Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

T-cell-receptor gene therapy

Key Points

  • The induction of T-cell immunity against foreign antigens in healthy individuals is best achieved by vaccination.

  • Adoptive-transfer-based approaches for the induction of T-cell immunity are favoured in situations in which individuals are unable to mount the desired T-cell response, such as in settings of immunodeficiency or self-tolerance.

  • The adoptive transfer of T cells is a clinical strategy of proven value, but its application is limited by the complicated nature of the process.

  • Experiments in mouse model systems indicate that the adoptive transfer of T-cell receptors (TCRs) might be an interesting alternative strategy that would have several advantages. However, TCR gene transfer has not been tested yet in clinical trials.

  • A main advantage of TCR gene transfer is that it would allow the use of in vitro-selected or -engineered TCRs. It remains unclear whether increasing the affinity of TCRs would enhance the in vivo function of redirected T cells.

  • Chimeric receptors might be an interesting alternative to full-length TCR genes. However, the relative merits of the two approaches have not been compared in in vivo models.

  • To make TCR gene transfer a realistic therapeutic option, it will be important to establish the possible side-effects of this procedure. Furthermore, a precondition for widespread application will be the development of rapid and simple gene-transfer strategies.

  • As for many other gene-therapy trials, minimization of the immunogenicity of introduced gene products remains an important issue.

Abstract

T cells are tightly controlled cellular machines that monitor changes in epitope presentation. Although T-cell function is regulated by means of numerous interactions with other cell types and soluble factors, the T-cell receptor (TCR) is the only structure on the T-cell surface that defines its antigen-recognition potential. Consequently, the transfer of T-cell receptors into recipient cells can be used as a strategy for the passive transfer of T-cell immunity. In this review, I discuss the pros and cons of TCR gene transfer as a strategy to induce defined virus- and tumour-specific T-cell immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vector systems for stable gene transfer.
Figure 2: Mixed TCR dimers and ignorant self-specific cells.
Figure 3: Alloreactivity and TCR transfer.

Similar content being viewed by others

References

  1. Taylor, P. C., Williams, R. O. & Maini, R. N. Immunotherapy for rheumatoid arthritis. Curr. Opin. Immunol. 13, 611–616 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Weiner, L. M. Monoclonal antibody therapy of cancer. Semin. Oncol. 26, 43–51 (1999).

    CAS  PubMed  Google Scholar 

  3. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+CD8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Romieu, R. et al. Passive but not active CD8+ T-cell-based immunotherapy interferes with liver tumor progression in a transgenic mouse model. J. Immunol. 161, 5133–5137 (1998).A mouse model system that graphically illustrates the consequences of self-tolerance on tumour immunity and the effectiveness of adoptive therapies.

    CAS  PubMed  Google Scholar 

  5. Granziero, L. et al. Adoptive immunotherapy prevents prostate cancer in a transgenic animal model. Eur. J. Immunol. 29, 1127–1138 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Schell, T. D. et al. Cytotoxic T-lymphocyte epitope immunodominance in the control of choroid plexus tumors in simian virus 40 large T antigen transgenic mice. J. Virol. 73, 5981–5993 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maraninchi, D. et al. Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukaemias. Lancet 2, 175–178 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Gale, R. P. et al. Identical-twin bone marrow transplants for leukemia. Ann. Intern. Med. 120, 646–652 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Horowitz, M. M. et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75, 555–562 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Walter, E. A. et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044 (1995).A human trial that shows that infusion of in vitro -expanded CMV-specific T-cell lines is sufficient to restore CMV-specific T-cell immunity in immunodeficient individuals.

    Article  CAS  PubMed  Google Scholar 

  12. Rooney, C. M. et al. Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet 345, 9–13 (1995).A human trial that shows that infusion of in vitro -expanded EBV-specific T-cell lines is sufficient to protect immunodeficient individuals from EBV+ B-cell lymphomas and can also be used as treatment for patients with established disease.

    Article  CAS  PubMed  Google Scholar 

  13. Dembic, Z. et al. Transfer of specificity by murine α and β T-cell receptor genes. Nature 320, 232–238 (1986).A classic paper that establishes that the TCR α- and β-chains are the TCR components that determine the antigen specificity of T cells.

    Article  CAS  PubMed  Google Scholar 

  14. Calogero, A. et al. Retargeting of a T-cell line by anti-MAGE-3/HLA-A2 αβ TCR gene transfer. Anticancer Res. 20, 1793–1799 (2000).

    CAS  PubMed  Google Scholar 

  15. Clay, T. M. et al. Efficient transfer of a tumor-antigen-reactive TCR to human peripheral-blood lymphocytes confers anti-tumor reactivity. J. Immunol. 163, 507–513 (1999).

    CAS  PubMed  Google Scholar 

  16. Cooper, L. J., Kalos, M., Lewinsohn, D. A., Riddell, S. R. & Greenberg, P. D. Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J. Virol. 74, 8207–8212 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujio, K. et al. Functional reconstitution of class II MHC-restricted T-cell immunity mediated by retroviral transfer of the αβ TCR complex. J. Immunol. 165, 528–532 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Heemskerk, M. H. et al. Dual HLA class-I- and class-II-restricted recognition of alloreactive T lymphocytes mediated by a single T-cell receptor complex. Proc. Natl Acad. Sci. USA 98, 6806–6811 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Orentas, R. J., Roskopf, S. J., Nolan, G. P. & Nishimura, M. I. Retroviral transduction of a T-cell receptor specific for an Epstein–Barr-virus-encoded peptide. Clin. Immunol. 98, 220–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Stanislawski, T. et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nature Immunol. 2, 962–970 (2001).This study describes the combination of sophisticated selection technologies that are available for the identification of desirable TCRs and the use of such TCRs by gene transfer into peripheral T cells.

    Article  CAS  Google Scholar 

  21. Kessels, H. W., Wolkers, M. C., van den Boom, M. D., van der Valk, M. A. & Schumacher, T. N. Immunotherapy through TCR gene transfer. Nature Immunol. 2, 957–961 (2001).The first description of the in vivo behaviour and function of peripheral T cells that have been redirected by TCR gene transfer.

    Article  CAS  Google Scholar 

  22. Jahner, D. et al. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298, 623–628 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Challita, P. M. & Kohn, D. B. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc. Natl Acad. Sci. USA 91, 2567–2571 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hawley, R. G., Lieu, F. H., Fong, A. Z. & Hawley, T. S. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

  25. Dang, Q., Auten, J. & Plavec, I. Human β-interferon scaffold attachment region inhibits de novo methylation and confers long-term, copy-number-dependent expression to a retroviral vector. J. Virol. 74, 2671–2678 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rivella, S., Callegari, J. A., May, C., Tan, C. W. & Sadelain, M. The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J. Virol. 74, 4679–4687 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal, M. et al. Scaffold attachment region-mediated enhancement of retroviral vector expression in primary T cells. J. Virol. 72, 3720–3728 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Emery, D. W., Yannaki, E., Tubb, J. & Stamatoyannopoulos, G. A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc. Natl Acad. Sci. USA 97, 9150–9155 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Unutmaz, D., Kewal Ramani, V. N., Marmon, S. & Littman, D. R. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).A description of the most successful human gene-therapy trial so far, which exemplifies the optimal conditions for gene therapy.

    Article  CAS  PubMed  Google Scholar 

  31. Viola, A. & Lanzavecchia, A. T-cell activation determined by T-cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Labrecque, N. et al. How much TCR does a T-cell need? Immunity 15, 71–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Holler, P. D. et al. In vitro evolution of a T-cell receptor with high affinity for peptide–MHC. Proc. Natl Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kessels, H. W., van Den Boom, M. D., Spits, H., Hooijberg, E. & Schumacher, T. N. Changing T-cell specificity by retroviral T-cell receptor display. Proc. Natl Acad. Sci. USA 97, 14578–14583 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kalergis, A. M. et al. Efficient T-cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex. Nature Immunol. 2, 229–234 (2001).

    Article  CAS  Google Scholar 

  36. Holler, P. D., Lim, A. R., Cho, B. K., Rund, L. A. & Kranz, D. M. CD8-transfectants that express a high-affinity T-cell receptor exhibit enhanced peptide-dependent activation. J. Exp. Med. 194, 1043–1052 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savage, P. A. & Davis, M. M. A kinetic window constricts the T-cell receptor repertoire in the thymus. Immunity 14, 243–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Padovan, E. et al. Expression of two T-cell receptor α-chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Elliott, J. I. & Altmann, D. M. Non-obese diabetic mice hemizygous at the T-cell receptor α-locus are susceptible to diabetes and sialitis. Eur. J. Immunol. 26, 953–956 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Argaet, V. P. et al. Dominant selection of an invariant T-cell antigen receptor in response to persistent infection by Epstein–Barr virus. J. Exp. Med. 180, 2335–2340 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Burrows, S. R. et al. T-cell receptor repertoire for a viral epitope in humans is diversified by tolerance to a background major histocompatibility complex antigen. J. Exp. Med. 182, 1703–1715 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Riddell, S. R. et al. T-cell-mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients. Nature Med. 2, 216–223 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Bonini, C. et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Lutzko, C. et al. Genetically corrected autologous stem cells engraft, but host immune responses limit their utility in canine α-l-iduronidase deficiency. Blood 93, 1895–1905 (1999).

    CAS  PubMed  Google Scholar 

  45. Berger, C. et al. Nonmyeloablative immunosuppressive regimen prolongs in vivo persistence of gene-modified autologous T cells in a nonhuman primate model. J. Virol. 75, 799–808 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).A landmark paper that describes how fluorescently labelled multivalent MHC molecules can be used to visualize antigen-specific T cells.

    Article  CAS  PubMed  Google Scholar 

  47. Thomis, D. C. et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood 97, 1249–1257 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. White, J., Haskins, K. M., Marrack, P. & Kappler, J. Use of I-region-restricted, antigen-specific T-cell hybridomas to produce idiotypically specific anti-receptor antibodies. J. Immunol. 130, 1033–1037 (1983).

    CAS  PubMed  Google Scholar 

  49. Infante, A. J., Infante, P. D., Gillis, S. & Fathman, C. G. Definition of T-cell idiotypes using anti-idiotypic antisera produced by immunization with T-cell clones. J. Exp. Med. 155, 1100–1107 (1982).

    Article  CAS  PubMed  Google Scholar 

  50. Kaech, S. M. & Ahmed, R. Memory CD8+ T-cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nature Immunol. 2, 415–422 (2001).

    Article  CAS  Google Scholar 

  51. van Stipdonk, M. J., Lemmens, E. E. & Schoenberger, S. P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nature Immunol. 2, 423–429 (2001).

    Article  CAS  Google Scholar 

  52. Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C. J. Specific T-helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class-II-negative tumors. J. Exp. Med. 187, 693–702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moritani, M. et al. Prevention of adoptively transferred diabetes in nonobese diabetic mice with IL-10-transduced islet-specific Th1 lymphocytes. A gene therapy model for autoimmune diabetes. J. Clin. Invest. 98, 1851–1859 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shaw, M. K. et al. Local delivery of interleukin-4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J. Exp. Med. 185, 1711–1714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Costa, G. L. et al. Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T-cell delivery of the IL-12 p40 subunit. J. Immunol. 167, 2379–2387 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Nakajima, A. et al. Antigen-specific T-cell-mediated gene therapy in collagen-induced arthritis. J. Clin. Invest. 107, 1293–1301 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamamoto, A. M. et al. The activity of immunoregulatory T cells mediating active tolerance is potentiated in nonobese diabetic mice by an IL-4-based retroviral gene therapy. J. Immunol. 166, 4973–4980 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Mageed, R. A., Adams, G., Woodrow, D., Podhajcer, O. L. & Chernajovsky, Y. Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor. Gene Ther. 5, 1584–1592 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Randolph, D. A., Huang, G., Carruthers, C. J., Bromley, L. E. & Chaplin, D. D. The role of CCR7 in TH1 and TH2 cell localization and delivery of B-cell help in vivo. Science 286, 2159–2162 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Eshhar, Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol. Immunother. 45, 131–136 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Altenschmidt, U., Klundt, E. & Groner, B. Adoptive transfer of in-vitro-targeted, activated T lymphocytes results in total tumor regression. J. Immunol. 159, 5509–5515 (1997).

    CAS  PubMed  Google Scholar 

  66. Haynes, N. M. et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable-domain chimeras containing TCR-ζ vs FcɛRI-γ. J. Immunol. 166, 182–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Hekele, A. et al. Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44v6-specific scFv:ζ-chimera. Int. J. Cancer 68, 232–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Brocker, T. Chimeric Fv-ζ or Fv-ɛ receptors are not sufficient to induce activation or cytokine production in peripheral T cells. Blood 96, 1999–2001 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Geiger, T. L., Leitenberg, D. & Flavell, R. A. The TCR ζ-chain immunoreceptor tyrosine-based activation motifs are sufficient for the activation and differentiation of primary T lymphocytes. J. Immunol. 162, 5931–5939 (1999).

    CAS  PubMed  Google Scholar 

  70. Osman, N., Turner, H., Lucas, S., Reif, K. & Cantrell, D. A. The protein interactions of the immunoglobulin receptor family tyrosine-based activation motifs present in the T-cell receptor ζ-subunits and the CD3 γ-, δ- and ɛ-chains. Eur. J. Immunol. 26, 1063–1068 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Dustin, M. L. Membrane domains and the immunological synapse: keeping T cells resting and ready. J. Clin. Invest. 109, 155–160 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krummel, M. F. & Davis, M. M. Dynamics of the immunological synapse: finding, establishing and solidifying a connection. Curr. Opin. Immunol. 14, 66–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Garcia, K. C., Teyton, L. & Wilson, I. A. Structural basis of T-cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Reich, Z. et al. Ligand-specific oligomerization of T-cell receptor molecules. Nature 387, 617–620 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Baker, B. M. & Wiley, D. C. αβ T-cell receptor ligand-specific oligomerization revisited. Immunity 14, 681–692 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Cochran, J. R., Cameron, T. O., Stone, J. D., Lubetsky, J. B. & Stern, L. J. Receptor proximity, not intermolecular orientation, is critical for triggering T-cell activation. J. Biol. Chem. 276, 28068–28074 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T-cell activation: a kinetic view of T-cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. van der Merwe, P. A., Davis, S. J., Shaw, A. S. & Dustin, M. L. Cytoskeletal polarization and redistribution of cell-surface molecules during T-cell antigen recognition. Semin. Immunol. 12, 5–21 (2000).

    Article  CAS  Google Scholar 

  79. Davis, M. M. et al. Ligand recognition by αβ T-cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. McMichael, A. J. & Phillips, R. E. Escape of human immunodeficiency virus from immune control. Annu. Rev. Immunol. 15, 271–296 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Medema, J. P. et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl Acad. Sci. USA 98, 11515–11520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Medema, J. P., de Jong, J., van Hall, T., Melief, C. J. & Offringa, R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J. Exp. Med. 190, 1033–1038 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gilboa, E. How tumors escape immune destruction and what we can do about it. Cancer Immunol. Immunother. 48, 382–385 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Gray, D. A. Insertional mutagenesis: neoplasia arising from retroviral integration. Cancer Invest. 9, 295–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Somia, N. & Verma, I. M. Gene therapy: trials and tribulations. Nature Rev. Genet. 1, 91–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Plasterk, R. H., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Van Craenenbroeck, K., Vanhoenacker, P. & Haegeman, G. Episomal vectors for gene expression in mammalian cells. Eur. J. Biochem. 267, 5665–5678 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I wish to apologize to those colleagues whose work could not be discussed owing to space limitations. I thank my colleagues at the Department of Immunology, in particular H. Kessels and M. Wolkers for their useful comments and suggestions. Work in my laboratory is supported by grants from the Dutch Cancer Society and the Netherlands Organization for Scientific Research.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

acute myeloid leukaemia

chronic myelogenous leukaemia

liver cancer

prostate cancer

Entrez

CMV

EBV

MCC

MoMLV

SV40

InterPro

ITAM

LocusLink

CD3δ

CD3ɛ

CD3γ

CD3ζ-chain

CD8

CD20

HLA-B

TNF

OMIM

SCID-X1

FURTHER INFORMATION

NIH MHC tetramer facility

Glossary

ACTIVE IMMUNIZATION

The induction of immunity by activation and expansion of the endogenous immune repertoire.

PASSIVE IMMUNIZATION

The induction of immunity by the transfer of immunoglobulins or T cells.

LYMPHOMA

A tumour derived from cells that are native to the lymphoid tissues, such as B cells and T cells.

HER2/NEU

Human epidermal growth factor receptor 2; a receptor tyrosine kinase that is overexpressed in a subset of human breast cancers.

SV40 LARGE T ANTIGEN

A transforming protein that is encoded by simian virus 40 and that is also a target of CTL attack.

ALLOGENEIC STEM-CELL TRANSPLANTATION

(allo-SCT). The transfer of haematopoietic stem cells from donor to recipient. To achieve antitumour effects, the transplant either contains donor T cells or transplantation is followed by donor lymphocyte infusions.

MINOR HISTOCOMPATIBILITY ANTIGENS

Polymorphic peptides derived from normal cellular proteins that can be recognized in the context of MHC molecules. Immune responses against these polymorphic antigens can result in graft-versus-host reactions, graft rejection or beneficial antitumour responses.

RETROVIRAL TRANSDUCTION

The introduction of genes through infection of cells with a retrovirus that carries the target gene.

EPISOMAL REPLICATION

The autonomous replication of plasmid DNA that resides in host cells without chromosomal integration.

IGNORANCE

Failure to initiate a T-cell response through lack of encounter with antigen — for example, owing to compartmentalization of antigen.

ALLELIC EXCLUSION

Inhibition of the rearrangement of the second TCR allele on function rearrangement of the first allele.

SUICIDE GENES

Genes that are used in gene-transfer protocols, such as the herpes-simplex virus thymidine kinase gene, that allow the regulated death of the gene-modified cell population.

MHC TETRAMERS

Fluorescently labelled tetravalent complexes of MHC class I or class II molecules with antigenic peptide. They can be used to identify antigen-specific T cells by flow cytometry.

SOMATIC HYPERMUTATION

The process by which antigen-activated B cells in germinal centres mutate their rearranged immunoglobulin genes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumacher, T. T-cell-receptor gene therapy. Nat Rev Immunol 2, 512–519 (2002). https://doi.org/10.1038/nri841

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing