Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epitope spreading in immune-mediated diseases: implications for immunotherapy

Key Points

  • Epitope spreading is defined as the diversification of epitope specificity from the initial focused, dominant epitope-specific immune response, directed against a self or foreign protein, to subdominant and/or cryptic epitopes on that protein (intramolecular spreading) or other proteins (intermolecular spreading).

  • The immune response consists of an initial magnification phase, which can either be deleterious as in autoimmune disease or beneficial as in vaccinations, and a later downregulatory phase to return the immune system to homeostasis. Epitope spreading may be an important component of both phases.

  • Human studies strongly suggest that epitope spreading has a role in ongoing disease, although epitope spreading is very difficult to verify in human disease. Animal models have therefore been useful, as the peptide specificity of the initial immune response can be manipulated, genetically identical animals used, and the immune response over time in different lymphoid organs and in the target tissue can be assessed.

  • Studies in two models of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalitogenic virus-induced demyelinating disease (TMEV-IDD) have shown conclusively that epitope spreading plays a pathological role in ongoing disease and that blocking this process by inducing tolerance to spread myelin epitopes or blocking costimulation of T cells (necessary for epitope spreading) blocks (EAE) or inhibits (TMEV-IDD) ongoing clinical disease.

  • Early tolerance to glutamic acid decarboxylase (GAD) in the non-obese diabetic (NOD) mouse model of diabetes has been shown to block epitope spreading and disease progression. Several human studies have observed epitope spreading in beta cell-specific humoral responses from birth to disease onset in offspring of diabetic parents.

  • Convincing evidence for the pathological role of epitope spreading is also seen in experimental autoimmune myasthenia gravis (EAMG) and adjuvant arthritis. Epitope spreading might also play a role in chronic graft rejection.

  • Treatment of human autoimmune diseases must take into consideration the dynamic nature of both the magnification and downregulatory phases of the immune response. With knowledge of the initial immune target, early antigen-specific treatments can block continued tissue damage, epitope spreading and clinical disease.

  • Induction of anti-inflammatory T helper (TH)2 responses via epitope spreading may be an important intrinsic immunoregulatory mechanism geared to limit tissue destruction and promote re-establishment of tissue-specific immune tolerance.

  • Early induction of a TH2 response to one specific β-cell autoantigen (βCAA) accelerated epitope spreading of TH2 responses to other βCAAs and can prevent the development of diabetes in the NOD mice.

  • Tumour vaccination studies suggest that epitope spreading may increase the efficiency of peptide vaccination.

Abstract

Evidence continues to accumulate supporting the hypothesis that tissue damage during an immune response can lead to the priming of self-reactive T and/or B lymphocytes, regardless of the specificity of the initial insult. This review will focus primarily on epitope spreading at the T-cell level. Understanding the cellular and molecular basis of epitope spreading in various chronic immune-mediated human diseases and their animal models is crucial to understanding the pathogenesis of these diseases and to the ultimate goal of designing antigen-specific treatments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epitope spreading in autoimmune and virus-induced tissue immunopathology.
Figure 2: Hierarchical pattern of intramolecular and intermolecular epitope spreading in PLP139–151-induced relapsing EAE and Theiler's virus-induced demyelinating disease (TMEV-IDD).
Figure 3: Mechanisms of infection-induced autoimmunity.

Similar content being viewed by others

References

  1. Lehmann, P. V., Forsthuber, T., Miller, A. & Sercarz, E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).The first description of epitope spreading in an autoimmune disease.

    Article  CAS  PubMed  Google Scholar 

  2. Lehmann, P. V., Sercarz, E. E., Forsthuber, T., Dayan, C. M. & Gammon, G. Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol. Today 14, 203–208 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann, P. V., Targoni, O. S. & Forsthuber, T. G. Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol. Rev. 164, 53–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Steinman, L. Despite epitope spreading in the pathogenesis of autoimmune disease, highly restricted approaches to immune therapy may still succeed [with a hedge on this bet]. J. Autoimmun. 14, 278–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Yu, M., Johnson, J. M. & Tuohy, V. K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1777–1788 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Vanderlugt, C. L. et al. The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunol. Rev. 164, 63–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Kumar, V. Determinant spreading during experimental autoimmune encephalomyelitis: is it potentiating, protecting or participating in the disease? Immunol. Rev. 164, 73–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Tuohy, V. K. et al. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Rev. 164, 93–100 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. McRae, B. L., Vanderlugt, C. L., Dal Canto, M. C. & Miller, S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).The first demonstration that epitope spreading has pathological significance in ongoing autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  10. Vanderlugt, C. L. et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J. Immunol. 164, 670–678 (2000).A demonstration that ongoing autoimmunity and epitope spreading can be specifically inhibited by peptide-specific tolerance or blockade of CD80/86–CD28 co-stimulation.

    Article  CAS  PubMed  Google Scholar 

  11. Kennedy, M. K. et al. Inhibition of murine relapsing experimental autoimmune encephalomyelitis by immune tolerance to proteolipid protein and its encephalitogenic peptides. J. Immunol. 144, 909–915 (1990).

    CAS  PubMed  Google Scholar 

  12. Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller, S. D. et al. Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity 3, 739–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Howard, L. M. et al. Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J. Clin. Invest. 103, 281–290 (1999).Evidence that blockade of CD40/CD154 co-stimulation can ameliorate ongoing autoimmunity and epitope spreading.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karandikar, N. J., Eagar, T. A., Vanderlugt, C. L., Bluestone, J. A. & Miller, S. D. CTLA-4 downregulates epitope spreading and mediates remission in autoimmune disease. J. Neuroimmunol. 109, 173–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Karandikar, N. J., Vanderlugt, C. L., Bluestone, J. A. & Miller, S. D. Targeting the B7/CD28:CTLA-4 costimulatory system in CNS autoimmune disease. J. Neuroimmunol. 89, 10–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Tuohy, V. K., Yu, M., Yin, L., Kawczak, J. A. & Kinkel, P. R. Regression and spreading of self-recognition during the development of autoimmune demyelinating disease. J. Autoimmun. 13, 11–20 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Rudick, R. A. Disease-modifying drugs for relapsing-remitting multiple sclerosis and future directions for multiple sclerosis therapeutics. Arch. Neurol. 56, 1079–1084 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Arnason, B. G. Immunologic therapy of multiple sclerosis. Annu. Rev. Med. 50, 291–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Tuohy, V. K. et al. Modulation of the IL-10/IL-12 cytokine circuit by interferon-β inhibits the development of epitope spreading and disease progression in murine autoimmune encephalomyelitis. J. Neuroimmunol. 111, 55–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Fiorentino, D. F., Zlotnik, A., Mosman, T. R., Howard, M. H. & O'Garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822 (1991).

    CAS  PubMed  Google Scholar 

  22. Fiorentino, D. F. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by TH1 cells. J. Immunol. 146, 3444–3451 (1991).

    CAS  PubMed  Google Scholar 

  23. De Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G. & De Vries, J. E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Ding, L. & Shevach, E. M. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J. Immunol. 148, 3133–3139 (1992).

    CAS  PubMed  Google Scholar 

  25. McFarland, H. I. et al. Determinant spreading associated with demyelination in a nonhuman primate model of multiple sclerosis. J. Immunol. 162, 2384–2390 (1999).

    CAS  PubMed  Google Scholar 

  26. Tuohy, V. K., Yu, M., Weinstock-Guttman, B. & Kinkel, R. P. Diversity and plasticity of self recognition during the development of multiple sclerosis. J. Clin. Invest. 99, 1682–1690 (1997).An initial demonstration of spreading and focusing of responses to PLP epitopes during the progression of multiple sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tuohy, V. K., Yu, M., Yin, L., Kawczak, J. A. & Kinkel, R. P. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 189, 1033–1042 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goebels, N. et al. Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain 123, 508–518 (2000).

    Article  PubMed  Google Scholar 

  29. Kurtzke, J. F. Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 6, 382–427 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Olson, J. K., Croxford, J. L. & Miller, S. D. Virus-induced autoimmunity: potential role of viruses in initiation, perpetuation, and progression of T cell-mediated autoimmune diseases. Viral Immunol. 14, 227–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Karpus, W. J., Pope, J. G., Peterson, J. D., Dal Canto, M. C. & Miller, S. D. Inhibition of Theiler's virus-mediated demyelination by peripheral immune tolerance induction. J. Immunol. 155, 947–957 (1995).

    CAS  PubMed  Google Scholar 

  32. Miller, S. D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature Med. 3, 1133–1136 (1997).The first description that a persistent virus infection can lead to autoimmunity via epitope spreading.

    Article  CAS  PubMed  Google Scholar 

  33. Katz-Levy, Y. et al. Temporal development of autoreactive TH1 responses and endogenous antigen presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus-infected mice. J. Immunol. 165, 5304–5314 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Katz-Levy, Y. et al. Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus-infected mice. J. Clin. Invest. 104, 599–610 (1999).Evidence of endogenous presentation of self epitopes by resident APCs in the target tissue of the disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Borrow, P. et al. Investigation of the role of delayed-type-hypersensitivity responses to myelin in the pathogenesis of Theiler's virus-induced demyelinating disease. Immunology 93, 478–484 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neville, K. L., Padilla, J. & Miller, S. D. Myelin-specific tolerance attenuates the progression of a virus-induced demyelinating disease: implications for the treatment of MS. J. Neuroimmunol. (In the press).

  37. Eisenbarth, G. S. Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med. 314, 1360–1368 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Delovitch, T. L. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727–738 (1997).

    CAS  PubMed  Google Scholar 

  39. Kaufman, D. L. et al. Spontaneous loss of T cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zechel, M. A., Elliott, J. F., Atkinson, M. A. & Singh, B. Characterization of novel T-cell epitopes on 65 kDa and 67 kDa glutamic acid decarboxylase relevant in autoimmune responses in NOD mice. J. Autoimmun. 11, 83–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Zechel, M. A., Chaturvedi, P. & Singh, B. Characterization of immunodominant peptide determinants of IDDM-associated autoantigens in the NOD mouse. Res. Immunol. 148, 338–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Tian, J., Lehmann, P. V. & Kaufman, D. L. Determinant spreading of T helper cell 2 (TH2) responses to pancreatic islet autoantigens. J. Exp. Med. 186, 2039–2043 (1997).Evidence of protective epitope spreading.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zechel, M. A., Krawetz, M. D. & Singh, B. Epitope dominance: evidence for reciprocal determinant spreading to glutamic acid decarboxylase in non-obese diabetic mice. Immunol. Rev. 164, 111–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Tian, J. et al. Infectious TH1 and TH2 autoimmunity in diabetes-prone mice. Immunol. Rev. 164, 119–127 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Durinovic-Bello, I. Autoimmune diabetes: the role of T cells, MHC molecules and autoantigens. Autoimmunity 27, 159–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Bonifacio, E., Scirpoli, M., Kredel, K., Fuchtenbusch, M. & Ziegler, A. G. Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation. J. Immunol. 163, 525–532 (1999).

    CAS  PubMed  Google Scholar 

  47. Bonifacio, E., Lampasona, V., Bernasconi, L. & Ziegler, A. G. Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes. Diabetes 49, 202–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Sohnlein, P. et al. Epitope spreading and a varying but not disease-specific GAD65 antibody response in type I diabetes. The Childhood Diabetes in Finland Study Group. Diabetologia 43, 210–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Braghi, S. et al. Modulation of humoral islet autoimmunity by pancreas allotransplantation influences allograft outcome in patients with type 1 diabetes. Diabetes 49, 218–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Vincent, A. et al. Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis. Immunol. Rev. 164, 157–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Vincent, A., Jacobson, L. & Shillito, P. Response to human acetylcholine receptor α 138–199: determinant spreading initiates autoimmunity to self-antigen in rabbits. Immunol. Lett. 39, 269–275 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Curnow, J., Corlett, L., Willcox, N. & Vincent, A. Presentation by myoblasts of an epitope from endogenous acetylcholine receptor indicates a potential role in the spreading of the immune response. J. Neuroimmunol. 115, 127–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, H. B. et al. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J. Immunol. 166, 6430–6436 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Yamamoto, A. M. et al. Anti-titin antibodies in myasthenia gravis: tight association with thymoma and heterogeneity of nonthymoma patients. Arch. Neurol. 58, 885–890 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Van Eden, W. et al. Heat-shock protein T-cell epitopes trigger a spreading regulatory control in a diversified arthritogenic T-cell response. Immunol. Rev. 164, 169–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Sonderstrup, G. & McDevitt, H. Identification of autoantigen epitopes in MHC class II transgenic mice. Immunol. Rev. 164, 129–138 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Moudgil, K. D. et al. Diversification of T cell responses to carboxy-terminal determinants within the 65-kD heat-shock protein is involved in regulation of autoimmune arthritis. J. Exp. Med. 185, 1307–1316 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moudgil, K. D. Diversification of response to hsp65 during the course of autoimmune arthritis is regulatory rather than pathogenic. Immunol. Rev. 164, 175–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Prakken, A. B. et al. Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum. 39, 1826–1832 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Prakken, A. B. et al. T-cell reactivity to human HSP60 in oligo-articular juvenile chronic arthritis is associated with a favorable prognosis and the generation of regulatory cytokines in the inflamed joint. Immunol. Lett. 57, 139–142 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. deGraeff-Meeder, E. R. et al. Juvenile chronic arthritis: T cell reactivity to human HSP60 in patients with a favorable course of arthritis. J. Clin. Invest. 95, 934–940 (1995).

    Article  CAS  Google Scholar 

  62. Alam, A. et al. Persistence of dominant T cell clones in synovial tissues during rheumatoid arthritis. J. Immunol. 156, 3480–3485 (1996).

    CAS  PubMed  Google Scholar 

  63. Bradley, J. A. Indirect T cell recognition in allograft rejection. Int. Rev. Immunol. 13, 245–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Suciu-Foca, N., Harris, P. E. & Cortesini, R. Intramolecular and intermolecular spreading during the course of organ allograft rejection. Immunol. Rev. 164, 241–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Ciubotariu, R. et al. Persistent allopeptide reactivity and epitope spreading in chronic rejection of organ allografts. J. Clin. Invest 101, 398–405 (1998).Evidence of epitope spreading in allograft rejection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Di Rosa, F. & Barnaba, V. Persisting viruses and chronic inflammation: understanding their relation to autoimmunity. Immunol. Rev. 164, 17–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Dorries, R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr. Top. Microbiol. Immunol. 253, 219–245 (2001).

    CAS  PubMed  Google Scholar 

  68. Xu, L., Villain, M., Galin, F. S., Araga, S. & Blalock, J. E. Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T cells. Cell Immunol. 208, 107–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Leadbetter, E. A. et al. Experimental autoimmune encephalomyelitis induced with a combination of myelin basic protein and myelin oligodendrocyte glycoprotein is ameliorated by administration of a single myelin basic protein peptide. J. Immunol. 161, 504–512 (1998).

    CAS  PubMed  Google Scholar 

  70. Al-Sabbagh, A., Nelson, P. A., Akselband, Y., Sobel, R. A. & Weiner, H. L. Antigen-driven peripheral immune tolerance: suppression of experimental autoimmmune encephalomyelitis and collagen-induced arthritis by aerosol administration of myelin basic protein or type II collagen. Cell. Immunol. 171, 111–119 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Anderton, S. M. & Wraith, D. C. Hierarchy in the ability of T cell epitopes to induce peripheral tolerance to antigens from myelin. Eur. J. Immunol. 28, 1251–1261 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Nicholson, L. B., Murtaza, A., Hafler, B. P., Sette, A. & Kuchroo, V. K. A T cell receptor antagonist peptide induces T cells that mediate bystander suppression and prevent autoimmune encephalomyelitis induced with multiple myelin antigens. Proc. Natl Acad. Sci. USA 94, 9279–9284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Pakala, S. V., Kurrer, M. O. & Katz, J. D. T helper 2 (TH2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice. J. Exp. Med. 186, 299–306 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lafaille, J. J. et al. Myelin basic protein-specific T helper 2 (TH2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307–312 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, L., DuTemple, B., Gorczynski, R. M., Levy, G. & Zhang, L. Evidence for epitope spreading and active suppression in skin graft tolerance after donor-specific transfusion. Transplantation 67, 1404–1410 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Waldmann, H. & Cobbold, S. Regulating the immune response to transplants: a role for CD4+ regulatory cells? Immunity 14, 399–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. el Shami, K. et al. MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur. J. Immunol. 29, 3295–3301 (1999).Evidence of MHC-class-I–restricted epitope spreading in tumour immunity.

    Article  CAS  PubMed  Google Scholar 

  79. Markiewicz, M. A., Fallarino, F., Ashikari, A. & Gajewski, T. F. Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. Int. Immunol. 13, 625–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Disis, M. L., Grabstein, K. H., Sleath, P. R. & Cheever, M. A. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin. Cancer Res. 5, 1289–1297 (1999).

    CAS  PubMed  Google Scholar 

  81. Brossart, P. et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96, 3102–3108 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Hurwitz, A. A., Yu, T. F., Leach, D. R. & Allison, J. P. CTLA-4 blockade synergizes with tumor-derived granulocyte–macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl Acad. Sci. USA 95, 10067–10071 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olson, J. K., Croxford, J. L., Calenoff, M., Dal Canto, M. C. & Miller, S. D. A virus-induced molecular mimicry model of multiple sclerosis. J. Clin. Invest. 108, 311–318 (2001).Evidence that epitope spreading can be initiated after induction of autoimmunity via molecular mimicry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mokhtarian, F., Shi, Y., Zhu, P. F. & Grob, D. Immune responses, and autoimmune outcome, during virus infection of the central nervous system. Cell. Immunol. 157, 195–210 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Mokhtarian, F., Zhang, Z., Shi, Y., Gonzales, E. & Sobel, R. A. Molecular mimicry between a viral peptide and a myelin oligodendrocyte glycoprotein peptide induces autoimmune demyelinating disease in mice. J. Neuroimmunol. 95, 43–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Lawson, C. M. Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis. Cell Mol. Life Sci. 57, 552–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Fairweather, D., Kaya, Z., Shellam, G. R., Lawson, C. M. & Rose, N. R. From infection to autoimmunity. J. Autoimmun. 16, 175–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nature Med. 4, 781–786 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Zhao, Z.-S., Granucci, F., Yeh, L., Schaffer, P. A. & Cantor, H. Molecular mimicry by herpes simplex virus-type 1: Autoimmune disease after viral infection. Science 279, 1344–1347 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Deshpande, S. P. et al. Herpes simplex virus-induced keratitis: evaluation of the role of molecular mimicry in lesion pathogenesis. J. Virol. 75, 3077–3088 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Miller.

Related links

Related links

DATABASES

LocusLink

CD28

CD40

CD154

CD80

CD86

CTLA-4

GAD

GM-CSF

ERBB2

IA-2

IL-10

IL-12

IFN-β

IFN-γ

MBP

MOG

PLP

TNF-α

OMIM

type-1 diabetes

multiple sclerosis

myasthenia gravis

rheumatoid arthritis

Glossary

CRYPTIC EPITOPE

A cryptic epitope is defined as a hidden or sequestered epitope that is processed and presented more efficiently as a result of an inflammatory immune response initiated by either a dominant epitope, as in a response to an infectious agent, or revealed as a result of the diversification of the response secondary to self tissue damage, as in an autoimmune response.

T HELPER TYPE 1 (TH1)

CD4+ T cells have been divided into at least two distinct types. TH1 cells produce IFN-γ, lymphotoxin and TNF-α, and mediate macrophage inflammatory responses such as delayed-type hypersensitivity (DTH). Demyelination in multiple sclerosis models is thought to be due to TH1 cells. TH2 cells produce IL-4, IL-10 and/or TGF-β, and can downregulate TH1 responses.

INTRAMOLECULAR EPITOPE SPREADING

Spreading from one epitope to another on the same molecule, for example, from PLP139–151 to PLP178–191.

INTERMOLECULAR EPITOPE SPREADING

Spreading of the specificity of an immune response from an epitope on one molecule to one on a different molecule is termed intermolecular epitope spreading. An example would be the spread in EAE induced with PLP139–151, an epitope on proteolipid protein, to an epitope on myelin basic protein, such as MBP84–104.

ISOLATED MONOSYMPTOMATIC DEMYELINATING SYNDROME

(IMDS). IMDS is a group of distinct clinical disorders often associated with eventual progression toward clinically definite multiple sclerosis.

TCR Vβ CDR3 SPECTRATYPING

Polymerase chain reaction-based method of identifying pseudoclonal TCR usage by analyzing Vβ family gene usage. In independent reactions, Vβ–Cβ products across the CDR3 region are amplified from cDNA, tagged with a fluorochrome, and resolved on a polyacrylamide gel electrophoresis gel. Expanded pseudoclonal Vβ–Cβ products of a single length are distinguished from other Vβ–Cβ products by size differences introduced at the coding junction.

INSULITIS

Inflammation surrounding the insulin-producing β-cells in the pancreas. Diabetes occurs when β-cells can no longer produce adequate amounts of insulin.

HEAT-SHOCK PROTEIN

Heat-shock proteins are expressed in all cells, including microbes, when they are stressed; for example, when they experience high temperatures. These proteins can then become targeted by an immune response.

COMPLETE FREUND'S ADJUVANT

Used to trigger an immune response to proteins or peptides emulsified in the adjuvant; it consists of freeze-dried Mycobacterium, emulsifying agents and mineral oil.

INFECTIOUS TOLERANCE

Production of anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-β) by an antigen-specific regulatory T cell, which suppress immune responses to additional epitopes in a non-specific manner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderlugt, C., Miller, S. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2, 85–95 (2002). https://doi.org/10.1038/nri724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing