Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

FOXP3 and scurfy: how it all began

Abstract

It has been 65 years since the scurfy mutation arose spontaneously in mice at the Oak Ridge National Laboratory in the United States, and it is 13 years since the molecular cloning of the forkhead box P3 (FOXP3) gene was reported. In this Timeline article, we review the events that have occurred during and since this time. This is not meant as an exhaustive review of the biology of FOXP3 or of regulatory T cells, rather it is an attempt to highlight the landmark events that have demonstrated the importance of FOXP3 in immune function. These events have driven, and continue to drive, the extensive research effort to fully understand the role of regulatory T cells in the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Structure of the FOXP3 protein.
Figure 3: Conserved non-coding sequences in the FOXP3 gene.

References

  1. Russell, W. L. X-ray induced mutations in mice. Cold Spring Harb. Symp. Quant. Biol. 16, 327–336 (1951).

    CAS  PubMed  Google Scholar 

  2. Russell, W. L., Russell, L. B. & Kelly, E. M. Radiation dose rate and mutation frequency. Science 128, 1546–1550 (1958).

    CAS  PubMed  Google Scholar 

  3. Russell, W. L., Russell, L. B. & Gower, J. S. Exceptional inheritance of a sex-linked gene in the mouse explained on the basis that the X/O sex-chromosome constitution is female. Proc. Natl Acad. Sci. USA 45, 554–560 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Godfrey, V., Wilkinson, J. E., Rinchik, E. M. & Russell, L. B. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: Potential model for thymic education. Proc. Natl Acad. Sci, USA 88, 5528–5532 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Godfrey, V., Wilkinson, J. E. & Russell, L. B. X-linked lymphoreticular disease in the scrufy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Godfrey, V., Rouse, B. T. & Wilkinson, J. E. Transplantation of T cell-mediated lymphoreticular disease from the scurfy (sf) mouse. Am. J. Pathol. 145, 281–286 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kanangat, S. et al. Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur. J. Immunol. 26, 161–165 (1996).

    CAS  PubMed  Google Scholar 

  8. Zahorsky-Reeves, J. L. & Wilkinson, J. E. The murine mutations scurfy (sf) results in an antigen-dependent lymphoproliferative disease with altered T cell sensitivity. Eur. J. Immunol. 31, 196–204 (2001).

    CAS  PubMed  Google Scholar 

  9. Blair, P. J. et al. CD4+CD8 T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J. Immunol. 153, 3764–3774 (1994).

    CAS  PubMed  Google Scholar 

  10. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  11. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  12. Brunkow, M. E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nature Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  13. Khattri, R. et al. The amount of scurfin protein determines peripheral T cell number and responsiveness. J. Immunol. 167, 6312–6320 (2001).

    CAS  PubMed  Google Scholar 

  14. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  15. Shevach, E. M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    CAS  PubMed  Google Scholar 

  16. Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  18. Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunol. 4, 337–342 (2003).

    CAS  Google Scholar 

  19. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  20. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. FoxP3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunol. 4, 330–336 (2003).

    CAS  Google Scholar 

  21. Powell, B. R., Buist, N. & Stenzel, P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J. Pediatr. 100, 731–737 (1982).

    CAS  PubMed  Google Scholar 

  22. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutation of FOXP3. Nature Genet. 27, 20–21 (2001).

    CAS  PubMed  Google Scholar 

  23. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nature Genet. 27, 18–20 (2001).

    CAS  PubMed  Google Scholar 

  24. Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22, 329–341 (2005).

    CAS  PubMed  Google Scholar 

  25. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007).

    CAS  Google Scholar 

  27. Bluestone, J. A. & Abbas, A. K. Natural versus adapted regulatory T cells. Nature Rev. Immunol. 3, 253–257 (2003).

    CAS  Google Scholar 

  28. Yadav, M., Stephan, S. & Bluestone, J. A. Peripherally induced Tregs - role in immune homeostasis and autoimmunity. Front. Immunol. 4, 232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lathrop, S. K., Santacruz, N. A., Pham, D., Luo, J. & Hsieh, C. S. Antigen-specific peripheral shaping of the natural regulatory T cell population. J. Exp. Med. 205, 3105–3117 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuczma, M. et al. TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ regulatory T cells. J. Immunol. 183, 3118–3129 (2009).

    CAS  PubMed  Google Scholar 

  31. Rubtsov, Y. P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyao, T. et al. Plasticity of Foxp3+ T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36, 262–275 (2012).

    CAS  PubMed  Google Scholar 

  33. Sakaguchi, S., Vignali, D. A., Rudensky, A. Y., Niec, R. E. & Waldmann, H. The plasticity and stability of regulatory T cells. Nature Rev. Immunol. 13, 461–467 (2013).

    CAS  Google Scholar 

  34. Schubert, L. A., Jeffery, E. W., Zhang, Y., Ramsdell, F. & Ziegler, S. F. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J. Biol. Chem. 276, 37672–37679 (2001).

    CAS  PubMed  Google Scholar 

  35. Lopes, J. E. et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J. Immunol. 177, 3133–3142 (2006).

    CAS  PubMed  Google Scholar 

  36. Li, B. et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX auoimmune disease. Int. Immunol. 19, 825–835 (2007).

    CAS  PubMed  Google Scholar 

  37. Li, B. et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl Acad. Sci. USA 104, 4571–4576 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pan, F. et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142–1146 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Du, J., Huang, C., Zhou, B. & Ziegler, S. F. Isoform-specific inhibition of RORα-mediated transcriptional activation by human FOXP3. J. Immunol. 180, 4785–4792 (2008).

    CAS  PubMed  Google Scholar 

  40. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Walker, M. R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J. Clin. Invest. 112, 1437–1443 (2003).

    CAS  PubMed  Google Scholar 

  42. Bandukwala, H. S. et al. Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34, 479–491 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    CAS  PubMed  Google Scholar 

  44. Bettelli, E., Dastrange, M. & Oukka, M. Foxp3 interacts with nuclear factor of activated T cells and NF-κB to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl Acad. Sci. USA 102, 5138–5143 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    CAS  PubMed  Google Scholar 

  46. Rudra, D. et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nature Immunol. 13, 1010–1019 (2012).

    CAS  Google Scholar 

  47. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    CAS  PubMed  Google Scholar 

  49. Mantel, P. Y. et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J. Immunol. 176, 3593–3602 (2006).

    CAS  PubMed  Google Scholar 

  50. Zorn, E. et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 108, 1571–1579 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, H. P. & Leonard, W. J. CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204, 1543–1551 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Baron, U. et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol. 37, 2378–2389 (2007).

    CAS  PubMed  Google Scholar 

  53. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    PubMed  PubMed Central  Google Scholar 

  54. Huehn, J., Polansky, J. K. & Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nature Rev. Immunol. 9, 83–89 (2009).

    CAS  Google Scholar 

  55. Polansky, J. K. et al. DNA methylation controls Foxp3 gene expression. Eur. J. Immunol. 38, 1654–1663 (2008).

    CAS  PubMed  Google Scholar 

  56. Ruan, Q. et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Long, M., Park, S.-G., Strickland, I., Hayden, M. S. & Ghosh, S. Nuclear factor-κB modeulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31, 921–931 (2009).

    CAS  PubMed  Google Scholar 

  58. Deenick, E. K. et al. c-Rel but not NF-κB1 is important for T regulatory cell development. Eur. J. Immunol. 40, 677–681 (2010).

    CAS  PubMed  Google Scholar 

  59. Visekruna, A. et al. c-Rel is crucial for the induction of Foxp3+ regulatory CD4+ T cells but not TH17 cells. Eur. J. Immunol. 40, 671–676 (2010).

    CAS  PubMed  Google Scholar 

  60. Isomura, I. et al. c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J. Exp. Med. 206, 3001–3014 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through it enhancer. Nature Immunol. 9, 194–202 (2008).

    CAS  Google Scholar 

  63. Kitoh, A. et al. Indispensable role of gthe Runx1-Cbfβ transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31, 609–620 (2009).

    CAS  PubMed  Google Scholar 

  64. Josefowicz, S. Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Samstein, R. M., Josefowicz, S. Z., Arvey, A., Treuting, P. M. & Rudensky, A. Y. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Walker, M. R., Carson, B. D., Nepom, G. T., Ziegler, S. F. & Buckner, J. H. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25 cells. Proc. Natl Acad. Sci. USA 102, 4103–4108 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    CAS  PubMed  Google Scholar 

  69. Allan, S. E. et al. The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs. J. Clin. Invest. 115, 3276–3284 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith, E. L., Finney, H. M., Nesbitt, A. M., Ramsdell, F. & Robinson, M. K. Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation. Immunology 119, 203–211 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang, C. et al. Cutting Edge: a novel, human-specific interacting protein couples FOXP3 to a chromatin-remodeling complex that contains KAP1/TRIM28. J. Immunol. 190, 4470–4473 (2013).

    CAS  PubMed  Google Scholar 

  72. Chatila, T. A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, W. et al. Conversion of peripheral CD4+CD25 T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor FoxP3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bacchetta, R. et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 116, 1713–1722 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hill, J. A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    CAS  PubMed  Google Scholar 

  76. Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    CAS  PubMed  Google Scholar 

  77. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nature Immunol. 8, 359–368 (2007).

    CAS  Google Scholar 

  78. Williams, L. M. & Rudensky, A. Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature Immunol. 8, 277–284 (2007).

    CAS  Google Scholar 

  79. Burchill, M. A., Yang, J., Vogtenhuber, C., Blazar, B. R. & Farrar, M. A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  PubMed  Google Scholar 

  80. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nature Immunol. 9, 1297–1306 (2008).

    CAS  Google Scholar 

  81. Rudra, D. et al. Runx-CBFβ complexes control expression of the transcription factor Foxp3 in regulatory T cells. Nature Immunol. 10, 1170–1177 (2009).

    CAS  Google Scholar 

  82. Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153–166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge W. L. Russell and L. B. Russell for their years of work using genetics to define biological pathways, and V. Godfrey and J. E. Wilkinson for their early characterization of scurfy mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Ziegler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsdell, F., Ziegler, S. FOXP3 and scurfy: how it all began. Nat Rev Immunol 14, 343–349 (2014). https://doi.org/10.1038/nri3650

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing