Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The emerging shape of the ESCRT machinery

Key Points

  • Central to the function of the MVB pathway for trafficking to lysosomes are the endosomal sorting complex required for transport-0 (ESCRT-0), -I, -II and –III complexes, which are represented in all eukaryotic taxa. Ubiquitylation is the best characterised signal for entry into this pathway, and all of the ESCRTs, except for ESCRT-III, recognize ubiquitin.

  • The ESCRT-0 complex recruits ubiquitylated cargo to flat clathrin-coated dynamic microdomains on endosomes and is essential to recruiting ESCRT-I. The endosomal recruitment of ESCRT-0 is mediated by binding to 3-phosphoinosides, which are enriched in early endosome membranes.

  • ESCRT-I is built around a heterotrimeric core to which flexibly connected modules that recognize ubiquitylated cargo and the downstream ESCRT-II complex are connected. This complex is essential for intralumenal vesicle formation and vacuolar stability.

  • The four-subunit ESCRT-II core complex is built from winged-helix domains. The subunits link directly to the downstream VPS20 subunit of ESCRT-III, whereas the N-terminal GLUE domain of VPS36 recognizes ubiquitin, 3-phosphoinositides and, in yeast, the upstream ESCRT-I.

  • ESCRT-III subunits are represented in all eukaryotic taxa. These subunits heterodimerize via a long N-terminal helical hairpin to form lattices on endosomal membranes that require the AAA+ ATPase VPS4 for subsequent disassembly. The lattice has been proposed to facilitate membrane curvature and the formation of intralumenal vesicles.

  • De-ubiquitinases are recruited by ESCRT-III and can remove ubiquitin from cargo before and after it is committed to entry into intralumenal vesicles.

Abstract

The past two years have seen an explosion in the structural understanding of the endosomal sorting complex required for transport (ESCRT) machinery that facilitates the trafficking of ubiquitylated proteins from endosomes to lysosomes via multivesicular bodies (MVBs). A common organization of all ESCRTs is a rigid core attached to flexibly connected modules that recognize other components of the MVB pathway. Several previously unsuspected key links between multiple ESCRT subunits, phospholipids and ubiquitin have now been elucidated, which, together with the detailed morphological analyses of ESCRT-depletion phenotypes, provide new insights into the mechanism of MVB biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic of the ESCRT machinery involved in sorting cargo to lysosomes via MVBs.
Figure 2: The organization of ESCRT-0.
Figure 3: The architecture of the cores of ESCRT-I and ESCRT-II.
Figure 4: The architectures of ESCRT-III.

Similar content being viewed by others

References

  1. Luzio, J. P. et al. Lysosome-endosome fusion and lysosome biogenesis. J. Cell Sci. 113, 1515–1524 (2000).

    CAS  PubMed  Google Scholar 

  2. Welsch, S. et al. Ultrastructural analysis of ESCRT proteins suggests a role for endosome-associated tubular–vesicular membranes in ESCRT function. Traffic 7, 1551–1566 (2006).

    CAS  PubMed  Google Scholar 

  3. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004).

    CAS  PubMed  Google Scholar 

  4. Odorizzi, G. The multiple personalities of Alix. J. Cell Sci. 119, 3025–3032 (2006).

    CAS  PubMed  Google Scholar 

  5. Slagsvold, T., Pattni, K., Malerod, L. & Stenmark, H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol. 16, 317–326 (2006).

    CAS  PubMed  Google Scholar 

  6. Penalva, M. A. & Arst, H. N. Jr. Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev. Microbiol. 58, 425–451 (2004).

    CAS  PubMed  Google Scholar 

  7. Clague, M. J. Membrane transport: a coat for ubiquitin. Curr. Biol. 12, R529–R531 (2002).

    CAS  PubMed  Google Scholar 

  8. Clague, M. & Urbe, S. Hrs function: viruses provide the clue. Trends Cell Biol. 13, 603–606 (2003).

    CAS  PubMed  Google Scholar 

  9. Bilodeau, P. S., Urbanowski, J. L., Winistorfer, S. C. & Piper, R. C. The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).

    CAS  PubMed  Google Scholar 

  10. Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3, 1389–1402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7, 985–999 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lloyd, T. E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).

    CAS  PubMed  Google Scholar 

  13. Komada, M. & Soriano, P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev. 13, 1475–1485 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanazawa, C. et al. Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochem. Biophys. Res. Commun. 309, 848–856 (2003).

    CAS  PubMed  Google Scholar 

  15. Razi, M. & Futter, C. E. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol. Biol. Cell 17, 3469–3483 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammond, D. E. et al. Endosomal dynamics of Met determine signaling output. Mol. Biol. Cell 14, 1346–1354 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bache, K., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    CAS  PubMed  Google Scholar 

  18. Gillooly, D. J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

    CAS  PubMed  Google Scholar 

  20. Urbe, S., Mills, I. G., Stenmark, H., Kitamura, N. & Clague, M. J. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol. Cell. Biol. 20, 7685–7692 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Raiborg, C. et al. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nature Cell Biol. 4, 394–398 (2002).

    CAS  PubMed  Google Scholar 

  22. Urbe, S. et al. The UIM domain of Hrs couples receptor sorting to vesicle formation. J. Cell Sci. 116, 4169–4179 (2003).

    CAS  PubMed  Google Scholar 

  23. Murk, J. L. et al. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100, 13332–13337 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sachse, M., Urbe, S., Oorschot, V., Strous, G. J. & Klumperman, J. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328 (2002). References 21 and 24 provide evidence that ubiquitylated receptors are sorted at endosomes via HRS and clathrin, and clathrin in turn restricts the distribution of HRS (reference 26).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McCullough, J. et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16, 160–165 (2006).

    CAS  PubMed  Google Scholar 

  26. Raiborg, C., Wesche, J., Malerod, L. & Stenmark, H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J. Cell Sci. 119, 2414–2424 (2006).

    CAS  PubMed  Google Scholar 

  27. Asao, H. et al. Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J. Biol. Chem. 272, 32785–32791 (1997).

    CAS  PubMed  Google Scholar 

  28. Takata, H., Kato, M., Denda, K. & Kitamura, N. A Hrs binding protein having a Src homology 3 domain is involved in intracellular degradation of growth factors and their receptors. Genes Cells 5, 57–69 (2000).

    CAS  PubMed  Google Scholar 

  29. Kobayashi, H. et al. Hrs, a mammalian master molecule in vesicular transport and protein sorting, suppresses the degradation of ESCRT proteins signal transducing adaptor molecule 1 and 2. J. Biol. Chem. 280, 10468–10477 (2005).

    CAS  PubMed  Google Scholar 

  30. Mizuno, E., Kawahata, K., Okamoto, A., Kitamura, N. & Komada, M. Association with Hrs is required for the early endosomal localization, stability, and function of STAM. J. Biochem. 135, 385–396 (2004).

    CAS  PubMed  Google Scholar 

  31. Mao, Y. et al. Crystal structure of the VHS and FYVE tandem domains of Hrs, a protein involved in membrane trafficking and signal transduction. Cell 100, 447–456 (2000).

    CAS  PubMed  Google Scholar 

  32. Hanyaloglu, A., McCullagh, E. & von Zastrow, M. Essential role of Hrs in a recycling mechanism mediating functional resensitization of cell signaling. EMBO J. 24, 2265–2283 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mizuno, E., Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell 14, 3675–3689 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Misra, S. & Hurley, J. H. Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p. Cell 97, 657–666 (1999).

    CAS  PubMed  Google Scholar 

  35. Dumas, J. J. et al. Multivalent endosome targeting by homodimeric EEA1. Mol. Cell 8, 947–958 (2001).

    CAS  PubMed  Google Scholar 

  36. Stahelin, R. V. et al. Phosphatidylinositol-3-phosphate induces the membrane penetration of the FYVE domains of Vps27p and Hrs. J. Biol. Chem. 277, 26379–26388 (2002).

    CAS  PubMed  Google Scholar 

  37. Pullan, L. et al. The endosome-associated protein Hrs is hexameric and controls cargo sorting as a “master molecule”. Structure 14, 661–671 (2006).

    CAS  PubMed  Google Scholar 

  38. Lu, Q., Hope, L. W., Brasch, M., Reinhard, C. & Cohen, S. N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pornillos, O., Alam, S., Davis, D. & Sundquist, W. Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nature Struct. Biol. 9, 812–817 (2002).

    CAS  PubMed  Google Scholar 

  41. Pornillos, O. et al. Structure and functional interactions of the Tsg101 UEV domain. EMBO J. 21, 2397–2406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Katzmann, D., Stefan, C., Babst, M. & Emr, S. Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J. Cell Biol. 162, 413–423 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bilodeau, P., Winistorfer, S., Kearney, W., Robertson, A. & Piper, R. Vps27–Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J. Cell Biol. 163, 237–243 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Katzmann, D., Babst, M. & Emr, S. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  46. Oestreich, A. J., Davies, B. A., Payne, J. A. & Katzmann, D. J. Mvb12 is a novel member of ESCRT-I involved in cargo selection by the MVB pathway. Mol. Biol. Cell 18, 646–657 (2006).

    PubMed  Google Scholar 

  47. Chu, T., Sun, J., Saksena, S. & Emr, S. D. New component of ESCRT-I regulates endosomal sorting complex assembly. J. Cell Biol. 175, 815–823 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Curtiss, M., Jones, C. & Babst, M. Efficient cargo sorting by ESCRT-I and the subsequent release of ESCRT-I from MVBs requires the subunit Mvb12. Mol. Biol. Cell 18, 636–645 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gill, D. J. et al. Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J. 26, 600–612 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bache, K. G. et al. The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor downregulation. Mol. Biol. Cell 15, 4337–4346 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem. 276, 11735–11742 (2001).

    CAS  PubMed  Google Scholar 

  52. Eastman, S. W., Martin-Serrano, J., Chung, W., Zang, T. & Bieniasz, P. D. Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J. Biol. Chem. 280, 628–636 (2005).

    CAS  PubMed  Google Scholar 

  53. Stuchell, M. D. et al. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J. Biol. Chem. 279, 36059–36071 (2004).

    CAS  PubMed  Google Scholar 

  54. Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. Depletion of TSG101 forms a mammalian “Class E” compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci. 118, 3003–3017 (2005). References 15 and 54 show that in mammalian cells ESCRT-I depletion results in extensive tubulation and prevents ILVs formation, whereas HRS depletion produces enlarged, spherical MVBs with few ILVs.

    CAS  PubMed  Google Scholar 

  55. Kostelansky, M. S. et al. Structural and functional organization of the ESCRT-I trafficking complex. Cell 125, 113–126 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Teo, H. et al. ESCRT-I Core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125, 99–111 (2006).

    CAS  PubMed  Google Scholar 

  57. Feng, G. H., Lih, C. J. & Cohen, S. N. TSG101 protein steady-state level is regulated posttranslationally by an evolutionarily conserved COOH-terminal sequence. Cancer Res. 60, 1736–1741 (2000).

    CAS  PubMed  Google Scholar 

  58. Teo, H., Veprintsev, D. B. & Williams, R. L. Structural insights into endosomal sorting complex required for transport (ESCRT-I) recognition of ubiquitinated proteins. J. Biol. Chem. 279, 28689–28696 (2004).

    CAS  PubMed  Google Scholar 

  59. Sundquist, W. I. et al. Ubiquitin recognition by the human TSG101 protein. Mol. Cell 13, 783–789 (2004).

    CAS  PubMed  Google Scholar 

  60. Pineda-Molina, E. et al. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7, 1007–1016 (2006).

    CAS  PubMed  Google Scholar 

  61. Langelier, C. et al. Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J. Virol. 80, 9465–9680 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B. & Emr, S. D. Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev. Cell 3, 283–289 (2002).

    CAS  PubMed  Google Scholar 

  63. Teo, H., Perisic, O., Gonzalez, B. & Williams, R. L. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev. Cell 7, 559–569 (2004).

    CAS  PubMed  Google Scholar 

  64. Hierro, A. et al. Structure of the ESCRT-II endosomal trafficking complex. Nature 431, 221–225 (2004). References 55, 56, 63 and 64 show the structural organization of multisubunit ESCRT-I and -II cores, as well as the structure of the ESCRT-II Ptdins3P-binding GLUE domain, and demonstrate a direct link between yeast ESCRT-I and ESCRT-II.

    CAS  PubMed  Google Scholar 

  65. Wernimont, A. K. & Weissenhorn, W. Crystal structure of subunit VPS25 of the endosomal trafficking complex ESCRT-II. BMC Struct. Biol. 4, 10 (2004).

    PubMed  PubMed Central  Google Scholar 

  66. Yorikawa, C. et al. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem. J. 387, 17–26 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Slagsvold, T. et al. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J. Biol. Chem. 280, 19600–19606 (2005).

    CAS  PubMed  Google Scholar 

  68. Hirano, S. et al. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Struct. Mol. Biol. 13, 1031–1032 (2006).

    CAS  Google Scholar 

  69. Alam, S. L. et al. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature Struct. Mol. Biol. 13, 1029–1030 (2006).

    CAS  Google Scholar 

  70. Alam, S. L. et al. Ubiquitin interactions of NZF zinc fingers. EMBO J. 23, 1411–1421 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    CAS  PubMed  Google Scholar 

  72. Herz, H. M. et al. vps25 mosaics display non-autonomous cell survival and overgrowth, and autonomous apoptosis. Development 133, 1871–1880 (2006).

    CAS  PubMed  Google Scholar 

  73. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor Vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005). References 71, 72 and 73 demonstrate an important role for ESCRT-II in metazoan cells.

    CAS  PubMed  Google Scholar 

  74. Moberg, K. H., Schelble, S., Burdick, S. K. & Hariharan, I. K. Mutations in erupted, the Drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev. Cell 9, 699–710 (2005).

    CAS  PubMed  Google Scholar 

  75. Bowers, K. et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J. Biol. Chem. 281, 5094–5105 (2006).

    CAS  PubMed  Google Scholar 

  76. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. ESCRT-III: an endosome-associated heterooligomeric protein complex required for MVB sorting. Dev. Cell 3, 271–282 (2002). References 45, 62 and 76 first defined the functions and compositions of ESCRT-I, -II and -III, respectively.

    CAS  PubMed  Google Scholar 

  77. Amerik, A., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000). References 77, 111 and 113 demonstrate a requirement for a DUB in the endocytic pathway in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kranz, A., Kinner, A. & Kolling, R. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol. Biol. Cell 12, 711–723 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Howard, T. L., Stauffer, D. R., Degnin, C. R. & Hollenberg, S. M. CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J. Cell Sci. 114, 2395–2404 (2001).

    CAS  PubMed  Google Scholar 

  80. Nickerson, D. P., West, M. & Odorizzi, G. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J. Cell Biol. 175, 715–720 (2006). Reference 80 demonstrates that Did2 has an important role in Vps4-mediated disassembly of ESCRT-III but not of ESCRT-I and-II, that ILV formation can be uncoupled from ESCRT-III disassembly and that class E compartments can have either multilammelar structures without ILVs ( vps4Δ ) or tubular structures with ILVs ( did2Δ).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Horii, M. et al. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway. Biochem. J. 400, 23–32 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006). The structure of an ESCRT-III subunit provides a model for how activated subunits might assemble into dimers and arrays.

    CAS  PubMed  Google Scholar 

  83. Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J. Biol. Chem. 281, 23083–23091 (2006).

    CAS  PubMed  Google Scholar 

  85. McCullough, J., Clague, M. J. & Urbe, S. AMSH is an endosome-associated ubiquitin isopeptidase. J. Cell Biol. 166, 487–492 (2004). Reference 85 shows that AMSH is a Lys63-ubiquitin-chain specific DUB that has a role in sorting a growth-factor receptor at endosomes, and is recruited to CHMPs (shown in references 25, 84 and 88).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005). Structure-based mutagenesis suggests that during their disassembly by VPS4, ESCRT-III subunits are pulled into a central pore of the VPS4 double ring after the initial capture of ESCRT-III subunits by a three-helix bundle of VPS4 MIT domain (shown in reference 95).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003). References 87 and 90 were the first to characterize the network of interactions among the human ESCRT components and to show their roles in HIV-1 budding.

    CAS  PubMed  Google Scholar 

  88. Tsang, H. T. et al. A systematic analysis of human CHMP protein interactions: additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics 88, 333–346 (2006).

    CAS  PubMed  Google Scholar 

  89. Bowers, K. et al. Protein–protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae. Traffic 5, 194–210 (2004).

    CAS  PubMed  Google Scholar 

  90. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D. & Bieniasz, P. D. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc. Natl Acad. Sci. USA 100, 12414–12419 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin, Y., Kimpler, L. A., Naismith, T. V., Lauer, J. M. & Hanson, P. I. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7–1 with itself, membranes, and the AAA+ ATPase SKD1. J. Biol. Chem. 280, 12799–12809 (2005).

    CAS  PubMed  Google Scholar 

  92. Eugster, A. et al. Ent5p is required with Ent3p and Vps27p for ubiquitin-dependent protein sorting into the multivesicular body. Mol. Biol. Cell 15, 3031–3041 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Whitley, P. et al. Identification of mammalian Vps24p as an effector of phosphatidylinositol-3,5-bisphosphate-dependent endosome compartmentalization. J. Biol. Chem. 278, 38786–38795 (2003).

    CAS  PubMed  Google Scholar 

  94. Kyuuma, M. et al. AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/late endosomes. Cell Struct. Funct. 31, 159–172 (2007).

    PubMed  Google Scholar 

  95. Scott, A. et al. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc. Natl Acad. Sci. USA 102, 13813–13818 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ward, D. M. et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J. Biol. Chem. 280, 10548–10555 (2005).

    CAS  PubMed  Google Scholar 

  97. Skibinski, G. et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genet. 37, 806–808 (2005).

    CAS  PubMed  Google Scholar 

  98. Bache, K. G. et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol. Biol. Cell 17, 2513–2523 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shim, J. H. et al. CHMP5 is essential for late endosome function and down-regulation of receptor signaling during mouse embryogenesis. J. Cell Biol. 172, 1045–1056 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Azmi, I. et al. Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. J. Cell Biol. 172, 705–717 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sachse, M., Strous, G. J. & Klumperman, J. ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles. J. Cell Sci. 117, 1699–1708 (2004).

    CAS  PubMed  Google Scholar 

  102. Scheuring, S. et al. Mammalian cells express two VPS4 proteins both of which are involved in intracellular protein trafficking. J. Mol. Biol. 312, 469–480 (2001).

    CAS  PubMed  Google Scholar 

  103. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Fujita, H. et al. A dominant negative form of the AAA ATPase SKD1/VPS4 impairs membrane trafficking out of endosomal/lysosomal compartments: class E vps phenotype in mammalian cells. J. Cell Sci. 116, 401–414 (2003).

    CAS  PubMed  Google Scholar 

  105. DeLaBarre, B., Christianson, J. C., Kopito, R. R. & Brunger, A. T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006).

    CAS  PubMed  Google Scholar 

  106. Fujita, H. et al. Mammalian class E Vps proteins, SBP1 and mVps2/CHMP2A, interact with and regulate the function of an AAA-ATPase SKD1/Vps4B. J. Cell Sci. 117, 2997–3009 (2004).

    CAS  PubMed  Google Scholar 

  107. Yeo, S. C. et al. Vps20p and Vta1p interact with Vps4p and function in multivesicular body sorting and endosomal transport in Saccharomyces cerevisiae. J. Cell Sci. 116, 3957–3970 (2003).

    CAS  PubMed  Google Scholar 

  108. Shiflett, S. et al. Characterization of Vta1p, a class E Vps protein in Saccharomyces cerevisiae. J. Biol. Chem. 279, 10982–10990 (2004).

    CAS  PubMed  Google Scholar 

  109. Luhtala, N. & Odorizzi, G. Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J. Cell Biol. 166, 717–729 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    CAS  PubMed  Google Scholar 

  111. Losko, S., Kopp, F., Kranz, A. & Kolling, R. Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 mutant. Mol. Biol. Cell 12, 1047–1059 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Reggiori, F. & Pelham, H. R. B. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and-independent targeting. EMBO J. 20, 5176–5186 (2001). Shows that although ubiquitin functions as a key signal for the sorting of membrane proteins into the MVBs, ubiquitin-independent sorting can also occur.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Dupre, S. & Haguenauer-Tsapis, R. Deubiquitination step in the endocytic pathway of yeast plasma membrane proteins: crucial role of Doa4p ubiquitin isopeptidase. Mol. Cell. Biol. 21, 4482–4494 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim, J. et al. Structural basis for endosomal targeting by the Bro1 domain. Dev. Cell 8, 937–947 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Avvakumov, G. V. et al. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J. Biol. Chem. 281, 38061–38070 (2006).

    CAS  PubMed  Google Scholar 

  116. Hu, M. et al. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111, 1041–1054 (2002).

    CAS  PubMed  Google Scholar 

  117. Kato, M., Miyazawa, K. & Kitamura, N. A deubiquitinating enzyme UBPY interacts with the Src homology 3 domain of Hrs-binding protein via a novel binding motif PX(V/I)(D/N)RXXKP. J. Biol. Chem. 275, 37481–37487 (2000).

    CAS  PubMed  Google Scholar 

  118. Kaneko, T. et al. Structural insight into modest binding of a non-PXXP ligand to the signal transducing adaptor molecule-2 Src homology 3 domain. J. Biol. Chem. 278, 48162–48168 (2003).

    CAS  PubMed  Google Scholar 

  119. Ren, J., Kee, Y., Huibregtse, J. M. & Piper, R. C. Hse1, a component of the yeast Hrs-STAM ubiquitin sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies. Mol. Biol. Cell 18, 324–335 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Row, P. E., Prior, I. A., McCullough, J., Clague, M. J. & Urbe, S. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J. Biol. Chem. 281, 12618–12624 (2006).

    CAS  PubMed  Google Scholar 

  121. Mizuno, E., Kobayashi, K., Yamamoto, A., Kitamura, N. & Komada, M. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 7, 1017–1031 (2006). References 120, 121 and 75 report on a key role for the DUB UBPY in receptor downregulation and endosomal ubiquitin dynamics.

    CAS  PubMed  Google Scholar 

  122. Alwan, H. A. & van Leeuwen, J. E. UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J. Biol. Chem. 282, 1658–1669 (2007).

    CAS  PubMed  Google Scholar 

  123. Kee, Y., Munoz, W., Lyon, N. & Huibregtse, J. M. The Ubp2 deubiquitinating enzyme modulates Rsp5-dependent K63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem. 281, 36724–36731 (2006).

    CAS  PubMed  Google Scholar 

  124. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    CAS  PubMed  Google Scholar 

  125. Rusten, T. E. et al. Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol. Biol. Cell 17, 3989–4001 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. White, I. J., Bailey, L. M., Aghakhani, M. R., Moss, S. E. & Futter, C. E. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25, 1–12 (2006).

    CAS  PubMed  Google Scholar 

  127. Field, M. C., Gabernet-Castello, C. & Dacks, J. B. in Origins and Evolution of Eukaryotic Endomembranes and Cytoskeleton (ed. Jékely, G.) (Landes Bioscience, Austin 2007).

    Google Scholar 

  128. Slater, R. & Bishop, N. E. Genetic structure and evolution of the Vps25 family, a yeast ESCRT-II component. BMC Evol. Biol. 6, 59 (2006).

    PubMed  PubMed Central  Google Scholar 

  129. Yang, M. et al. The Plasmodium falciparum Vps4 homolog mediates multivesicular body formation. J. Cell Sci. 117, 3831–3838 (2004).

    CAS  PubMed  Google Scholar 

  130. Fisher, R. D. et al. Structure and ubiquitin binding of the ubiquitin-interacting motif. J. Biol. Chem. 278, 28976–28984 (2003).

    CAS  PubMed  Google Scholar 

  131. Madshus, I. H. Ubiquitin binding in endocytosis — how tight should it be and where does it happen? Traffic 7, 258–261 (2006).

    CAS  PubMed  Google Scholar 

  132. Hirano, S. et al. Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature Struct. Mol. Biol. 13, 272–277 (2006).

    CAS  Google Scholar 

  133. Swanson, K. A., Kang, R. S., Stamenova, S. D., Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM–ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–4606 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Misra, S., Miller, G. J. & Hurley, J. H. Recognizing phosphatidylinositol 3-phosphate. Cell 107, 559–562 (2001).

    CAS  PubMed  Google Scholar 

  135. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004). Highlights that not only proteins, but also lipids (lysobisphosphatidic acid (LBPA) in this case) can have crucial roles in forming MVBs.

    CAS  PubMed  Google Scholar 

  136. Johnson, E. E., Overmeyer, J. H., Gunning, W. T. & Maltese, W. A. Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J. Cell Sci. 119, 1219–1232 (2006).

    CAS  PubMed  Google Scholar 

  137. Futter, C. E., Collinson, L. M., Backer, J. M. & Hopkins, C. R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bruckmann, A., Kunkel, W., Augsten, K., Wetzker, R. & Eck, R. The deletion of CaVPS34 in the human pathogenic yeast Candida albicans causes defects in vesicle-mediated protein sorting and nuclear segregation. Yeast 18, 343–353 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank M. West, G. Odorizzi, C. Futter, J.-H. Shim, M. Russell, C. Hopkins, P. Woodman, S. Stuffers, A. Brech, H. Stenmark and L. Pullan, all for providing high-resolution EM images that, regrettably, could not be included in the final manuscript owing to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Protein Data Bank

1DVP

1M4P

1S1Q

1VFY

1W7P

1YXR

2CAY

2D3G

2F66

2GD5

2HTH

2J9U

FURTHER INFORMATION

Roger L. William's homepage

Sylvie Urbé's homepage

Glossary

Intralumenal vesicle

A small <50-nm vesicle that forms through inward budding of the endosomal membrane away from the cytosol.

Multivesicular body (MVB)

A morphologically defined endocytic organelle that is characterized by multiple internal vesicles in which internalized receptors are packaged before degradation.

Lysosome

Membrane-bound organelle in higher eukaryotic cells that has an acidic interior and is the major storage site of the degradative enzymes (acidic hydrolases) that are responsible for the breakdown of internalized proteins and many membrane proteins. Functionally equivalent to the yeast vacuole.

Ubiquitylation

Covalent attachment of ubiquitin via its C-terminal Gly to Lys side chains in target proteins. Ubiquitin can form seven distinct polyubiquitin chains through seven internal Lys residues.

Endosomal sorting complex required for transport

(ESCRT). A multimeric protein complex that was first identified biochemically in yeast. ESCRTs control the sorting of endosomal cargo proteins into internal vesicles of multivesicular bodies.

ESCRT-0

Nomenclature for the HRS–STAM complex, which was proposed as a recent extension of the originally defined ESCRT-I, -II and -III.

De-ubiquitylating enzyme

Protease that can cleave the isopeptide bond between ubiquitin and Lys side chains of ubiquitylated substrates.

Early endosome antigen-1

A protein that plays a part as a tether in the homotypic fusion of early endosomes.

Phosphatidylinositol-3-phosphate

(PtdIns3P). A phospholipid that is highly enriched in endosomal membranes. Several ESCRT proteins encode PtdIns3P-binding domains, which allow these proteins to be recruited to endosomes.

Clathrin

Coat protein that decorates clathrin-coated vesicles and is recruited by ESCRT-0 to sorting endosomes where it forms a flat double-layered coat, which is thought to sequester ubiquitylated cargo prior to incorporation into intralumenal vesicles.

Vacuolar hydrolases

Enzymes that are responsible for protein degradation in late endosomes and lysosomes.

Class E compartment

Aberrant multilamellar or multicisternal membrane-bound compartment in which both endocytic and biosynthetic proteins en route to the vacuole accumulate in Vps-mutant yeast of the class E subtype.

CHMP

A family of structurally related proteins with a basic N terminus and an acidic C terminus that interact with each other to form ESCRT-III. Some CHMPs have also been associated with nuclear functions.

MIT

A domain found in microtubule interacting and trafficking proteins that forms a three-helix bundle. Some MIT domains, including those of VPS4 and AMSH, bind to CHMPs.

AAA+ ATPases

ATPases associated with various cellular activities: a superfamily of structurally related proteins that control diverse functions, including protein disassembly.

Proteasome

Multi-enzyme complex responsible for the majority of protein turnover in eukaryotic cells that degrades proteins tagged with a particular type of ubiquitin chain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, R., Urbé, S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 8, 355–368 (2007). https://doi.org/10.1038/nrm2162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing