Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Breaching multiple barriers: leukocyte motility through venular walls and the interstitium

Key Points

  • The shuttling of leukocytes between the blood stream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. There are key concepts in the regulation of leukocyte migration through venular walls and motility in the extravascular tissue, with common and distinct mechanisms mediating these responses.

  • Integrin-mediated adhesion of leukocytes to endothelial cells lining venular walls is a prerequisite to leukocyte crawling over and migration through endothelial cells. These responses are associated with great morphological changes in both leukocytes and endothelial cells and can support leukocyte transendothelial cell migration through both paracellular and transcellular routes.

  • Leukocyte migration through endothelial cells is dependent on signalling events in both leukocytes and endothelial cells, events that can regulate leukocyte–endothelial cell interactions, as well as contacts between adjacent endothelial cells and/or endothelial cell vesicular trafficking.

  • After endothelial cell migration, leukocytes need to penetrate the pericyte sheath and the venular basement membrane in which pericytes are embedded. Breaching the pericyte layer may occur through gaps between adjacent cells or in a transcellular manner. Migration through the venular basement membrane occurs through regions that may be biochemically or biophysically permissive.

  • Once detached from the perivascular basement membrane, leukocytes approach their final destination by crawling within the three-dimensional interstitial space, which can either be a fibrillar network or a cell-packed environment like many organ parenchymas or lymphatic tissues. Leukocyte migration in the interstitium is driven by actin protrusion at the leading edge and is occasionally supported by actomyosin contraction at the trailing edge. The cytoskeletal forces can be transduced onto the environment either by integrins or by direct physical interaction of the cell body with the extracellular environment. This flexible mode of migration renders leukocytes largely independent of the molecular composition of the interstitium.

Abstract

The shuttling of leukocytes between the bloodstream and interstitial tissues involves different locomotion strategies that are governed by locally presented soluble and cell-bound signals. Recent studies have furthered our understanding of the rapidly advancing field of leukocyte migration, particularly regarding cellular and subcellular events at the level of the venular wall. Furthermore, emerging cellular models are now addressing the transition from an adherent mode to a non-adherent state, incorporating mechanisms that support an efficient migratory profile of leukocytes in the interstitial tissue beyond the venular wall.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leukocyte migration through different components of venular walls.
Figure 2: Endothelial signalling in TEM.
Figure 3: Paracellular and transcellular TEM.
Figure 4: Protrusive and hydrostatic principles cooperate to propel leukocytes through a porous interstitium.

Similar content being viewed by others

References

  1. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Rev. Immunol. 7, 678–689 (2007).

    CAS  Google Scholar 

  2. Waller, A. Microscopic examination of some of the principle tissues of the animal frame, as observed in the tongue of the living frog, toad etc. Phil. Mag. J. Sci. 3rd Ser. 29, 271–287 (1846).

    Google Scholar 

  3. Cohnheim, J. Lectures on General Pathology. (The New Sydenham Society, London, 1882).

    Google Scholar 

  4. Hurley, J. V. An electron microscopic study of leukocyte emigration and vascular permeability in rat skin. Aus. J. Exp. Biol. Med. Sci. 41, 171–186 (1963).

    CAS  Google Scholar 

  5. Marchesi, V. & Florey, H. W. Electron microscope observations on the emigration of leukocytes. Q. J. Exp. Physiol. 45, 343–374 (1960).

    CAS  PubMed  Google Scholar 

  6. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    CAS  PubMed  Google Scholar 

  7. Barreiro, O., de la Fuente, H., Mittelbrunn, M. & Sanchez-Madrid, F. Functional insights on the polarized redistribution of leukocyte integrins and their ligands during leukocyte migration and immune interactions. Immunol. Rev. 218, 147–164 (2007).

    CAS  PubMed  Google Scholar 

  8. Cinamon, G., Shinder, V., Shamri, R. & Alon, R. Chemoattractant signals and β2 integrin occupancy at apical endothelial contacts combine with shear stress signals to promote transendothelial neutrophil migration. J. Immunol. 173, 7282–7291 (2004).

    CAS  PubMed  Google Scholar 

  9. Carman, C. V. et al. Transcellular diapedesis is initiated by invasive podosomes. Immunity 26, 784–797 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carman, C. V. & Springer, T. A. Trans-cellular migration: cell-cell contacts get intimate. Curr. Opin. Cell Biol. 20, 533–540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shulman, Z. et al. Lymphocyte crawling and transendothelial migration require chemokine triggering of high-affinity LFA-1 integrin. Immunity 30, 384–396 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Carman, C. V. Mechanisms for transcellular diapedesis: probing and pathfinding by 'invadosome-like protrusions'. J. Cell Sci. 122, 3025–3035 (2009).

    CAS  PubMed  Google Scholar 

  13. Sarantos, M. R. et al. Transmigration of neutrophils across inflamed endothelium is signaled through LFA-1 and Src family kinase. J. Immunol. 181, 8660–8669 (2008).

    CAS  PubMed  Google Scholar 

  14. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    PubMed  Google Scholar 

  15. Gupton, S. L. & Gertler, F. B. Filopodia: the fingers that do the walking. Sci. STKE 400, re5 (2007).

    Google Scholar 

  16. Phillipson, M. et al. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J. Exp. Med. 203, 2569–2575 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Alcaide, P., Auerbach, S. & Luscinskas, F. W. Neutrophil recruitment under shear flow: it's all about endothelial cell rings and gaps. Microcirculation 16, 43–57 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Barreiro, O. et al. Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 183, 527–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rohlena, J. et al. Endothelial CD81 is a marker of early human atherosclerotic plaques and facilitates monocyte adhesion. Cardiovasc. Res. 81, 187–196 (2009).

    CAS  PubMed  Google Scholar 

  20. Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157, 1233–1245 (2002). This study introduces the formation of endothelial docking structures as an important first step, governed by endothelial signalling molecules, in promoting the firm adhesion of leukocytes.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F. & Dvorak, A. M. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillipson, M., Kaur, J., Colarusso, P., Ballantyne, C. M. & Kubes, P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS One 3, e1649 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Mamdouh, Z., Kreitzer, G. E. & Muller, W. A. Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. J. Exp. Med. 205, 951–966 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cernuda-Morollon, E. & Ridley, A. J. Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circ. Res. 98, 757–767 (2006).

    CAS  PubMed  Google Scholar 

  26. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    CAS  PubMed  Google Scholar 

  27. Tybulewicz, V. L. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol. 17, 267–274 (2005).

    CAS  PubMed  Google Scholar 

  28. Nishikimi, A. et al. Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324, 384–387 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    CAS  PubMed  Google Scholar 

  30. Shulman, Z. et al. DOCK2 regulates chemokine-triggered lateral lymphocyte motility but not transendothelial migration. Blood 108, 2150–2158 (2006).

    CAS  PubMed  Google Scholar 

  31. Gerard, A., van der Kammen, R. A., Janssen, H., Ellenbroek, S. I. & Collard, J. G. The Rac activator Tiam1 controls efficient T-cell trafficking and route of trans-endothelial migration. Blood 113, 6138–6147 (2009).

    CAS  PubMed  Google Scholar 

  32. Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nature Rev. Mol. Cell Biol. 9, 846–859 (2008).

    CAS  Google Scholar 

  33. Weiner, O. D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol. 1, 75–81 (1999).

    CAS  PubMed  Google Scholar 

  34. Alblas, J., Ulfman, L., Hordijk, P. & Koenderman, L. Activation of RhoA and ROCK are essential for detachment of migrating leukocytes. Mol. Biol. Cell 12, 2137–2145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Worthylake, R. A. & Burridge, K. Leukocyte transendothelial migration: orchestrating the underlying molecular machinery. Curr. Opin. Cell Biol. 13, 569–577 (2001).

    CAS  PubMed  Google Scholar 

  36. Pertz, O., Hodgson, L., Klemke, R. L. & Hahn, K. M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440, 1069–1072 (2006).

    CAS  PubMed  Google Scholar 

  37. Gerard, A., Mertens, A. E. E., van der Kammen, R. A. & Collard, J. G. The Par polarity complex regulates Rap1- and chemokine-induced T cell polarization. J. Cell Biol. 176, 863–875 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nature Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  Google Scholar 

  39. Gakidis, M. A. M. et al. Vav GEFs are required for β2 integrin-dependent functions of neutrophils. J. Cell Biol. 166, 273–282 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Phillipson, M. et al. Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature. J. Immunol. 182, 6870–6878 (2009).

    CAS  PubMed  Google Scholar 

  41. Utomo, A. et al. Requirement for Vav proteins in post-recruitment neutrophil cytotoxicity in IgG but not complement C3-dependent injury. J. Immunol. 180, 6279–6287 (2008).

    CAS  PubMed  Google Scholar 

  42. Yoshida, M. et al. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J. Cell Biol. 133, 445–455 (1996).

    CAS  PubMed  Google Scholar 

  43. Tilghman, R. W. & Hoover, R. L. The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J. 16, 1257–1259 (2002).

    CAS  PubMed  Google Scholar 

  44. Kanters, E. et al. Filamin B mediates ICAM-1-driven leukocyte transendothelial migration. J. Biol. Chem. 283, 31830–31839 (2008).

    CAS  PubMed  Google Scholar 

  45. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol. 2, 138–145 (2001).

    CAS  Google Scholar 

  46. Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol. 10, 1039–1050 (2008).

    CAS  PubMed  Google Scholar 

  47. Esue, O., Tseng, Y. & Wirtz, D. α-actinin and filamin cooperatively enhance the stiffness of actin filament networks. PLoS One 4, e4411 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Clayton, A. et al. Cellular activation through the ligation of intercellular adhesion molecule-1. J. Cell Sci. 111, 443–453 (1998).

    CAS  PubMed  Google Scholar 

  49. Hu, Y., Kiely, J. M., Szente, B. E., Rosenzweig, A. & Gimbrone, M. A., Jr. E-selectin-dependent signaling via the mitogen-activated protein kinase pathway in vascular endothelial cells. J. Immunol. 165, 2142–2148 (2000).

    CAS  PubMed  Google Scholar 

  50. van Wetering, S. et al. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am. J. Physiol. Cell Physiol. 285, C343–C352 (2003).

    CAS  PubMed  Google Scholar 

  51. van Buul, J. D. et al. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J. Cell Biol. 178, 1279–1293 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Adamson, P., Etienne, S., Couraud, P. O., Calder, V. & Greenwood, J. Lymphocyte migration through brain endothelial cell monolayers involves signalling through endothelial ICAM-1 via a Rho-dependent pathway. J. Immunol. 162, 2964–2973 (1999).

    CAS  PubMed  Google Scholar 

  53. Durieu-Trautmann, O., Chaverot, N., Cazaubon, S., Strosberg, A. D. & Couraud, P. O. Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J. Biol. Chem. 269, 12536–12540 (1994).

    CAS  PubMed  Google Scholar 

  54. Matheny, H. E., Deem, T. L. & Cook-Mills, J. M. Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J. Immunol. 164, 6550–6559 (2000).

    CAS  PubMed  Google Scholar 

  55. van Buul, J. D., Anthony, E. C., Fernandez-Borja, M., Burridge, K. & Hordijk, P. L. Proline-rich tyrosine kinase 2 (Pyk2) mediates vascular endothelial-cadherin-based cell-cell adhesion by regulating β-catenin tyrosine phosphorylation. J. Biol. Chem. 280, 21129–21136 (2005).

    CAS  PubMed  Google Scholar 

  56. Deem, T. L., Abdala-Valencia, H. & Cook-Mills, J. M. VCAM-1 activation of endothelial cell protein tyrosine phosphatase 1B. J. Immunol. 178, 3865–3873 (2007).

    CAS  PubMed  Google Scholar 

  57. Allingham, M. J., van Buul, J. D. & Burridge, K. ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J. Immunol. 179, 4053–4064 (2007).

    CAS  PubMed  Google Scholar 

  58. Martinelli, R. et al. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol. Biol. Cell 20, 995–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wojciak-Stothard, B., Williams, L. & Ridley, A. J. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J. Cell Biol. 145, 1293–1307 (1999). In this paper, the relevance of endothelial RhoGTPases in the clustering and adhesive function of integrin ligands such as ICAM1 is described, underscoring the importance of the link between the endothelial actin cytoskeleton and leukocyte adhesion molecules.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Etienne, S. et al. ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J. Immunol. 161, 5755–5761 (1998).

    CAS  PubMed  Google Scholar 

  61. Yang, L. et al. Endothelial cell cortactin coordinates intercellular adhesion molecule-1 clustering and actin cytoskeleton remodeling during polymorphonuclear leukocyte adhesion and transmigration. J. Immunol. 177, 6440–6449 (2006).

    CAS  PubMed  Google Scholar 

  62. Javaid, K. et al. Tumor necrosis factor-α induces early-onset endothelial adhesivity by protein kinase Cζ-dependent activation of intercellular adhesion molecule-1. Circ. Res. 92, 1089–1097 (2003).

    CAS  PubMed  Google Scholar 

  63. Bouzin, C., Brouet, A., De Vriese, J., DeWever, J. & Feron, O. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J. Immunol. 178, 1505–1511 (2007).

    CAS  PubMed  Google Scholar 

  64. Liu, L. et al. LSP1 is an endothelial gatekeeper of leukocyte transendothelial migration. J. Exp. Med. 201, 409–418 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Nourshargh, S., Krombach, F. & Dejana, E. The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J. Leukoc. Biol. 80, 714–718 (2006).

    CAS  PubMed  Google Scholar 

  66. Woodfin, A., Voisin, M. B. & Nourshargh, S. Recent developments and complexities in neutrophil transmigration. Curr. Opin. Hematol. 17, 9–17 (2010).

    PubMed  PubMed Central  Google Scholar 

  67. Woodfin, A. et al. Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A and PECAM-1. Blood 113, 6246–6257 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Wegmann, F. et al. ESAM supports neutrophil extravasation, activation of Rho, and VEGF-induced vascular permeability. J. Exp. Med. 203, 1671–1677 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bradfield, P. F. et al. JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110, 2545–2555 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mamdouh, Z., Mikhailov, A. & Muller, W. A. Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J. Exp. Med. 206, 2795–2808 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nottebaum, A. F. et al. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J. Exp. Med. 205, 2929–2945 (2008). This paper shows that neutrophil adhesion negatively regulates the interaction between VE-PTP and VE-cadherin, allowing Tyr phosphorylation of VE-cadherin and associated proteins and thereby weakening cell–cell contacts.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Feng, D., Nagy, J. A., Dvorak, H. F. & Dvorak, A. M. Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc. Res. Tech. 57, 289–326 (2002).

    CAS  PubMed  Google Scholar 

  73. Xiao, K. et al. p120-catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol. Biol. Cell 16, 5141–5151 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nature Cell Biol. 8, 1223–1234 (2006).

    CAS  PubMed  Google Scholar 

  75. Dasgupta, B. & Muller, W. A. Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration. Eur. J. Immunol. 38, 3499–3507 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Dasgupta, B., Dufour, E., Mamdouh, Z. & Muller, W. A. A novel and critical role for tyrosine 663 in platelet endothelial cell adhesion molecule-1 trafficking and transendothelial migration. J. Immunol. 182, 5041–5051 (2009).

    CAS  PubMed  Google Scholar 

  77. Scheiermann, C. et al. Junctional adhesion molecule (JAM)-C mediates leukocyte infiltration in response to ischemia reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 29, 1509–1515 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Woodfin, A. et al. JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood 110, 1848–1856 (2007).

    CAS  PubMed  Google Scholar 

  79. Nourshargh, S. & Marelli-Berg, F. M. Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol. 26, 157–165 (2005).

    CAS  PubMed  Google Scholar 

  80. Rowe, R. G. & Weiss, S. J. Breaching the basement membrane: who, when and how? Trends Cell Biol. 18, 560–574 (2008). An excellent review highlighting the current controversies associated with cell migration through basement membranes, proposing new mechanisms that may mediate leukocyte emigration through this barrier.

    CAS  PubMed  Google Scholar 

  81. Wang, S. et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating PMN. J. Exp. Med. 203, 1519–1532 (2006). The first study to show that neutrophils migrate through permissive regions in the vascular basement membrane that express low levels of certain basement membrane constituents.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Voisin, M.-B., Proebstl, D. & Nourshargh, S. Venular basement membranes ubiquitously express matrix protein low expression regions: characterisation in multiple tissues and remodelling during inflammation. Am. J. Pathol. 176, 482–495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Voisin, M. B., Woodfin, A. & Nourshargh, S. Monocytes and neutrophils exhibit both distinct and common mechanisms in penetrating the vascular basement membrane in vivo. Arterioscler. Thromb. Vasc. Biol. 29, 1193–1199 (2009). This study provides clear in vivo evidence for the ability of neutrophils and monocytes to extend membrane protrusions through permissive sites in the venular basement membrane during transmigration.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Stratman, A. N., Malotte, K. M., Mahan, R. D., Davis, M. J. & Davis, G. E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Yadav, R., Larbi, K. Y., Young, R. E. & Nourshargh, S. Migration of leukocytes through the vessel wall and beyond. Thromb. Haemost. 90, 598–606 (2003).

    CAS  PubMed  Google Scholar 

  86. Reichel, C. A. et al. Gelatinases mediate neutrophil recruitment in vivo: evidence for stimulus specificity and a critical role in collagen IV remodeling. J. Leukoc. Biol. 83, 864–874 (2008).

    CAS  PubMed  Google Scholar 

  87. Deem, T. L. & Cook-Mills, J. M. Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: role of reactive oxygen species. Blood 104, 2385–2393 (2004).

    CAS  PubMed  Google Scholar 

  88. Steadman, R. et al. Laminin cleavage by activated human neutrophils yields proteolytic fragments with selective migratory properties. J. Leukoc. Biol. 53, 354–365 (1993).

    CAS  PubMed  Google Scholar 

  89. Mydel, P. et al. Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J. Biol. Chem. 283, 9513–9522 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tooley, A. J. et al. Amoeboid T lymphocytes require the septin cytoskeleton for cortical integrity and persistent motility. Nature Cell Biol. 11, 17–26 (2009).

    CAS  PubMed  Google Scholar 

  91. Khoshnoodi, J., Pedchenko, V. & Hudson, B. G. Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hallmann, R. et al. Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev. 85, 979–1000 (2005).

    CAS  PubMed  Google Scholar 

  93. de Bruyn, P. P. H. The amoeboid movement of the mammalian leukocyte in tissue culture. Anat. Rec. 95, 117–192 (1946).

    Google Scholar 

  94. Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305, 1150–1153 (2004).

    CAS  PubMed  Google Scholar 

  95. Sun, C. X. et al. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104, 3758–3765 (2004).

    CAS  PubMed  Google Scholar 

  96. Wheeler, A. P. et al. Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J. Cell Sci. 119, 2749–2757 (2006).

    CAS  PubMed  Google Scholar 

  97. Sivalenka, R. R. & Jessberger, R. SWAP-70 regulates c-kit-induced mast cell activation, cell-cell adhesion, and migration. Mol. Cell. Biol. 24, 10277–10288 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Graham, D. B. et al. ITAM signaling by Vav family Rho guanine nucleotide exchange factors regulates interstitial transit rates of neutrophils in vivo. PLoS One 4, e4652 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Nombela-Arrieta, C. et al. A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J. Exp. Med. 204, 497–510 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Snapper, S. B. et al. WASP deficiency leads to global defects of directed leukocyte migration in vitro and in vivo. J. Leukoc. Biol. 77, 993–998 (2005).

    CAS  PubMed  Google Scholar 

  101. Park, H. et al. A point mutation in the murine Hem1 gene reveals an essential role for hematopoietic protein 1 in lymphopoiesis and innate immunity. J. Exp. Med. 205, 2899–2913 (2008). This study identifies HEM1 as a component that is essential for the stability of the WAVE complex in lymphocytes and shows that on its deletion motility in lymphocytes is completely paralyzed.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Butler, B., Kastendieck, D. H. & Cooper, J. A. Differently phosphorylated forms of the cortactin homolog HS1 mediate distinct functions in natural killer cells. Nature Immunol. 9, 887–897 (2008).

    CAS  Google Scholar 

  103. Foger, N., Rangell, L., Danilenko, D. M. & Chan, A. C. Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science 313, 839–842 (2006).

    PubMed  Google Scholar 

  104. Shiow, L. R. et al. The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nature Immunol. 9, 1307–1315 (2008).

    CAS  Google Scholar 

  105. Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    CAS  PubMed  Google Scholar 

  106. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008). This paper provides conclusive in vivo evidence that integrins are dispensable for the movement of leukocytes in the interstitial tissue.

    PubMed  Google Scholar 

  107. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    CAS  PubMed  Google Scholar 

  108. Redd, M. J., Kelly, G., Dunn, G., Way, M. & Martin, P. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil. Cytoskeleton 63, 415–422 (2006).

    CAS  PubMed  Google Scholar 

  109. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Woolf, E. et al. Lymph node chemokines promote sustained T lymphocyte motility without triggering stable integrin adhesiveness in the absence of shear forces. Nature Immunol. 8, 1076–1085 (2007).

    CAS  Google Scholar 

  111. Grigorova, I. L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nature Immunol. 10, 58–65 (2009).

    CAS  Google Scholar 

  112. Bray, D. & White, J. G. Cortical flow in animal cells. Science 239, 883–888 (1988).

    CAS  PubMed  Google Scholar 

  113. Malawista, S. E. & de Boisfleury Chevance, A. Random locomotion and chemotaxis of human blood polymorphonuclear leukocytes (PMN) in the presence of EDTA: PMN in close quarters require neither leukocyte integrins nor external divalent cations. Proc. Natl Acad. Sci. USA 94, 11577–11582 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Renkawitz, J. et al. Adaptive force transmission in amoeboid cell migration. Nature Cell Biol. 11, 1438–1443 (2009).

    Google Scholar 

  115. Werr, J., Xie, X., Hedqvist, P., Ruoslahti, E. & Lindbom, L. β1 integrins are critically involved in neutrophil locomotion in extravascular tissue in vivo. J. Exp. Med. 187, 2091–2096 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Friedl, P., Entschladen, F., Conrad, C., Niggemann, B. & Zanker, K. S. CD4+ T lymphocytes migrating in three-dimensional collagen lattices lack focal adhesions and utilize β1 integrin-independent strategies for polarization, interaction with collagen fibers and locomotion. Eur. J. Immunol. 28, 2331–2343 (1998). This in vitro study preceded the findings in reference 106 by showing that in 3D environments lymphocyte migration can occur in an integrin-independent manner.

    CAS  PubMed  Google Scholar 

  117. Hawkins, R. J. et al. Pushing off the walls: a mechanism of cell motility in confinement. Phys. Rev. Lett. 102, 58103–58104 (2009).

    CAS  Google Scholar 

  118. Stanley, P. et al. Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell. EMBO J. 27, 62–75 (2008).

    CAS  PubMed  Google Scholar 

  119. Imai, Y. et al. Genetic perturbation of the putative cytoplasmic membrane-proximal salt bridge aberrantly activates α4 integrins. Blood 112, 5007–5015 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Semmrich, M. et al. Importance of integrin LFA-1 deactivation for the generation of immune responses. J. Exp. Med. 201, 1987–1998 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Mackay, C. R. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunol. 9, 988–998 (2008).

    CAS  Google Scholar 

  122. Friedl, P. & Weigelin, B. Interstitial leukocyte migration and immune function. Nature Immunol. 9, 960–969 (2008).

    CAS  Google Scholar 

  123. Chen, Y. et al. Asymptomatic reactivation of JC virus in patients treated with Natalizumab. N. Engl. J. Med. 361, 1067–1074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Greenwood, J. & Mason, J. C. Statins and the vascular endothelial inflammatory response. Trends Immunol. 28, 88–98 (2007).

    CAS  PubMed  Google Scholar 

  125. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    CAS  PubMed  Google Scholar 

  126. Brakebusch, C. & Fassler, R. The integrin–actin connection, an eternal love affair. EMBO J. 22, 2324–2333 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hirschi, K. K. & D'Amore, P. A. Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698 (1996).

    CAS  PubMed  Google Scholar 

  128. Wu, C. et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nature Med. 15, 519–527 (2009).

    CAS  PubMed  Google Scholar 

  129. Wondimu, Z. et al. An endothelial laminin isoform, laminin 8 α4β1γ1, is secreted by blood neutrophils, promotes neutrophil migration and extravasation, and protects neutrophils from apoptosis. Blood 104, 1859–1866 (2004).

    CAS  PubMed  Google Scholar 

  130. Gorfu, G. et al. Laminin isoforms of lymph nodes and predominant role of α5-laminin(s) in adhesion and migration of blood lymphocytes. J. Leukoc. Biol. 84, 701–712 (2008).

    CAS  PubMed  Google Scholar 

  131. Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 867–869 (2006).

    Google Scholar 

  132. Boissonnas, A., Fetler, L., Zeelenberg, I. S., Hugues, S. & Amigorena, S. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 204, 345–356 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Wilson, E. H. et al. Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30, 300–311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.N. acknowledges the Wellcome Trust (grant ref: 081172/Z/06/Z) for funding her research on this topic. Furthermore, S.N.'s work forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute of Health Research. M.S. acknowledges the following funding bodies: the Peter Hans Hofschneider Foundation for Experimental Biomedicine, the German Research Foundation and the Max Planck Society. We are grateful to M. Voisin for his contributions to figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sussan Nourshargh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Sussan Nourshargh's homepage

Peter L. Hordijk's homepage

Michael Sixt's homepage

Glossary

Haptotactic gradient

A molecular gradient that mediates directional cell migration by surface-bound adhesive molecules.

Basement membrane

A thin sheet of interconnecting macromolecules, including laminins and collagen IV, that are interconnected by other proteins, such as nidogens and perlecan, generated by cells such as epithelial cells, Schwann cells and cells of the vascular wall (endothelial cells and pericytes). The basement membrane provides structural support and signalling properties to its neighbouring cell.

Interstitium

The structure outside blood vessels and between extravascular cells that is formed largely by macromolecules such as fibrillar collagen.

Intravital microscopy

A microscopy technique used for the observation of biological responses, such as leukocyte–endothelial cell interactions, in living tissues in real time. Translucent tissues are commonly used, such as the mesentery or cremaster muscle, which can be easily exteriorized for microscopic observation.

Shear stress

A mechanical force created by blood flow through a vessel that impinges on the endothelium by virtue of its unique location in the vessel wall.

Podosome

A small ( 0.5 μm diameter) cylindrical structure, containing typical focal adhesion proteins such as vinculin and paxillin, that is a distinct form of cellular protrusion implicated in establishing close contact with the ECM. Podosomes have been reported in many cell types, including various malignant cells, macrophages and smooth muscle cells, where they are consistently associated with motile and/or invasive responses.

Pseudopodium

A temporary projection of the cytoplasm of certain cells, such as neutrophils, or of certain unicellular organisms, especially amoebae, that functions in locomotion.

Filopodium

A thin (1μm in diameter and up to 5μm in length) and highly dynamic actin cellular protrusion that is formed by the elongation of bundled actin filaments in its core.

Tetraspanin

One of a family of proteins that span the membrane four times with two exoplasmic loops and that can be found at the cell surface. Some are highly restricted to specific tissues, whereas others are widely distributed. Members of this family have been implicated in cell activation, proliferation, adhesion, motility, differentiation and cancer.

Inside–out signalling

The process by which intracellular signalling mechanisms result in the activation of a cell surface receptor, such as integrins. By contrast, outside–in signalling is the process by which ligation of a cell surface receptor activates signalling pathways inside the cell.

Ischaemia–reperfusion injury

Damage caused to tissues when blood supply is restored to the tissue after a period of vascular occlusion. The absence of oxygen and nutrients from blood creates a condition in which the restoration of blood supply results in leukocyte and endothelial cell activation through the induction of oxidative stress.

Laminin

A member of a family of the principal non-collagenous secreted glycoproteins that are an integral part of the structural scaffolding of basement membranes in all tissues. Structurally they contain three subunits (α-, β- and γ-subunits) connected in the shape of a cross.

Septin cytoskeleton

A polymeric protein scaffold comprising the septins, which assemble in rings and gauzes. In mammals, the septin cytoskeleton typically colocalizes with actin stress fibres and its function is poorly characterized.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nourshargh, S., Hordijk, P. & Sixt, M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11, 366–378 (2010). https://doi.org/10.1038/nrm2889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2889

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing