and differentiation. Anat. Rec. 262, 1–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Young, H. M., Jones, B. R. & McKeown, S. J. The projections of early enteric neurons are influenced by the direction of neural crest cell migration. J. Neurosci. 22, 6005–6018 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  120. Tracey, K. J. Reflex control of immunity. Nature Rev. Immunol. 9, 418–428 (2009).

    Article  CAS  Google Scholar 

  121. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2–STAT3 signaling pathway. Nature Immunol. 6, 844–851 (2005).

    Article  CAS  Google Scholar 

  122. Van Der Zanden, E. P., Boeckxstaens, G. E. & de Jonge, W. J. The vagus nerve as a modulator of intestinal inflammation. Neurogastroenterol. Motil. 21, 6–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Wang, H. et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 421, 384–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Ying, X., Chan, K., Shenoy, P., Hill, M. & Ruddle, N. H. Lymphotoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. Am. J. Pathol. 166, 135–146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Velaga, S. et al. Chemokine receptor CXCR5 supports solitary intestinal lymphoid tissue formation, B cell homing, and induction of intestinal IgA responses. J. Immunol. 182, 2610–2619 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Baptista, G. Kraal, R. Roozendaal and T. O'Toole for critically reading the manuscript. The authors are supported by a Netherlands Genomics Institute (NGI)-Horizon breakthrough project (NGI 40-41009-98-9077) to S.A.v.d.P. and a Netherlands Organization for Scientific Research-Earth and Life Sciences (NWO-ALW) Top grant (09.048) to R.E.M.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

GenomeNet

FURTHER INFORMATION

Reina E. Mebius's homepage

Glossary

Peyer's patches

Secondary lymphoid organs present in the small intestine (mostly in the ileum). They occur on the intestinal wall, opposite the line of attachment of the mesentery, the antimesenteric border. Peyer's patches consist of a dome area, B cell follicles and interfollicular T cell areas. High endothelial venules are present mainly in the interfollicular areas.

Autoimmune regulator

(AIRE). A transcription factor expressed mainly in the thymus by medullary thymic epithelial cells, but also by stromal cells in secondary lymphoid organs. It is involved in the transcription of diverse tissue-restricted antigens that, once processed and presented, promote the negative selection of self-reactive T cells.

Central tolerance

The lack of self responsiveness that occurs during lymphocyte development in the central lymphoid organs. B cell progenitors in the bone marrow and T cell progenitors in the thymus that strongly recognize self antigen either undergo further rearrangement of antigen receptor genes to avoid reactivity to self or are deleted by apoptosis.

Lymphotoxin-α1β2

(LTα1β2). A member of the tumour necrosis factor family that can be produced as a secreted homotrimer, LTα3, or as a membrane-bound heterotrimer, LTα1β2, which binds to lymphotoxin-β receptor (LTβR). Lymphoid-tissue inducer cells express LTα1β2,and signalling through LTβR expressed by stromal organizer cells induces the expression of molecules required for lymph node and Peyer's patch formation.

E2A-encoded proteins

The E2A gene locus encodes two basic helix–loop–helix transcription factors, E12 and E47, which are essential for B cell development. For induction of gene transcription, these E proteins bind an E box motif in the DNA.

Follicular dendritic cells

Specialized non-haematopoietic stromal cells that reside in the lymphoid follicles and germinal centres. These cells have long dendrites, but are not related to dendritic cells, and carry intact antigen on their surface. They are crucial for the optimal selection of B cells that produce high-affinity antibody.

Fibroblastic reticular cells

Stromal cells present in T cell areas of secondary lymphoid organs. These stromal cells surround the fine tubular network of collagen fibres (known as conduits) through which small molecules can rapidly reach the centre of lymphoid organs. In addition, fibroblastic reticular cells are in close contact with haematopoietic cells in secondary lymphoid organs.

RET

A transmembrane tyrosine kinase receptor that has several co-receptors and ligands. It is required for the migration of neural crest cells in the gut wall, as well as for their subsequent differentiation and aggregation into ganglia. In addition, RET is essential for the aggregation of haematopoietic cells during Peyer's patch formation.

Cryptopatches

Clusters of cells that are located at the base of the villi in the intestine. The cells are characterized by a LINKIT+CD90 phenotype and by the expression of RORγt and other molecules that are typical of fetal lymphoid-tissue inducer cells. Cryptopatches do not develop in RORγt-deficient mice.

Omentum

A generic term that refers to folds of the peritoneum. The lesser omentum consists of two layers of peritoneum and passes between the liver and the stomach. The greater omentum consists of four layers of peritoneum that extend below the stomach.

B-1 B cells

A group of self-renewing, autoreactive B cells with a limited B cell receptor repertoire. These cells are mainly found in the peritoneal cavity and the pleural cavity.

Peripheral tissue-restricted antigens

(Also known as tissue-specific antigens). Proteins that are restricted in their expression to specific tissues in the periphery. To induce and maintain T cell tolerance to these proteins, they are expressed by non-haematopoietic cells in the thymus and secondary lymphoid organs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Pavert, S., Mebius, R. New insights into the development of lymphoid tissues. Nat Rev Immunol 10, 664–674 (2010). https://doi.org/10.1038/nri2832

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing