Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Interactions between innate and adaptive lymphocytes

Abstract

Innate lymphocytes — including natural killer cells and the recently discovered innate lymphoid cells — have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. The contribution of the adaptive immune system to the coordination of innate lymphocyte responses is less well understood. In this Opinion article, we review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which T cells of the adaptive immune system function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential roles of regulatory and helper T cells in these processes, and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate and adaptive lymphocyte subsets.
Figure 2: Interactions of innate lymphocytes.
Figure 3: A model for IL-2-dependent adaptive–innate lymphocyte crosstalk.

Similar content being viewed by others

References

  1. Sanos, S. L. & Diefenbach, A. Innate lymphoid cells: from border protection to the initiation of inflammatory diseases. Immunol. Cell Biol. 91, 215–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nature Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  Google Scholar 

  3. Walker, J. A., Barlow, J. L. & McKenzie, A. N. Innate lymphoid cells — how did we miss them? Nature Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  Google Scholar 

  4. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuchs, A. et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38, 769–781 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roediger, B. et al. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nature Immunol. 14, 564–573 (2013).

    Article  CAS  Google Scholar 

  7. Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sitrin, J., Ring, A., Garcia, K. C., Benoist, C. & Mathis, D. Regulatory T cells control NK cells in an insulitic lesion by depriving them of IL-2. J. Exp. Med. 210, 1153–1165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA 111, 367–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunol. 12, 631–638 (2011).

    Article  CAS  Google Scholar 

  12. Halim, T. Y. et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity 40, 425–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nature Immunol. 12, 1071–1077 (2011).

    Article  CAS  Google Scholar 

  14. Feuerer, M., Shen, Y., Littman, D. R., Benoist, C. & Mathis, D. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31, 654–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunol. 13, 144–151 (2012).

    Article  CAS  Google Scholar 

  16. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol. 12, 1045–1054 (2011).

    Article  CAS  Google Scholar 

  17. Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4+ T cells in immunity to viruses. Nature Rev. Immunol. 12, 136–148 (2012).

    Article  CAS  Google Scholar 

  18. Hepworth, M. R. et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398 (2012).

    Article  CAS  Google Scholar 

  20. Qiu, J. et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity 39, 386–399 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Lang, P. A. et al. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc. Natl Acad. Sci. USA 109, 1210–1215 (2012).

    Article  PubMed  Google Scholar 

  22. Gorski, S. A., Hahn, Y. S. & Braciale, T. J. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog. 9, e1003615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Magri, G. et al. Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nature Immunol. 15, 354–364 (2014).

    Article  CAS  Google Scholar 

  24. Crome, S. Q., Lang, P. A., Lang, K. S. & Ohashi, P. S. Natural killer cells regulate diverse T cell responses. Trends Immunol. 34, 342–349 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Strowig, T. et al. Tonsilar NK cells restrict B cell transformation by the Epstein-Barr virus via IFN-γ. PLoS Pathog. 4, e27 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fehniger, T. A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Luther, C., Warner, K. & Takei, F. Unique progenitors in mouse lymph node develop into CD127+ NK cells: thymus-dependent and thymus-independent pathways. Blood 117, 4012–4021 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Vosshenrich, C. A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nature Immunol. 7, 1217–1224 (2006).

    Article  CAS  Google Scholar 

  29. Mirchandani, A. S. et al. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J. Immunol. 192, 2442–2448 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Cui, Y. et al. Major role of γδ T cells in the generation of IL-17+ uveitogenic T cells. J. Immunol. 183, 560–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Withers, D. R. et al. Cutting edge: lymphoid tissue inducer cells maintain memory CD4 T cells within secondary lymphoid tissue. J. Immunol. 189, 2094–2098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aloisi, F. & Pujol-Borrell, R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Rev. Immunol. 6, 205–217 (2006).

    Article  CAS  Google Scholar 

  36. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gasteiger, G., Hemmers, S., Bos, P. D., Sun, J. C. & Rudensky, A. Y. IL-2-dependent adaptive control of NK cell homeostasis. J. Exp. Med. 210, 1179–1187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bevan, M. J. Helping the CD8+ T-cell response. Nature Rev. Immunol. 4, 595–602 (2004).

    Article  CAS  Google Scholar 

  39. Soudja, S. M. et al. Memory-T-cell-derived interferon-γ instructs potent innate cell activation for protective immunity. Immunity 40, 974–988 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-β-dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smyth, M. J. et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J. Immunol. 176, 1582–1587 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Ni, J., Miller, M., Stojanovic, A., Garbi, N. & Cerwenka, A. Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J. Exp. Med. 209, 2351–2365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maury, S. et al. CD4+CD25+ regulatory T cell depletion improves the graft-versus-tumor effect of donor lymphocytes after allogeneic hematopoietic stem cell transplantation. Sci. Transl Med. 2, 41ra52 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Barao, I. et al. Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+CD25+ regulatory T cells. Proc. Natl Acad. Sci. USA 103, 5460–5465 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Bihl, F. et al. Primed antigen-specific CD4+ T cells are required for NK cell activation in vivo upon Leishmania major infection. J. Immunol. 185, 2174–2181 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Sungur, C. M. et al. Murine natural killer cell licensing and regulation by T regulatory cells in viral responses. Proc. Natl Acad. Sci. USA 110, 7401–7406 (2013).

    Article  PubMed  Google Scholar 

  48. Lee, S. H., Fragoso, M. F. & Biron, C. A. Cutting edge: a novel mechanism bridging innate and adaptive immunity: IL-12 induction of CD25 to form high-affinity IL-2 receptors on NK cells. J. Immunol. 189, 2712–2716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Terme, M. et al. Regulatory T cells control dendritic cell/NK cell cross-talk in lymph nodes at the steady state by inhibiting CD4+ self-reactive T cells. J. Immunol. 180, 4679–4686 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Su, H. C. et al. IL-2-dependent NK cell responses discovered in virus-infected beta 2-microglobulin-deficient mice. J. Immunol. 153, 5674–5681 (1994).

    CAS  PubMed  Google Scholar 

  51. Henney, C. S., Kuribayashi, K., Kern, D. E. & Gillis, S. Interleukin-2 augments natural killer cell activity. Nature 291, 335–338 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Horowitz, A., Behrens, R. H., Okell, L., Fooks, A. R. & Riley, E. M. NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J. Immunol. 185, 2808–2818 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Horowitz, A. et al. Cross-talk between T cells and NK cells generates rapid effector responses to Plasmodium falciparum-infected erythrocytes. J. Immunol. 184, 6043–6052 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunol. 8, 1353–1362 (2007).

    Article  CAS  Google Scholar 

  55. Fehniger, T. A. et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26, 798–811 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Gasteiger, G. et al. IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J. Exp. Med. 210, 1167–1178 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daussy, C. et al. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 211, 563–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Klose, C. S. et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157, 340–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Caligiuri, M. A. et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J. Clin. Invest. 91, 123–132 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ito, S. et al. Ultra-low dose interleukin-2 promotes immune-modulating function of regulatory T cells and natural killer cells in healthy volunteers. Mol. Ther. 22, 1388–1395 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dalbeth, N. & Callan, M. F. A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum. 46, 1763–1772 (2002).

    Article  PubMed  Google Scholar 

  63. Bauernhofer, T., Kuss, I., Henderson, B., Baum, A. S. & Whiteside, T. L. Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer. Eur. J. Immunol. 33, 119–124 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Schierloh, P. et al. Increased susceptibility to apoptosis of CD56dimCD16+ NK cells induces the enrichment of IFN-γ-producing CD56bright cells in tuberculous pleurisy. J. Immunol. 175, 6852–6860 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Klose, C. S. et al. A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Guo, L., Junttila, I. S. & Paul, W. E. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol. 33, 598–606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mjosberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010).

    Article  PubMed  Google Scholar 

  71. Hofer, T., Krichevsky, O. & Altan-Bonnet, G. Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Frontiers Immunol. 3, 268 (2012).

    Article  CAS  Google Scholar 

  72. Scharton, T. M. & Scott, P. Natural killer cells are a source of interferon-γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Xu, W. & Di Santo, J. P. Taming the beast within: regulation of innate lymphoid cell homeostasis and function. J. Immunol. 191, 4489–4496 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Gebhardt, T., Mueller, S. N., Heath, W. R. & Carbone, F. R. Peripheral tissue surveillance and residency by memory T cells. Trends Immunol. 34, 27–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Shin, H. & Iwasaki, A. Tissue-resident memory T cells. Immunol. Rev. 255, 165–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vezys, V. et al. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457, 196–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Welsh, R. M. & Selin, L. K. Attrition of memory CD8 T cells. Nature 459, E3–E4 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huster, K. M. et al. Cutting edge: memory CD8 T cell compartment grows in size with immunological experience but nevertheless can lose function. J. Immunol. 183, 6898–6902 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nature Immunol. 14, 509–513 (2013).

    Article  CAS  Google Scholar 

  80. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Elliott, J. M. & Yokoyama, W. M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Peng, H. et al. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Invest. 123, 1444–1456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fathman, J. W. et al. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118, 5439–5447 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity http://dx.doi.org/10.1016/j.immuni.2014.06.016 (2014).

  87. Chan, C. W. et al. Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nature Med. 12, 207–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Taieb, J. et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nature Med. 12, 214–219 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.Y.R. is supported by a US National Institutes of Health grant (R37 AI034206) and by the Ludwig Center at Memorial Sloan-Kettering Cancer Center (MSKCC), New York, USA. A.Y.R. is an investigator at the Howard Hughes Medical Center, New York, USA. G.G. is an Irvington Fellow of the Cancer Research Institute at MSKCC. The authors would like to thank J. C. Sun and the members of the Rudensky and Sun laboratories for helpful discussions. The authors would like to apologize to those investigators whose related work they were unable to discuss or quote owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Georg Gasteiger or Alexander Y. Rudensky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Alarmins

Prefabricated molecules (for example, interleukin-33) that are released upon cell and tissue damage by epithelial, stromal and myeloid cells to activate the immune system. The potency of some alarmins is regulated locally — for example, by proteolytic cleavage.

Group 1 ILCs

(Group 1 innate lymphoid cells). This group of ILCs includes natural killer cells and ILC1s.

ILC1

(Type 1 innate lymphoid cell). A subset of 'innate helper' cells that is characterized by expression of the transcription factor T-bet and the ability to produce interferon-γ in response to interleukin-12. ILC1s may have crucial functions during infection with intracellular pathogens.

ILC2

(Type 2 innate lymphoid cell). A subset of 'innate helper' cells that is characterized by expression of the transcription factor GATA-binding protein 3 and the ability to produce interleukin-5 (IL-5) and IL-13 in response to IL-25 and IL-33. ILC2s have important roles during asthma and parasitic infection, as well as tissue homeostasis and fibrosis through the secretion of amphiregulin, for example.

ILC3s

(Type 3 innate lymphoid cells). These 'innate helper' cells are characterized by expression of the transcription factor retinoic acid receptor-related orphan receptor-γt and the ability to produce interleukin-17 (IL-17) and IL-22 in response to IL-23. ILC3s have crucial functions during bacterial infection, particularly in the intestine. ILC3s may also present antigens and contribute to immune tolerance against microbial symbionts.

Innate lymphoid cells

(ILCs). Recently discovered subsets of innate lymphocytes that seed peripheral organs, and produce 'helper' cytokines and tissue-protective factors that are crucial for barrier immunity.

Lymphoid tissue inducer cell

(LTi cell). A subset of group 3 ILCs that are characterized by expression of the transcription factor retinoic acid receptor-related orphan receptor-γt and the production of lymphotoxin α1β1. LTi cells are required for the development of secondary lymphoid organs, and may have functions that are important during chronic inflammation and for T cell memory.

Natural killer cells

(NK cells). Innate lymphocytes that can recognize and kill infected or cancerous cells. NK cells also produce interferon-γ and may have immunoregulatory functions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasteiger, G., Rudensky, A. Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14, 631–639 (2014). https://doi.org/10.1038/nri3726

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3726

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing