Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytotoxic T lymphocytes: all roads lead to death

Key Points

  • Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells provide protection against a wide variety of pathogens.

  • Key components of the killing machinery are found in the cytoplasmic granules of CTLs and NK cells.

  • The mechanism of killing involves directed exocytosis of cytolytic effectors, such as perforin and granzymes.

  • Granzyme B initiates apoptosis through the cleavage and activation of caspases.

  • Granzyme B gains access to the target cell by receptor-mediated endocytosis.

  • Perforin facilitates the uptake and release of granzyme B into the cytoplasm of the target cell.

  • Other substrates for granzyme B indicate that it has an effect on the mitochondrial and caspase-independent pathways to cell death.

  • Other granzymes and cytoplasmic proteins can also act to induce target-cell destruction.

  • Viruses have evolved numerous strategies to inhibit apoptosis and CTL- and NK-cell-mediated killing.

Abstract

Cytotoxic T lymphocytes (CTLs) provide potent defences against virus infection and intracellular pathogens. However, CTLs have a dark side — their lytic machinery can be directed against self-tissues in autoimmune disorders, transplanted cells during graft rejection and host tissues to cause graft-versus-host disease, which is one of the most serious diseases related to CTL function. Although this duplicitous behaviour might seem contradictory, both beneficial and detrimental effects are the result of the same effector proteins. So, an understanding of the mechanisms that are used by CTLs to destroy targets and a knowledge of pathogen immune-evasion strategies will provide vital information for the design of new therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Engagement of FAS (CD95) on a target cell with CTL-expressed FAS ligand (FASL; CD178) results in apoptotic death.
Figure 2: Pathways of entry for granzyme B.
Figure 3: Pathways to cell death that are initiated by granzyme B.
Figure 4: Virus-encoded inhibitors of apoptosis and CTL-mediated killing.

Similar content being viewed by others

References

  1. Geiger, B., Rosen, D. & Berke, G. Spatial relationships of microtubule-organizing centers and the contact area of cytotoxic T lymphocytes and target cells. J. Cell Biol. 95, 137–143 (1982).

    CAS  PubMed  Google Scholar 

  2. Kupfer, A. & Dennert, G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. J. Immunol. 133, 2762–2766 (1984).

    CAS  PubMed  Google Scholar 

  3. Yannelli, J. R., Sullivan, J. A., Mandell, G. L. & Engelhard, V. H. Reorientation and fusion of cytotoxic T-lymphocyte granules after interaction with target cells as determined by high-resolution cinemicrography. J. Immunol. 136, 377–382 (1986).

    CAS  PubMed  Google Scholar 

  4. Zagury, D. Direct analysis of individual killer T cells: susceptibility of target cells to lysis and secretion of hydrolytic enzymes by CTL. Adv. Exp. Med. Biol. 146, 149–169 (1982).

    CAS  PubMed  Google Scholar 

  5. Henkart, P. A. Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3, 31–58 (1985).An authoritative review of the early work on cell-mediated cytotoxicity.

    CAS  PubMed  Google Scholar 

  6. Helgason, C. D., Prendergast, J. A., Berke, G. & Bleackley, R. C. Peritoneal exudate lymphocyte and mixed lymphocyte culture hybridomas are cytolytic in the absence of cytotoxic cell proteinases and perforin. Eur. J. Immunol. 22, 3187–3190 (1992).

    CAS  PubMed  Google Scholar 

  7. Ostergaard, H. L., Kane, K. P., Mescher, M. F. & Clark, W. R. Cytotoxic T-lymphocyte-mediated lysis without release of serine esterase. Nature 330, 71–72 (1987).

    CAS  PubMed  Google Scholar 

  8. Rouvier, E., Luciani, M. F. & Golstein, P. Fas involvement in Ca2+-independent T-cell-mediated cytotoxicity. J. Exp. Med. 177, 195–200 (1993).

    CAS  PubMed  Google Scholar 

  9. Santamaria, P. Effector lymphocytes in autoimmunity. Curr. Opin. Immunol. 13, 663–669 (2001).

    CAS  PubMed  Google Scholar 

  10. Kagi, D. et al. Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J. Exp. Med. 186, 989–997 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kreuwel, H. T. et al. Comparing the relative role of perforin/granzyme versus Fas/Fas-ligand cytotoxic pathways in CD8+ T-cell-mediated insulin-dependent diabetes mellitus. J. Immunol. 163, 4335–4341 (1999).

    CAS  PubMed  Google Scholar 

  12. Itoh, N. et al. Requirement of Fas for the development of autoimmune diabetes in nonobese diabetic mice. J. Exp. Med. 186, 613–618 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Su, X. et al. Significant role for Fas in the pathogenesis of autoimmune diabetes. J. Immunol. 164, 2523–2532 (2000).

    CAS  PubMed  Google Scholar 

  14. Amrani, A. et al. Perforin-independent β-cell destruction by diabetogenic CD8+ T lymphocytes in transgenic nonobese diabetic mice. J. Clin. Invest. 103, 1201–1209 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).A comprehensive summary of the discovery and function of the FAS protein.

    CAS  PubMed  Google Scholar 

  16. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    CAS  PubMed  Google Scholar 

  17. Peter, M. E. & Krammer, P. H. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr. Opin. Immunol. 10, 545–551 (1998).

    CAS  PubMed  Google Scholar 

  18. Kagi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    CAS  PubMed  Google Scholar 

  19. Kojima, H. et al. Two distinct pathways of specific killing revealed by perforin-mutant cytotoxic T lymphocytes. Immunity 1, 357–364 (1994).

    CAS  PubMed  Google Scholar 

  20. Lowin, B., Beermann, F., Schmidt, A. & Tschopp, J. A null mutation in the perforin gene impairs cytolytic T-lymphocyte- and natural-killer-cell-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 91, 11571–11575 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kagi, D. et al. Fas and perforin pathways as major mechanisms of T-cell-mediated cytotoxicity. Science 265, 528–530 (1994).

    CAS  PubMed  Google Scholar 

  22. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996).

    CAS  PubMed  Google Scholar 

  24. Dennert, G. & Podack, E. R. Cytolysis by H-2-specific T killer cells. Assembly of tubular complexes on target membranes. J. Exp. Med. 157, 1483–1495 (1983).

    CAS  PubMed  Google Scholar 

  25. Dourmashkin, R. R., Deteix, P., Simone, C. B. & Henkart, P. Electron microscopic demonstration of lesions in target-cell membranes associated with antibody-dependent cellular cytotoxicity. Clin. Exp. Immunol. 42, 554–560 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Podack, E. R. & Dennert, G. Assembly of two types of tubules with putative cytolytic function by cloned natural killer cells. Nature 302, 442–445 (1983).

    CAS  PubMed  Google Scholar 

  27. Shresta, S., Graubert, T. A., Thomas, D. A., Raptis, S. Z. & Ley, T. J. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity 10, 595–605 (1999).This study indicates synergy between granzymes A and B in vivo and shows that granzyme-deficient CTLs are less effective at mediating graft-versus-host disease in vivo.

    CAS  PubMed  Google Scholar 

  28. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    CAS  PubMed  Google Scholar 

  29. Edwards, K. M., Kam, C. M., Powers, J. C. & Trapani, J. A. The human cytotoxic T cell granule serine protease granzyme H has chymotrypsin-like (chymase) activity and is taken up into cytoplasmic vesicles reminiscent of granzyme-B-containing endosomes. J. Biol. Chem. 274, 30468–30473 (1999).

    CAS  PubMed  Google Scholar 

  30. Froelich, C. J. et al. New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem. 271, 29073–29079 (1996).The first demonstration that granzyme B can bind to a receptor on the surface of target cells.

    CAS  PubMed  Google Scholar 

  31. Jans, D. A. et al. Nuclear targeting of the serine protease granzyme A (fragmentin-1). J. Cell. Sci. 111, 2645–2654 (1998).

    CAS  PubMed  Google Scholar 

  32. Pinkoski, M. J. et al. Entry and trafficking of granzyme B in target cells during granzyme-B–perforin-mediated apoptosis. Blood 92, 1044–1054 (1998).This study describes the uptake of granzyme B into endosomes and its subsequent release by perforin.

    CAS  PubMed  Google Scholar 

  33. Shi, L. et al. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med. 185, 855–866 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Browne, K. A. et al. Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol. 19, 8604–8615 (1999).The idea that granzyme B gains entry into target cells by a transmembrane perforin channel is challenged by this study.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Motyka, B. et al. Mannose-6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T-cell-induced apoptosis. Cell 103, 491–500 (2000).This study reveals that the receptor for granzyme B is the mannose-6-phosphate/insulin-like growth factor receptor.

    CAS  PubMed  Google Scholar 

  36. Murphy, M. E. et al. Comparative molecular model building of two serine proteinases from cytotoxic T lymphocytes. Proteins 4, 190–204 (1988).

    CAS  PubMed  Google Scholar 

  37. Harris, J. L., Peterson, E. P., Hudig, D., Thornberry, N. A. & Craik, C. S. Definition and redesign of the extended substrate specificity of granzyme B. J. Biol. Chem. 273, 27364–27373 (1998).

    CAS  PubMed  Google Scholar 

  38. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997).

    CAS  PubMed  Google Scholar 

  39. Estebanez-Perpina, E. et al. Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue. Biol. Chem. 381, 1203–1214 (2000).

    CAS  PubMed  Google Scholar 

  40. Rotonda, J. et al. The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1. Chem. Biol. 8, 357–368 (2001).

    CAS  PubMed  Google Scholar 

  41. Waugh, S. M., Harris, J. L., Fletterick, R. & Craik, C. S. The structure of the pro-apoptotic protease granzyme B reveals the molecular determinants of its specificity. Nature Struct. Biol. 7, 762–765 (2000).The first three-dimensional structure of granzyme B to be published.

    CAS  PubMed  Google Scholar 

  42. Darmon, A. J., Nicholson, D. W. & Bleackley, R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 377, 446–448 (1995).The discovery that granzyme B activates apoptosis by means of the cleavage and activation of caspases.

    CAS  PubMed  Google Scholar 

  43. Atkinson, E. A. et al. Cytotoxic T-lymphocyte-assisted suicide. Caspase-3 activation is primarily the result of the direct action of granzyme B. J. Biol. Chem. 273, 21261–21266 (1998).

    CAS  PubMed  Google Scholar 

  44. Medema, J. P. et al. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T-lymphocyte-induced apoptosis. Eur. J. Immunol. 27, 3492–3498 (1997).

    CAS  PubMed  Google Scholar 

  45. Yang, X. et al. Granzyme B mimics apical caspases. Description of a unified pathway for trans-activation of executioner caspase-3 and -7. J. Biol. Chem. 273, 34278–34283 (1998).

    CAS  PubMed  Google Scholar 

  46. Andrade, F. et al. Granzyme B directly and efficiently cleaves several downstream caspase substrates: implications for CTL-induced apoptosis. Immunity 8, 451–460 (1998).

    CAS  PubMed  Google Scholar 

  47. Browne, K. A., Johnstone, R. W., Jans, D. A. & Trapani, J. A. Filamin (280-kDa actin-binding protein) is a caspase substrate and is also cleaved directly by the cytotoxic T lymphocyte protease granzyme B during apoptosis. J. Biol. Chem. 275, 39262–39266 (2000).

    CAS  PubMed  Google Scholar 

  48. Casciola-Rosen, L., Andrade, F., Ulanet, D., Wong, W. B. & Rosen, A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med. 190, 815–826 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    CAS  PubMed  Google Scholar 

  50. Heibein, J. A., Barry, M., Motyka, B. & Bleackley, R. C. Granzyme-B-induced loss of mitochondrial inner membrane potential (Delta Psi m) and cytochrome c release are caspase independent. J. Immunol. 163, 4683–4693 (1999).

    CAS  PubMed  Google Scholar 

  51. MacDonald, G., Shi, L., Vande Velde, C., Lieberman, J. & Greenberg, A. H. Mitochondria-dependent and -independent regulation of granzyme-B-induced apoptosis. J. Exp. Med. 189, 131–144 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Alimonti, J. B., Shi, L., Baijal, P. K. & Greenberg, A. H. Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J. Biol. Chem. 276, 6974–6982 (2001).

    CAS  PubMed  Google Scholar 

  53. Barry, M. et al. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol. Cell. Biol. 20, 3781–3794 (2000).A demonstration that granzyme B can proteolytically cleave the pro-apoptotic protein BID in cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Heibein, J. A. et al. Granzyme-B-mediated cytochrome c release is regulated by the Bcl-2 family members Bid and Bax. J. Exp. Med. 192, 1391–1402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pinkoski, M. J. et al. Granzyme-B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem. 276, 12060–12067 (2001).

    CAS  PubMed  Google Scholar 

  56. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme-B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).This study shows that the cleavage of BID by granzyme B is required for initiation of apoptosis.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    CAS  PubMed  Google Scholar 

  58. Wang, G. Q. et al. Resistance to granzyme-B-mediated cytochrome c release in Bak-deficient cells. J. Exp. Med. 194, 1325–1337 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Martinou, J. C. & Green, D. R. Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol. 2, 63–67 (2001).A recent and articulate review that discusses current theories on the leakage of proteins from mitochondria.

    CAS  Google Scholar 

  60. Zamzami, N. & Kroemer, G. The mitochondrion in apoptosis: how Pandora's box opens. Nature Rev. Mol. Cell Biol. 2, 67–71 (2001).

    CAS  Google Scholar 

  61. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).

    CAS  PubMed  Google Scholar 

  62. Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 14681–14686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    CAS  PubMed  Google Scholar 

  64. Thomas, D. A., Scorrano, L., Putcha, G. V., Korsmeyer, S. J. & Ley, T. J. Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX and BAK. Proc. Natl Acad. Sci. USA 98, 14985–14990 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Davis, J. E., Sutton, V. R., Smyth, M. J. & Trapani, J. A. Dependence of granzyme-B-mediated cell death on a pathway regulated by Bcl-2 or its viral homolog, BHRF1. Cell. Death Differ. 7, 973–983 (2000).

    CAS  PubMed  Google Scholar 

  66. Sutton, V. R., Vaux, D. L. & Trapani, J. A. Bcl-2 prevents apoptosis induced by perforin and granzyme B, but not that mediated by whole cytotoxic lymphocytes. J. Immunol. 158, 5783–5790 (1997).

    CAS  PubMed  Google Scholar 

  67. Vaux, D. L., Aguila, H. L. & Weissman, I. L. Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell-mediated killing. Int. Immunol. 4, 821–824 (1992).

    CAS  PubMed  Google Scholar 

  68. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H. & Ley, T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76, 977–987 (1994).Granzyme-B-deficient cells are defective in rapid DNA fragmentation.

    CAS  PubMed  Google Scholar 

  70. Shresta, S., MacIvor, D. M., Heusel, J. W., Russell, J. H. & Ley, T. J. Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells. Proc. Natl Acad. Sci. USA 92, 5679–5683 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Enari, M. et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 (1998).

    CAS  PubMed  Google Scholar 

  72. Li, L. Y., Luo, X. & Wang, X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99 (2001).

    CAS  PubMed  Google Scholar 

  73. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184 (1997).

    CAS  PubMed  Google Scholar 

  74. Sharif-Askari, E. et al. Direct cleavage of the human DNA fragmentation factor-45 by granzyme B induces caspase-activated DNase release and DNA fragmentation. EMBO J. 20, 3101–3113 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Thomas, D. A., Du, C., Xu, M., Wang, X. & Ley, T. J. DFF45/ICAD can be directly processed by granzyme B during the induction of apoptosis. Immunity 12, 621–632 (2000).

    CAS  PubMed  Google Scholar 

  76. Wolf, B. B., Schuler, M., Echeverri, F. & Green, D. R. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J. Biol. Chem. 274, 30651–30656 (1999).

    CAS  PubMed  Google Scholar 

  77. Bird, C. H. et al. Selective regulation of apoptosis: the cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme-B-mediated apoptosis without perturbing the Fas cell-death pathway. Mol. Cell. Biol. 18, 6387–6398 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Medema, J. P. et al. Blockade of the granzyme-B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl Acad. Sci. USA 98, 11515–11520 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Medema, J. P. et al. Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. J. Exp. Med. 194, 657–667 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ebnet, K. et al. Granzyme-A-deficient mice retain potent cell-mediated cytotoxicity. EMBO J. 14, 4230–4239 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shresta, S., Goda, P., Wesselschmidt, R. & Ley, T. J. Residual cytotoxicity and granzyme-K expression in granzyme-A-deficient cytotoxic lymphocytes. J. Biol. Chem. 272, 20236–20244 (1997).

    CAS  PubMed  Google Scholar 

  82. Mullbacher, A. et al. Granzyme A is critical for recovery of mice from infection with the natural cytopathic viral pathogen, ectromelia. Proc. Natl Acad. Sci. USA 93, 5783–5787 (1996).The first report to indicate that granzyme A is necessary for recovery from virus infection by the poxvirus ectromelia.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pereira, R. A., Simon, M. M. & Simmons, A. Granzyme A, a noncytolytic component of CD8+ cell granules, restricts the spread of herpes simplex virus in the peripheral nervous systems of experimentally infected mice. J. Virol. 74, 1029–1032 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Simon, M. M. et al. In vitro- and ex vivo-derived cytolytic leukocytes from granzyme A × B double-knockout mice are defective in granule-mediated apoptosis but not lysis of target cells. J. Exp. Med. 186, 1781–1786 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Beresford, P. J., Xia, Z., Greenberg, A. H. & Lieberman, J. Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10, 585–594 (1999).Granzyme A mediates a new form of DNA damage.

    CAS  PubMed  Google Scholar 

  86. Nakajima, H., Park, H. L. & Henkart, P. A. Synergistic roles of granzymes A and B in mediating target-cell death by rat basophilic leukemia mast-cell tumors also expressing cytolysin/perforin. J. Exp. Med. 181, 1037–1046 (1995).

    CAS  PubMed  Google Scholar 

  87. Zhang, D. et al. Induction of rapid histone degradation by the cytotoxic T lymphocyte protease granzyme A. J. Biol. Chem. 276, 3683–3690 (2001).

    CAS  PubMed  Google Scholar 

  88. Zhang, D., Beresford, P. J., Greenberg, A. H. & Lieberman, J. Granzymes A and B directly cleave lamins and disrupt the nuclear lamina during granule-mediated cytolysis. Proc. Natl Acad. Sci. USA 98, 5746–5751 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).A comprehensive review of viral strategies of immune evasion.

    CAS  PubMed  Google Scholar 

  90. Loenen, W. A., Bruggeman, C. A. & Wiertz, E. J. Immune evasion by human cytomegalovirus: lessons in immunology and cell biology. Semin. Immunol. 13, 41–49 (2001).

    CAS  PubMed  Google Scholar 

  91. Roulston, A., Marcellus, R. C. & Branton, P. E. Viruses and apoptosis. Annu. Rev. Microbiol. 53, 577–628 (1999).

    CAS  PubMed  Google Scholar 

  92. Bump, N. J. et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269, 1885–1888 (1995).

    CAS  PubMed  Google Scholar 

  93. Tewari, M. & Dixit, V. M. Fas- and tumor-necrosis-factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J. Biol. Chem. 270, 3255–3260 (1995).

    CAS  PubMed  Google Scholar 

  94. Everett, H. et al. M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J. Exp. Med. 191, 1487–1498 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Goldmacher, V. S. et al. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA 96, 12536–12541 (1999).The first demonstration of a new mitochondria-localized anti-apoptotic protein encoded by human cytomegalovirus.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wasilenko, S. T., Meyers, A. F., Vander Helm, K. & Barry, M. Vaccinia-virus infection disarms the mitochondrion-mediated pathway of the apoptotic cascade by modulating the permeability transition pore. J. Virol. 75, 11437–11448 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Andrade, F. et al. Adenovirus L4-100K assembly protein is a granzyme-B substrate that potently inhibits granzyme-B-mediated cell death. Immunity 14, 751–761 (2001).

    CAS  PubMed  Google Scholar 

  98. Krensky, A. M. Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem. Pharmacol. 59, 317–320 (2000).

    CAS  PubMed  Google Scholar 

  99. Stenger, S., Rosat, J. P., Bloom, B. R., Krensky, A. M. & Modlin, R. L. Granulysin: a lethal weapon of cytolytic T cells. Immunol. Today 20, 390–394 (1999).This article reviews the role of granulysin in CTL-mediated killing.

    CAS  PubMed  Google Scholar 

  100. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    CAS  PubMed  Google Scholar 

  101. Thoma-Uszynski, S., Stenger, S. & Modlin, R. L. CTL-mediated killing of intracellular Mycobacterium tuberculosis is independent of target-cell nuclear apoptosis. J. Immunol. 165, 5773–5779 (2000).

    CAS  PubMed  Google Scholar 

  102. Ernst, W. A. et al. Granulysin, a T-cell product, kills bacteria by altering membrane permeability. J. Immunol. 165, 7102–7108 (2000).

    CAS  PubMed  Google Scholar 

  103. Gamen, S. et al. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J. Immunol. 161, 1758–1764 (1998).

    CAS  PubMed  Google Scholar 

  104. Kaspar, A. A. et al. A distinct pathway of cell-mediated apoptosis initiated by granulysin. J. Immunol. 167, 350–356 (2001).

    CAS  PubMed  Google Scholar 

  105. Pardo, J. et al. A role of the mitochondrial apoptosis-inducing factor in granulysin-induced apoptosis. J. Immunol. 167, 1222–1229 (2001).

    CAS  PubMed  Google Scholar 

  106. Pena, S. V., Hanson, D. A., Carr, B. A., Goralski, T. J. & Krensky, A. M. Processing, subcellular localization and function of 519 (granulysin), a human late T-cell activation molecule with homology to small, lytic, granule proteins. J. Immunol. 158, 2680–2688 (1997).

    CAS  PubMed  Google Scholar 

  107. Lowin, B., Hahne, M., Mattmann, C. & Tschopp, J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370, 650–652 (1994).

    CAS  PubMed  Google Scholar 

  108. Pham, C. T. & Ley, T. J. Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc. Natl Acad. Sci. USA 96, 8627–8632 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Metkar, S. S. et al. Cytotoxic cell granule-mediated apoptosis: perforin delivers granzyme-B–serglycin complexes into target cells without plasma membrane pore formation. Immunity 16, 417–428 (2002).

    CAS  PubMed  Google Scholar 

  110. Russell, J. H. & Ley, T. J. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 20, 323–370 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We dedicate this review to the memory of A. Greenberg: sometimes a collaborator, often a competitor, always a friend. R.C.B. is an Alberta Heritage Foundation for Medical Research Scientist, Canadian Institute Health Research Distinguished Scientist and Howard Hughes International Research Scholar. M.B. is an Alberta Heritage Foundation for Medical Research Scholar.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

lymphoma

Entrez

cowpox virus

crmA

human cytomegalovirus

L4-100K

M11L

Mycobacterium tuberculosis

myxoma virus

vaccinia virus

vMIA

Locuslink

AIF

APAF1

BAK

BAX

BCL2

BID

caspase-3

caspase-8

caspase-9

collagen type IV

DFF40/CAD

endonuclease G

FADD

FAS

Fas

FASL

fibronectin

granulysin

granzyme A (human)

granzyme A (mouse)

granzyme B (human)

granzyme B (mouse)

granzyme C

granzyme D

granzyme E

granzyme F

granzyme G

granzyme H

granzyme K

H1 histone

ICAD

IFN-γ

IL-1β

lamin A/C

mannose-6-phosphate receptor

nucleolin

perforin (human)

perforin (mouse)

PHAPII

PI9

pro-urokinase-type plasminogen activator

thrombin receptor

TNF

TRAIL

OMIM

insulin-dependent diabetes mellitus

Glossary

MICROTUBULE-ORGANIZING CENTRE

A region of the cell from which microtubules grow. Motor proteins that are associated with the microtubles are responsible for the directed movement of organelles in the cytoplasm.

LPR MICE

These are naturally occurring mutants that bear a deletion of the Fas gene.

GLD MICE

These mice have a naturally occurring mutation of Fas ligand that causes a generalized lymphoproliferative disease.

CASPASES

A family of cysteine proteinases that are involved in the initiation and effector stages of apoptosis.

TYPE I/II SYSTEM

A classification of cells on the basis of their sensitivity to FAS-mediated killing. Type I cells recruit caspase-8, which results in the subsequent cleavage of caspase-3. Type II cells activate caspase-3 through a mitochondria-dependent step.

GRAFT-VERSUS-HOST DISEASE

The immune reaction against a graft recipient that is mounted by immune-competent cells of a graft.

IMMUNOLOGICAL SYNAPSE

A distinct region formed at the contact zone between the cytotoxic T lymphocyte and target cell due to the specific reorganization of cell-surface membrane proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, M., Bleackley, R. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2, 401–409 (2002). https://doi.org/10.1038/nri819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing