Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted mismatch-repair system

Key Points

  • The mismatch repair (MMR) system is one of the most important guardians of genomic integrity. It improves the fidelity of DNA replication, aborts illegitimate recombination and affects the outcome of several other processes of DNA metabolism.

  • The malfunction of MMR gives rise to a mutator phenotype and microsatellite instability. MMR defects in humans lead to cancer of the colon, endometrium and ovary. In mice, the predominant malignancies are lymphomas and late-onset gastrointestinal tumours.

  • The MMR process involves a complex interplay of MMR-specific proteins with the replication and/or recombination machinery. It is activated by the binding of the mismatch-recognition factors, MutSα and MutSβ, to substrates that contain base?base mismatches and insertion/deletion loops that arise during recombination or from errors of DNA polymerases.

  • The ATP-dependent recruitment of MutL homologues to the mismatch-bound complex is followed by the exonuclease-mediated degradation of the error-containing strand. Once the mismatch had been removed, resynthesis of the degraded region by a DNA polymerase, followed by sealing of the remaining nick by DNA ligase, completes the repair process.

  • MMR proteins play an important role in DNA-damage processing and signalling. MMR-deficient cells are resistant to death that is induced by several important chemotherapeutic agents.

  • In recent years, the MMR system has emerged as a modifier of enigmatic processes of DNA metabolism such as somatic hypermutation, class-switch recombination and triplet-repeat expansion. The role of MMR proteins in these processes remains obscure.

Abstract

By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postreplicative mismatch repair.
Figure 2: The MutS sliding clamp and its activation.
Figure 3: The reconstituted human mismatch-repair system.
Figure 4: Mismatch repair in DNA-damage signalling.
Figure 5: Mismatch repair in gene conversion.

Similar content being viewed by others

References

  1. Peltomaki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol. 21, 1174?1179 (2003).

    CAS  PubMed  Google Scholar 

  2. Marra, G. & Jiricny, J. in Genome Instability in Cancer Development (ed. Nigg, E. A.) 85?123 (Springer, New York, 2005).

    Google Scholar 

  3. Kunkel, T. A. Nucleotide repeats. Slippery DNA and diseases. Nature 365, 207?208 (1993).

    CAS  PubMed  Google Scholar 

  4. Kunkel, T. A. & Erie, D. A. DNA mismatch repair. Annu. Rev. Biochem. 74, 681?710 (2005).

    CAS  PubMed  Google Scholar 

  5. Fishel, R. Signaling mismatch repair in cancer. Nature Med. 5, 1239?1241 (1999).

    CAS  PubMed  Google Scholar 

  6. Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89?96 (1999).

    CAS  PubMed  Google Scholar 

  7. Buermeyer, A. B., Deschenes, S. M., Baker, S. M. & Liskay, R. M. Mammalian DNA mismatch repair. Annu. Rev. Genet. 33, 533?564 (1999).

    CAS  PubMed  Google Scholar 

  8. Muller, A. & Fishel, R. Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC). Cancer Invest. 20, 102?109 (2002).

    PubMed  Google Scholar 

  9. Hsieh, P. Molecular mechanisms of DNA mismatch repair. Mutat. Res. 486, 71?87 (2001).

    CAS  PubMed  Google Scholar 

  10. Lahue, R. S., Au, K. G. & Modrich, P. DNA mismatch correction in a defined system. Science 245, 160?164 (1989).

    CAS  PubMed  Google Scholar 

  11. Lacks, S. A., Dunn, J. J. & Greenberg, B. Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31, 327?336 (1982).

    CAS  PubMed  Google Scholar 

  12. Kramer, B., Kramer, W. & Fritz, H. J. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell 38, 879?887 (1984).

    CAS  PubMed  Google Scholar 

  13. Bruni, R., Martin, D. & Jiricny, J. d(GATC) sequences influence Escherichia coli mismatch repair in a distance-dependent manner from positions both upstream and downstream of the mismatch. Nucleic Acids Res. 16, 4875?4890 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Holmes, J. J., Clark, S. & Modrich, P. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl Acad. Sci. USA 87, 5837?5841 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomas, D. C., Roberts, J. D. & Kunkel, T. A. Heteroduplex repair in extracts of human HeLa cells. J. Biol. Chem. 266, 3744?3751 (1991). References 14 and 15 demonstrate that the MMR process functions in cell-free systems.

    CAS  PubMed  Google Scholar 

  16. Fang, W. H. & Modrich, P. Human strand-specific mismatch repair occurs by a bidirectional mechanism similar to that of the bacterial reaction. J. Biol. Chem. 268, 11838?11844 (1993).

    CAS  PubMed  Google Scholar 

  17. Palombo, F. et al. GTBP, a 160-kilodalton protein essential for mismatch-binding activity in human cells. Science 268, 1912?1914 (1995).

    CAS  PubMed  Google Scholar 

  18. Drummond, J. T., Li, G. M., Longley, M. J. & Modrich, P. Isolation of an hMSH2?p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268, 1909?1912 (1995). References 17 and 18 provide the first demonstration that the human MutS homologues function as heterodimers.

    CAS  PubMed  Google Scholar 

  19. Acharya, S. et al. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl Acad. Sci. USA 93, 13629?13634 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. de Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321?330 (1995).

    CAS  PubMed  Google Scholar 

  21. de Wind, N. et al. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions. Nature Genet. 23, 359?362 (1999).

    CAS  PubMed  Google Scholar 

  22. Edelmann, W. et al. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression. Cancer Res. 60, 803?807 (2000).

    CAS  PubMed  Google Scholar 

  23. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945?951 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gorbalenya, A. E. & Koonin, E. V. Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. J. Mol. Biol. 213, 583?591 (1990).

    CAS  PubMed  Google Scholar 

  25. Palombo, F. et al. hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr. Biol. 6, 1181?1184 (1996).

    CAS  PubMed  Google Scholar 

  26. Iaccarino, I., Marra, G., Dufner, P. & Jiricny, J. Mutation in the magnesium binding site of hMSH6 disables the hMutSα sliding clamp from translocating along DNA. J. Biol. Chem. 275, 2080?2086 (2000).

    CAS  PubMed  Google Scholar 

  27. Iaccarino, I., Marra, G., Palombo, F. & Jiricny, J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα. EMBO J. 17, 2677?2686 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Malkov, V. A., Biswas, I., Camerini-Otero, R. D. & Hsieh, P. Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA. J. Biol. Chem. 272, 23811?23817 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Dufner, P., Marra, G., Raschle, M. & Jiricny, J. Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSα Is abolished by a single mutation in the hMSH6 subunit. J. Biol. Chem. 275, 36550?36555 (2000).

    CAS  PubMed  Google Scholar 

  30. Gradia, S., Acharya, S. & Fishel, R. The human mismatch recognition complex hMSH2?hMSH6 functions as a novel molecular switch. Cell 91, 995?1005 (1997).

    CAS  PubMed  Google Scholar 

  31. Blackwell, L. J., Martik, D., Bjornson, K. P., Bjornson, E. S. & Modrich, P. Nucleotide-promoted release of hMutSα from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J. Biol. Chem. 273, 32055?32062 (1998).

    CAS  PubMed  Google Scholar 

  32. Mendillo, M. L., Mazur, D. J. & Kolodner, R. D. Analysis of the interaction between the Saccharomyces cerevisiae MSH2?MSH6 and MLH1?PMS1 complexes with DNA using a reversible DNA end-blocking system. J. Biol. Chem. 280, 22245?22257 (2005).

    CAS  PubMed  Google Scholar 

  33. Gradia, S. et al. hMSH2?hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255?261 (1999).

    CAS  PubMed  Google Scholar 

  34. Sixma, T. K. DNA mismatch repair: MutS structures bound to mismatches. Curr. Opin. Struct. Biol. 11, 47?52 (2001).

    CAS  PubMed  Google Scholar 

  35. Lamers, M. H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G?T mismatch. Nature 407, 711?717 (2000).

    CAS  PubMed  Google Scholar 

  36. Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407, 703?710 (2000). References 35 and 36 describe the crystal structure of bacterial MutS proteins in complex with heteroduplex olignoucleotide substrates, and show that the protein forms a clamp around the DNA.

    CAS  PubMed  Google Scholar 

  37. Jiricny, J. Mismatch repair: the praying hands of fidelity. Curr. Biol. 10, R788?R790 (2000).

    CAS  PubMed  Google Scholar 

  38. Blackwell, L. J., Bjornson, K. P. & Modrich, P. DNA-dependent activation of the hMutSα ATPase. J. Biol. Chem. 273, 32049?32054 (1998).

    CAS  PubMed  Google Scholar 

  39. Alani, E. et al. Crystal structure and biochemical analysis of the MutS?ADP?beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair. J. Biol. Chem. 278, 16088?16094 (2003).

    CAS  PubMed  Google Scholar 

  40. Lamers, M. H. et al. ATP increases the affinity between MutS ATPase domains. Implications for ATP hydrolysis and conformational changes. J. Biol. Chem. 279, 43879?43885 (2004).

    CAS  PubMed  Google Scholar 

  41. Martik, D., Baitinger, C. & Modrich, P. Differential specificities and simultaneous occupancy of human MutSα nucleotide binding sites. J. Biol. Chem. 279, 28402?28410 (2004).

    CAS  PubMed  Google Scholar 

  42. Dutta, R. & Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24?28 (2000).

    CAS  PubMed  Google Scholar 

  43. Prolla, T. A. et al. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nature Genet. 18, 276?279 (1998).

    CAS  PubMed  Google Scholar 

  44. Raschle, M., Marra, G., Nystrom-Lahti, M., Schar, P. & Jiricny, J. Identification of hMutLβ, a heterodimer of hMLH1 and hPMS1. J. Biol. Chem. 274, 32368?32375 (1999).

    CAS  PubMed  Google Scholar 

  45. Chen, P. C. et al. Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Res. 65, 8662?8670 (2005).

    CAS  PubMed  Google Scholar 

  46. Cannavo, E. et al. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res. 65, 10759?10766 (2005).

    CAS  PubMed  Google Scholar 

  47. Flores-Rozas, H. & Kolodner, R. D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl Acad. Sci. USA 95, 12404?12409 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Acharya, S., Foster, P. L., Brooks, P. & Fishel, R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol. Cell 12, 233?246 (2003).

    CAS  PubMed  Google Scholar 

  49. Junop, M. S., Yang, W., Funchain, P., Clendenin, W. & Miller, J. H. In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair (Amst.) 2, 387?405 (2003).

    CAS  Google Scholar 

  50. Smith, B. T., Grossman, A. D. & Walker, G. C. Visualization of mismatch repair in bacterial cells. Mol. Cell 8, 1197?1206 (2001).

    CAS  PubMed  Google Scholar 

  51. Blackwell, L. J., Wang, S. & Modrich, P. DNA chain length dependence of formation and dynamics of hMutSα?hMutLα?heteroduplex complexes. J. Biol. Chem. 276, 33233?33240 (2001).

    CAS  PubMed  Google Scholar 

  52. Raschle, M., Dufner, P., Marra, G. & Jiricny, J. Mutations within the hMLH1 and hPMS2 subunits of the human MutLα mismatch repair factor affect its ATPase activity, but not its ability to interact with hMutSa. J. Biol. Chem. 277, 21810?21820 (2002).

    CAS  PubMed  Google Scholar 

  53. Plotz, G., Raedle, J., Brieger, A., Trojan, J. & Zeuzem, S. hMutSa forms an ATP-dependent complex with hMutLα and hMutLβ on DNA. Nucleic Acids Res. 30, 711?718 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, H. & Hays, J. B. Mismatch repair in human nuclear extracts: effects of internal DNA-hairpin structures between mismatches and excision-initiation nicks on mismatch correction and mismatch-provoked excision. J. Biol. Chem. 278, 28686?28693 (2003).

    CAS  PubMed  Google Scholar 

  55. Wang, H. & Hays, J. B. Signaling from DNA mispairs to mismatch-repair excision sites despite intervening blockades. EMBO J. 23, 2126?2133 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Plotz, G., Piiper, A., Wormek, M., Zeuzem, S. & Raedle, J. Analysis of the human MutLα?MutSα complex. Biochem. Biophys. Res. Commun. 340, 852?859 (2006).

    CAS  PubMed  Google Scholar 

  57. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65?73 (1996).

    CAS  PubMed  Google Scholar 

  58. Kleczkowska, H. E., Marra, G., Lettieri, T. & Jiricny, J. hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev. 15, 724?736 (2001). This work shows that PCNA interacts with MutSα or MutSβ in vitro and in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lau, P. J. & Kolodner, R. D. Transfer of the MSH2?MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J. Biol. Chem. 278, 14?17 (2003).

    CAS  PubMed  Google Scholar 

  60. Tran, H. T., Gordenin, D. A. & Resnick, M. A. The 3′→5′ exonucleases of DNA polymerases δ and ε and the 5′→3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 2000?2007 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tran, H. T., Degtyareva, N. P., Gordenin, D. A. & Resnick, M. A. Genetic factors affecting the impact of DNA polymerase δ proofreading activity on mutation avoidance in yeast. Genetics 152, 47?59 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Vo, A. T. et al. hMRE11 deficiency leads to microsatellite instability and defective DNA mismatch repair. EMBO Rep. 6, 438?444 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tran, P. T., Erdeniz, N., Symington, L. S. & Liskay, R. M. EXO1-A multi-tasking eukaryotic nuclease. DNA Repair (Amst.) 3, 1549?1559 (2004).

    CAS  Google Scholar 

  64. Wei, K. et al. Inactivation of exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 17, 603?614 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, G. M. & Modrich, P. Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc. Natl Acad. Sci. USA 92, 1950?1954 (1995). Reports the identification of MutLα as an MMR factor.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Longley, M. J., Pierce, A. J. & Modrich, P. DNA polymerase δ is required for human mismatch repair in vitro. J. Biol. Chem. 272, 10917?10921 (1997).

    CAS  PubMed  Google Scholar 

  67. Lin, Y. L. et al. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J. Biol. Chem. 273, 1453?1461 (1998).

    CAS  PubMed  Google Scholar 

  68. Ramilo, C. et al. Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol. Cell. Biol. 22, 2037?2046 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Genschel, J., Bazemore, L. R. & Modrich, P. Human exonuclease I is required for 5′ and 3′ mismatch repair. J. Biol. Chem. 277, 13302?13311 (2002).

    CAS  PubMed  Google Scholar 

  70. Yuan, F., Gu, L., Guo, S., Wang, C. & Li, G. M. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J. Biol. Chem. 279, 20935?20940 (2004).

    CAS  PubMed  Google Scholar 

  71. Dzantiev, L. et al. A defined human system that supports bidirectional mismatch-provoked excision. Mol. Cell 15, 31?41 (2004).

    CAS  PubMed  Google Scholar 

  72. Zhang, Y. et al. Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122, 693?705 (2005). References 71 and 72 provide the first descriptions of MMR systems that were reconstituted from recombinant proteins.

    CAS  PubMed  Google Scholar 

  73. Genschel, J. & Modrich, P. Mechanism of 5′-directed excision in human mismatch repair. Mol. Cell 12, 1077?1086 (2003).

    CAS  PubMed  Google Scholar 

  74. Constantin, N., Dzantiev, L., Kadyrov, F. A. & Modrich, P. Human mismatch repair: Reconstitution of a nick-directed bidirectional reaction. J. Biol. Chem. 280, 39752?39761 (2005).

    CAS  PubMed  Google Scholar 

  75. Junop, M. S., Obmolova, G., Rausch, K., Hsieh, P. & Yang, W. Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol. Cell 7, 1?12 (2001).

    CAS  PubMed  Google Scholar 

  76. Stojic, L., Brun, R. & Jiricny, J. Mismatch repair and DNA damage signalling. DNA Repair (Amst.) 3, 1091?1101 (2004).

    CAS  Google Scholar 

  77. Duckett, D. R. et al. Human MutSα recognizes damaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or the cisplatin-d(GpG) adduct. Proc. Natl Acad. Sci. USA 93, 6443?6447 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Karran, P. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22, 1931?1937 (2001).

    CAS  PubMed  Google Scholar 

  79. Cejka, P. et al. Methylation-induced G(2)/M arrest requires a full complement of the mismatch repair protein hMLH1. EMBO J. 22, 2245?2254 (2003). Description of a strictly isogenic MMR-proficient and -deficient cell system.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaina, B. Mechanisms and consequences of methylating agent-induced SCEs and chromosomal aberrations: a long road traveled and still a far way to go. Cytogenet. Genome Res. 104, 77?86 (2004).

    CAS  PubMed  Google Scholar 

  81. Stojic, L. et al. Mismatch repair-dependent G2 checkpoint induced by low doses of SN1 type methylating agents requires the ATR kinase. Genes Dev. 18, 1331?1344 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Caporali, S. et al. DNA damage induced by temozolomide signals to both ATM and ATR: role of the mismatch repair system. Mol. Pharmacol. 66, 478?491 (2004). References 81 and 82 show delayed cell-cycle-arrest activation on treatment of human cells with methylating agents.

    CAS  PubMed  Google Scholar 

  83. Cejka, P., Mojas, N., Gillet, L., Schar, P. & Jiricny, J. Homologous recombination rescues mismatch repair-dependent cytotoxicity of SN1-type methylating agents in S. cerevisiae. Curr. Biol. 15, 1395?1400 (2005).

    CAS  PubMed  Google Scholar 

  84. Swann, P. F. et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273, 1109?1111 (1996).

    CAS  PubMed  Google Scholar 

  85. Waters, T. R. & Swann, P. F. Cytotoxic mechanism of 6-thioguanine: hMutSα, the human mismatch binding heterodimer, binds to DNA containing S6-methylthioguanine. Biochemistry 36, 2501?2506 (1997). References 84 and 85 provide the first hint as to the mode of action of 6-thioguanine.

    CAS  PubMed  Google Scholar 

  86. Yamane, K., Taylor, K. & Kinsella, T. J. Mismatch repair-mediated G2/M arrest by 6-thioguanine involves the ATR?Chk1 pathway. Biochem. Biophys. Res. Commun. 318, 297?302 (2004).

    CAS  PubMed  Google Scholar 

  87. Yan, T. et al. CHK1 and CHK2 are differentially involved in mismatch repair-mediated 6-thioguanine-induced cell cycle checkpoint responses. Mol. Cancer Ther. 3, 1147?1157 (2004).

    CAS  PubMed  Google Scholar 

  88. Yan, T., Berry, S. E., Desai, A. B. & Kinsella, T. J. DNA mismatch repair (MMR) mediates 6-thioguanine genotoxicity by introducing single-strand breaks to signal a G(2)-M arrest in MMR-proficient RKO cells. Clin. Cancer Res. 9, 2327?2334 (2003).

    CAS  PubMed  Google Scholar 

  89. Aebi, S. et al. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res. 56, 3087?3090 (1996).

    CAS  PubMed  Google Scholar 

  90. Fink, D. et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56, 4881?4886 (1996).

    CAS  PubMed  Google Scholar 

  91. Papouli, E., Cejka, P. & Jiricny, J. Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells. Cancer Res. 64, 3391?3394 (2004).

    CAS  PubMed  Google Scholar 

  92. Yamada, M., O'Regan, E., Brown, R. & Karran, P. Selective recognition of a cisplatin?DNA adduct by human mismatch repair proteins. Nucleic Acids Res. 25, 491?496 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nature Rev. Drug Discov. 4, 307?320 (2005).

    CAS  Google Scholar 

  94. Shimodaira, H., Yoshioka-Yamashita, A., Kolodner, R. D. & Wang, J. Y. Interaction of mismatch repair protein PMS2 and the p53-related transcription factor p73 in apoptosis response to cisplatin. Proc. Natl Acad. Sci. USA 100, 2420?2425 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Young, L. C., Thulien, K. J., Campbell, M. R., Tron, V. A. & Andrew, S. E. DNA mismatch repair proteins promote apoptosis and suppress tumorigenesis in response to UVB irradiation: an in vivo study. Carcinogenesis 25, 1821?1827 (2004).

    CAS  PubMed  Google Scholar 

  96. van Oosten, M. et al. Mismatch repair protein Msh2 contributes to UVB-induced cell cycle arrest in epidermal and cultured mouse keratinocytes. DNA Repair (Amst.) 4, 81?89 (2005).

    CAS  Google Scholar 

  97. Fiumicino, S. et al. Sensitivity to DNA cross-linking chemotherapeutic agents in mismatch repair-defective cells in vitro and in xenografts. Int. J. Cancer 85, 590?596 (2000). First characterization of a substance that is preferentially cytotoxic to MMR-deficient cells.

    CAS  PubMed  Google Scholar 

  98. Wang, Y. & Qin, J. MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proc. Natl Acad. Sci. USA 100, 15387?15392 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Adamson, A. W. et al. Methylator-induced, mismatch repair-dependent G2 arrest is activated through Chk1 and Chk2. Mol. Biol. Cell 16, 1513?1526 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. McNees, C. J., Conlan, L. A., Tenis, N. & Heierhorst, J. ASCIZ regulates lesion-specific Rad51 focus formation and apoptosis after methylating DNA damage. EMBO J. 24, 2447?2457 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lin, D. P. et al. An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res. 64, 517?522 (2004).

    CAS  PubMed  Google Scholar 

  102. Yang, G. et al. Dominant effects of an Msh6 missense mutation on DNA repair and cancer susceptibility. Cancer Cell 6, 139?150 (2004).

    CAS  PubMed  Google Scholar 

  103. Harfe, B. D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34, 359?399 (2000).

    CAS  PubMed  Google Scholar 

  104. Harfe, B. D. & Jinks-Robertson, S. Mismatch repair proteins and mitotic genome stability. Mutat. Res. 451, 151?167 (2000).

    CAS  PubMed  Google Scholar 

  105. Hoffmann, E. R. & Borts, R. H. Meiotic recombination intermediates and mismatch repair proteins. Cytogenet. Genome Res. 107, 232?248 (2004).

    CAS  PubMed  Google Scholar 

  106. Rayssiguier, C., Thaler, D. S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396?401 (1989). Demonstration that MMR functions as a barrier to illegitimate recombination.

    CAS  PubMed  Google Scholar 

  107. Bocker, T. et al. hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. Cancer Res. 59, 816?822 (1999).

    CAS  PubMed  Google Scholar 

  108. Snowden, T., Acharya, S., Butz, C., Berardini, M. & Fishel, R. hMSH4?hMSH5 recognizes Holliday junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol. Cell 15, 437?451 (2004).

    CAS  PubMed  Google Scholar 

  109. Kunz, C. & Schar, P. Meiotic recombination: sealing the partnership at the junction. Curr. Biol. 14, R962?R964 (2004).

    CAS  PubMed  Google Scholar 

  110. Lipkin, S. M. et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nature Genet. 31, 385?390 (2002).

    CAS  PubMed  Google Scholar 

  111. Baker, S. M. et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82, 309?319 (1995).

    CAS  PubMed  Google Scholar 

  112. Cascalho, M., Wong, J., Steinberg, C. & Wabl, M. Mismatch repair co-opted by hypermutation. Science 279, 1207?1210 (1998). First demonstration of the involvement of MMR in somatic hypermutation.

    CAS  PubMed  Google Scholar 

  113. Martin, A. & Scharff, M. D. AID and mismatch repair in antibody diversification. Nature Rev. Immunol. 2, 605?614 (2002).

    CAS  Google Scholar 

  114. Neuberger, M. S., Harris, R. S., Di Noia, J. & Petersen-Mahrt, S. K. Immunity through DNA deamination. Trends Biochem. Sci. 28, 305?312 (2003).

    CAS  PubMed  Google Scholar 

  115. Li, Z., Woo, C. J., Iglesias-Ussel, M. D., Ronai, D. & Scharff, M. D. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18, 1?11 (2004).

    PubMed  Google Scholar 

  116. Goodman, M. F. & Scharff, M. D. Identifying protein?protein interactions in somatic hypermutation. J. Exp. Med. 201, 493?496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wilson, T. M. et al. MSH2?MSH6 stimulates DNA polymerase ε, suggesting a role for A:T mutations in antibody genes. J. Exp. Med. 201, 637?645 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Jaworski, A. et al. Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc. Natl Acad. Sci. USA 92, 11019?11023 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471?473 (1999).

    CAS  PubMed  Google Scholar 

  120. Owen, B. A. et al. (CAG)(n)-hairpin DNA binds to Msh2?Msh3 and changes properties of mismatch recognition. Nature Struct. Mol. Biol. 12, 663?670 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank L. Stojic for her invaluable contribution to this article and to my other colleagues and co-workers for numerous fruitful and stimulating discussions. I apologize to those whose work was not cited here due to space limitations. The generous support of the Bonizzi?Theler Stiftung, the European Community, the Swiss National Science Foundation, Swiss Bridge and UBS AG bank is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Josef Jiricny's home page

Glossary

Microsatellite instability

Alterations in the length of short repetitive sequences (microsatellites), which can be detected by the appearance of new bands after PCR amplification of microsatellite DNA from MMR-deficient cells, or tumours, that were not present in PCR products of the corresponding DNA from normal cells.

Heteroduplex

A DNA duplex formed by association between two homologous but non-identical strands, or a duplex that contains one or several mismatches that arose during replication.

Okazaki fragments

Fragments of 200?1000 nucleotides in length that are generated on the lagging strand during replication. They contain short RNA sequences at their 5′ termini, which are made by the primase complex. During the later stages of replication, the RNA sequences are removed and the Okazaki fragments are joined together to form a continuous strand.

Walker ATP-binding motif

A protein fold consisting of 200 amino-acid residues that is found in many DNA-repair proteins. The nucleotide-binding domain consists of three conserved motifs; the type A and B motifs are the most highly conserved.

Sliding clamp

A protein complex that encircles DNA and allows it to pass freely through the hole in its centre. The term was first coined to describe the β-subunit of E. coli DNA polymerase III and proliferating cell nuclear antigen (PCNA), which tether DNA polymerases to DNA, thereby increasing their processivity (that is, the number of nucleotides that are incorporated into DNA per polymerase?template binding event).

Unimolecular nucleophilic substitution

(SN1). Methylating agents of the SN1 type transfer the carbonium ion CH3+ to electron-rich centres such as the exocyclic oxygen or nitrogen atoms of DNA bases. These reagents give rise to 10-fold higher levels of O6-methylguanine in DNA than SN2-type (bimolecular) agents.

Nucleotide-excision repair

(NER). A DNA-repair process in which a small region of the DNA strand that surrounds a bulky DNA lesion, such as a UV-induced pyrimidine dimer, is recognized, removed and replaced. NER has two branches: transcription-coupled repair efficiently removes damage from transcribed strands of active genes, and global repair removes damage from the rest of the genome.

Homeologous

In this context, the term 'homeologous' describes DNA sequences that are similar, such as those that encode the same protein in different organisms, but that are too far diverged to recombine with each other under normal circumstances. Certain homeologous sequences have been shown to recombine when MMR is inactive.

Non-homologous end joining

(NHEJ). The main pathway that is used, predominantly in the G1 phase of the cell cycle, to repair chromosomal DNA double-strand breaks in somatic cells. NHEJ is error prone because it leads to the joining of random ends and to the loss of genetic information through end resection and trimming.

Synaptonemal complex

A structure that holds paired chromosomes together during prophase I of meiosis and that promotes genetic recombination.

Class-switch recombination

After immune cells have undergone V(D)J (variable (diversity) joining) recombination, they can change the constant region of their antibodies in response to stimulation by antigen. This results in changes in the effector functions of the antibodies. The process is initiated by the generation of double-stranded breaks in a region-specific manner, and some components of the non-homologous end joining (NHEJ) machinery, including the Ku heterodimer, have been implicated in their subsequent repair.

Somatic hypermutation

A mechanism for creating extra variability in antibody genes that occurs after V(D)J (variable (diversity) joining) recombination, by introducing point mutations, small insertions and small deletions into the V(D)J coding sequences.

D-loop

When single-stranded DNA invades a duplex and anneals with its complementary sequence, it displaces the other strand of the duplex, which forms a single-stranded loop resembling the letter D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiricny, J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7, 335–346 (2006). https://doi.org/10.1038/nrm1907

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing