Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

The third dimension bridges the gap between cell culture and live tissue

Abstract

Moving from cell monolayers to three-dimensional (3D) cultures is motivated by the need to work with cellular models that mimic the functions of living tissues. Essential cellular functions that are present in tissues are missed by 'petri dish'-based cell cultures. This limits their potential to predict the cellular responses of real organisms. However, establishing 3D cultures as a mainstream approach requires the development of standard protocols, new cell lines and quantitative analysis methods, which include well-suited three-dimensional imaging techniques. We believe that 3D cultures will have a strong impact on drug screening and will also decrease the use of laboratory animals, for example, in the context of toxicity assays.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional culture models.
Figure 2: Imaging of cellular spheroids.
Figure 3: Three-dimensional cell biology with light-sheet-based fluorescence microscopy.

References

  1. Bissell, M. J., Rizki A . & Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr. Opin. Cell Biol. 15, 753–762 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marx, U. & Sandig, V. Drug Testing in vitro: Breakthroughs and Trends in Cell Culture Technology. (Wiley-VCH, Weinheim, 2006).

    Book  Google Scholar 

  3. Kleinman, H. K., Philp, D. & Hoffman, M. P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotech. 14, 526–532 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Bissel, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microevironmental influences in the normal and malignant breast. Differentiation 70, 537–546 (2002).

    Article  Google Scholar 

  5. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paszek M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  11. Wolf, K. et al. Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walpita, D. & Hay, E. Studying actin-dependent processes in tissue culture. Nature Rev. Mol. Cell Biol. 3, 137–141 (2002).

    Article  CAS  Google Scholar 

  13. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Meshel, A. S., Wei, Q., Adelstein, R. S. & Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biol. 7, 157–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Di Milla, P. A., Barbee, K. & Lauffenburger, D. A. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37 (1991).

    Article  CAS  Google Scholar 

  16. Zaman, M. H. et al. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA 103, 10889–10894 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zaman, M. H., Kamm, R. D., Matsudaira, P. & Lauffenburger, D. A. Computational model for cell migration in three-dimensional matrices. Biophys. J. 89, 1389–1397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Brien, L. E., Zegers, M. M. P. & Mostov, K. E. Building epithelial architecture: insight from three-dimensional culture models. Nature Rev. Mol. Cell Biol. 3, 531–537 (2002).

    Article  CAS  Google Scholar 

  19. Mostov, K. E., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Montesano, R. et al. Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell 67, 901–908 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Pollack, A. L., Apodaca, G. & Mostov, K. E. Hepatocyte growth factor induces MDCK cell morphogenesis without causing loss of tight junction functional integrity. Am. J. Physiol. Cell Physiol. 286, C482–C494 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol. 3, 831–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Zegers, M. M. P., O'Brien, L., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol. 13, 169–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Grant, M. R., Mostov, K. E., Tlsty, T. D. & Hunt, C. A. Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol. 2, 1193–1209 (2006).

    Article  CAS  Google Scholar 

  25. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J. Theor. Biol. 99, 31–68 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh, S. et al. Three-dimensional culture of melanoma cells profoundly affects gene expression profile: a high density oligonucleotide array study. J. Cell Physiol. 204, 522–531 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Delcommenne, M. & Streuli, C. H. Control of integrin expression by extracellular matrix. J. Biol. Chem. 270, 26794–26801 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Kulesa, P. M. & Fraser, S. E. Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–995 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Kulesa, P. M. et al. Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc. Natl Acad. Sci. USA 103, 3752–3757 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. US Department of Human and Health Services. US Food and Drug Administration (FDA). Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products. FDA web site[online], (2004).

  33. Butcher, E. C., Berg, E. L. & Kunkel, E. J. Systems biology in drug discovery. Nature Biotech. 22, 1253–1259 (2004).

    Article  CAS  Google Scholar 

  34. Bhadriraju, K. & Chen, C. S. Engineering cellular microenvironments to improve cell-based drug testing. Drug Discov. Today 11, 612–620 (2002).

    Article  Google Scholar 

  35. Kunz-Schughart, L. A., Freyer, J. P., Hofstaedter, F. & Ebner, R. The use of 3D cultures for high-throughput screening: the multicellular spheroid model. J. Biomol. Screen. 9, 273–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gómez-Lechón, M. J. et al. Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. J. Cell Physiol. 177, 553–562 (1998).

    Article  PubMed  Google Scholar 

  37. Berthiaume, F., Moghe, P. V., Toner, M. & Yarmush, M. L. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J. 10, 1471–1484 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Semino, C. E., Merok, J. S., Crane, G. G., Panagiotakos, G. & Zhang, S. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 71, 262–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Powers, M. J. et al. Functional behavior of primary rat liver cells in a three-dimensional perfused microarray bioreactor. Tissue Eng. 8, 499–513 (2002).

    Article  PubMed  Google Scholar 

  40. Hadjantonakis, A. -K., Dickinson, M. E., Fraser, S. E. & Papaioannou, V. E. Technicolour transgenics: imaging tool for functional genomics in the mouse. Nature Rev. Genet. 4, 613–625 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Toda, S. et al. A new organotypic culture of thyroid tissue maintains three-dimensional follicles with C cells for a long term. Biochem. Biophys. Res. Comm. 294, 906–911 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Holopainen, I. E. Organotypic hippocampal slice cultures: a model system to study basic cellular and molecular mechanisms of neuronal cell death, neuroprotection, and synaptic plasticity. Neurochem. Res. 30, 1521–1528 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe, Y. & Costantini, F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev. Biol. 271, 98–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Timmins, N. E., Hardling, F. J., Smart, C., Brown, M. A. & Nielsen, L. K. Method for the generation and cultivation of functional three-dimensional mammary constructs without exogenous extracellular matrix. Cell Tissue Res. 320, 207–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M. & Nielsen, L. K. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol. Bioeng. 83, 173–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Castañeda, F. & Kinne, R. K. H. Short exposure to millimolar concentrations of ethanol induces apoptotic cell death in multicellular HepG2 spheroids. J. Cancer Res. Clin. Oncol. 126, 305–310 (2000).

    Article  PubMed  Google Scholar 

  47. Mueller-Klieser, W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol. 273, C1109–C1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Sutherland, R. M., McCredie, J. A. & Inch, W. R. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J. Natl Cancer Inst. 46, 113–120 (1971).

    CAS  PubMed  Google Scholar 

  50. Kale, S. et al. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nature Biotech. 18, 954–958 (2000).

    Article  CAS  Google Scholar 

  51. Ivascu, A. & Kubbies, M. Rapid generation of single-tumour spheroids for high throughput cell function and toxicity analysis. J. Biomol. Screen. 11, 922–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, X. et al. Development of an in vitro multicellular tumor spheroid model using microencapsulation and its application in anticancer drug screening and testing. Biotechnol. Prog. 21, 1289–1296 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Stein, A. M., Demuth, T., Mobley D., Berens, M. & Sander L. M. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J. 92, 356–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C. & Freyer, J. P. A multiscale model for avascular tumor growth. Biophys. J. 89, 3884–3894 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Butor, C. & Davoust, J. Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports, Exp. Cell Res. 203, 115–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Horch, R. E., Kopp, J., Beier, J. & Bach, A. D. Tissue engineering of cultured skin substitutes. J. Cell. Mol. Med. 9, 592–608 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  58. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, G. L., Kenny, P. A., Lee E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods 4, 359–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. O'Brien, L. E. et al. Morphological and biochemical analysis of Rac1 in three-dimensional epithelial cell cultures. Methods Enzymol. 406, 676–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Gelain, F., Bottai, D., Vescovi, A & Zhang, S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS ONE 1, e119 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Horii, A. Wang, X., Gelain, F. & Zhang, S. Biological designer self-assembling peptide scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE 2, e190 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang, S. Beyond the Petri dish. Nature Biotech. 22, 151–152 (2004).

    Article  CAS  Google Scholar 

  64. Dickinson, M. E. Multimodal imaging of mouse development: tools for the postgenomic era. Dev. Dyn. 235, 2386–2400 (2006).

    Article  PubMed  Google Scholar 

  65. Verveer, P. et al. High-resolution three-dimensional imaging of large specimens with light-sheet based microscopy. Nature Methods 4, 311–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Centonze, V. E. & White, J. G. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys. J. 75, 2015–2024 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilbert, R. J., Hoffman, M., Capitano, A. & So, P. T. C. Imaging of three-dimensional epithelial architecture and function in cultured CaCo2a monolayers with two-photon excitation microscopy. Microsc. Res. Tech. 51, 204–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Göbel, W., Kampa, B. M. & Helmchen, F. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods 4, 73–79 (2007).

    Article  PubMed  CAS  Google Scholar 

  69. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotech. 21, 1369–1377 (2003).

    Article  CAS  Google Scholar 

  70. Stelzer, E. H. K. et al. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the observation volume. Opt. Commun. 104, 223–228 (1994).

    Article  CAS  Google Scholar 

  71. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharpe, J. et al. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Alanentalo, T. et al. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nature Methods 4, 31–33 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Sharma, M., Verma, Y., Rao, K. D., Nair, R. & Gupta, P. K. Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnol. Lett. 29, 273–278 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Stelzer, E. H. K. & Lindek, S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal θ microscopy. Opt. Commun. 111, 536–547 (1994).

    Article  Google Scholar 

  76. Hell, S. W. & Stelzer, E. H. K. Properties of a 4Pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992).

    Article  Google Scholar 

  77. Gustafsson, M. G. L., Agard, D. A. & Sedat, J. W. I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J. Microsc. 195, 10–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Klar, T. A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature Methods 3, 721–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Greger, K., Swoger, J. & Stelzer, E. H. K. Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instr. 78, 023705 (2007).

    Article  CAS  Google Scholar 

  82. Swoger, J., Huisken, J. & Stelzer E. H. K. Multiple imaging axis microscopy improves resolution for thick-sample applications. Opt. Lett. 28, 1654–1656 (2003).

    Article  PubMed  Google Scholar 

  83. Folkman, J. & Hochberg, M. Self-regulation of growth in three-dimensions. J. Exper. Med. 138, 745–753 (1973).

    Article  CAS  Google Scholar 

  84. Walenta, S., Doetsch, J., Mueller-Klieser, W. & Kunz-Schughart, L. A. Metabolic imaging in multicellular spheroids of oncogene-transfected fibroblasts. J. Histochem. Cytochem. 48, 509–522 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Marcello for his contribution to manuscript preparation and P. Verveer for providing material presented in Figure 3. F.P. and E.H.K.S. acknowledge the Forschungsprogramm 'Optische Technologien' der Landesstiftung Baden-Württenberg gGmbH for financial support. E.G.R. and E.H.K.S. acknowledge the support from the German Ministry of Research (BMBF – Projekt QuantPro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst H. K. Stelzer.

Ethics declarations

Competing interests

Francesco Pampaloni, Emmanuel G. Reynaud and Ernst H. K. Stelzer

The third dimension bridges the gap between cell culture and live tissue. Nature Reviews Molecular Cell Biology 8 August 2007 (doi:10.1038/nrm2236)

The authors applied for a patent concerning specimen preparation and a SPIM cell culture chamber.

Related links

Related links

FURTHER INFORMATION

European Molecular Biology Laboratory

Multiphoton excitation imaging DRBIO Webb Research Group

REACH

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pampaloni, F., Reynaud, E. & Stelzer, E. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8, 839–845 (2007). https://doi.org/10.1038/nrm2236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing