Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps

Key Points

  • Ions are transported across the plasma membrane by molecular pumps to generate chemical gradients and regulate pH or cell growth.

  • P-type ATPases are a family of molecular pumps that transport cations in or outside the cell. Members of this family include the Na+,K+-ATPase (found in animals) and the H+-ATPase (found in plants and fungi). The Na+,K+-ATPase exchanges Na+ for K+ and the H+-ATPase pumps H+ out of the cell.

  • P-type ATPases undergo conformational changes as part of their functional cycle, giving rise to two enzymatic states, E1 and E2, with different affinities for the primary transported ions.

  • P-type ATPases contain a cytoplasmic core comprising the phosphorylation, nucleotide-binding and actuator domains. These carry out autophosphatase activities and are responsible for ATP hydrolysis.

  • All P-type ATPases have six transmembrane helices (M1–M6). The Na+,K+-ATPase and the H+-ATPase have additional transmembrane helices (M7–M10) that may provide specificity or stability in the Na+,K+-ATPase and the H+-ATPase, respectively.

  • Many P-type ATPases also have regulatory domains that fine-tune their activity in ion pumping.

  • Crystal structures and functional studies of the Na+,K+-ATPase and the H+-ATPase have provided insight into their mechanisms of action in eukaryotic cells.

Abstract

Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na+-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H+-ATPase maintains a proton gradient in plants and fungi and the Na+,K+-ATPase maintains a Na+ and K+ gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P-type ATPases energize the plasma membrane.
Figure 2: Structure and domain organization of P-type ATPases.
Figure 3: Ion-binding sites of Na+,K+-ATPase and H+-ATPase.
Figure 4: Autoinhibition of H+-ATPase function.

Similar content being viewed by others

References

  1. Axelsen, K. B. & Palmgren, M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998).

    CAS  PubMed  Google Scholar 

  2. De Hertogh, B., Lantin, A. C., Baret, P. V. & Goffeau, A. The archaeal P-type ATPases. J. Bioenerg. Biomembr. 36, 135–142 (2004).

    CAS  PubMed  Google Scholar 

  3. Barrero-Gil, J., Garciadeblas, B. & Benito, B. Sodium, potassium-ATPases in algae and oomycetes. J. Bioenerg. Biomembr. 37, 269–278 (2005).

    CAS  PubMed  Google Scholar 

  4. Glynn, I. M. A hundred years of sodium pumping. Annu. Rev. Physiol. 64, 1–18 (2002).

    CAS  PubMed  Google Scholar 

  5. Overton, E. Articles on the general muscle- and nerve physiology - Second Notice - The indispensability of natrium (or lithium) ions for muscle contraction. Archiv Für Die Gesamte Physiologie Des Menschen Und Der Tiere 92, 346–386 (1902).

    CAS  Google Scholar 

  6. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Skou, J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394–401 (1957).

    CAS  PubMed  Google Scholar 

  8. Post, R. L. & Jolly, P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25, 118–128 (1957).

    CAS  PubMed  Google Scholar 

  9. Glynn, I. M. Sodium and potassium movements in human red cells. J. Physiol. 134, 278–310 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sweadner, K. J. Isozymes of the Na+/K+-ATPase. Biochim. Biophys. Acta 988, 185–220 (1989).

    CAS  PubMed  Google Scholar 

  11. Lingrel, J. B. & Kuntzweiler, T. Na+,K(+)-ATPase. J. Biol. Chem. 269, 19659–19662 (1994).

    CAS  PubMed  Google Scholar 

  12. Kaplan, J. H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535 (2002).

    CAS  PubMed  Google Scholar 

  13. Shamraj, O. I. & Lingrel, J. B. A putative fourth Na+,K+-ATPase α-subunit gene is expressed in testis. Proc. Natl Acad. Sci. USA 91, 12952–12956 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Woo, A. L., James, P. F. & Lingrel, J. B. Sperm motility is dependent on a unique isoform of the Na,K-ATPase. J. Biol. Chem. 275, 20693–20699 (2000).

    CAS  PubMed  Google Scholar 

  15. Jewell, E. A. & Lingrel, J. B. Comparison of the substrate dependence properties of the rat Na,K-ATPase alpha 1, alpha 2, and alpha 3 isoforms expressed in HeLa cells. J. Biol. Chem. 266, 16925–16930 (1991).

    CAS  PubMed  Google Scholar 

  16. Shyjan, A. W., Gottardi, C. & Levenson, R. The Na,K-ATPase β2 subunit is expressed in rat brain and copurifies with Na,K-ATPase activity. J. Biol. Chem. 265, 5166–5169 (1990).

    CAS  PubMed  Google Scholar 

  17. Malik, N., Canfield, V. A., Beckers, M. C., Gros, P. & Levenson, R. Identification of the mammalian Na,K-ATPase 3 subunit. J. Biol. Chem. 271, 22754–22758 (1996).

    CAS  PubMed  Google Scholar 

  18. Good, P. J., Richter, K. & Dawid, I. B. A nervous system-specific isotype of the beta subunit of Na+,K(+)-ATPase expressed during early development of Xenopus laevis. Proc. Natl Acad. Sci. USA 87, 9088–9092 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Conway, E. J. & O'Malley, E. The nature of the cation exchanges during yeast fermentation, with formation of 0.02N-H ion. Biochem. J. 40, 59–67 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Slayman, C. L. Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J. Gen. Physiol. 49, 93–116 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Slayman, C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J. Gen. Physiol. 49, 69–92 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pena, A. Studies on the mechanism of K+ transport in yeast. Arch. Biochem. Biophys. 167, 397–409 (1975).

    CAS  PubMed  Google Scholar 

  23. Foury, F. & Goffeau, A. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3′:5′-monophosphate in the yeast Schizosaccharomyces pombe. J. Biol. Chem. 250, 2354–2362 (1975).

    CAS  PubMed  Google Scholar 

  24. Dufour, J. P. & Goffeau, A. Solubilization by lysolecithin and purification of the plasma membrane ATPase of the yeast Schizosaccharomyces pombe. J. Biol. Chem. 253, 7026–7032 (1978).

    CAS  PubMed  Google Scholar 

  25. Malpartida, F. & Serrano, R. Purification of the yeast plasma membrane ATPase solubilized with a novel zwitterionic detergent. FEBS Lett. 111, 69–72 (1980).

    CAS  PubMed  Google Scholar 

  26. Bowman, B. J., Blasco, F. & Slayman, C. W. Purification and characterization of the plasma membrane ATPase of Neurospora crassa. J. Biol. Chem. 256, 12343–12349 (1981).

    CAS  PubMed  Google Scholar 

  27. Bowman, E. J., Bowman, B. J. & Slayman, C. W. Isolation and characterization of plasma membranes from wild type Neurospora crassa. J. Biol. Chem. 256, 12336–12342 (1981).

    CAS  PubMed  Google Scholar 

  28. Villalobo, A., Boutry, M. & Goffeau, A. Electrogenic proton translocation coupled to ATP hydrolysis by the plasma membrane Mg2+-dependent ATPase of yeast in reconstituted proteoliposomes. J. Biol. Chem. 256, 12081–12087 (1981).

    CAS  PubMed  Google Scholar 

  29. Malpartida, F. & Serrano, R. Reconstitution of the proton-translocating adenosine triphosphatase of yeast plasma membranes. J. Biol. Chem. 256, 4175–4177 (1981).

    CAS  PubMed  Google Scholar 

  30. Padmanabha, K. P., Petrov, V., Ambesi, A., Rao, R. & Slayman, C. W. Structural features of the yeast plasma-membrane H+-ATPase. Symp. Soc. Exp. Biol. 48, 33–42 (1994).

    CAS  PubMed  Google Scholar 

  31. Gradmann, D., Hansen, U. P., Long, W. S., Slayman, C. L. & Warncke, J. Current–voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J. Membr. Biol. 39, 333–367 (1978).

    CAS  PubMed  Google Scholar 

  32. Perlin, D. S., San Francisco, M. J., Slayman, C. W. & Rosen, B. P. H+/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch. Biochem. Biophys. 248, 53–61 (1986).

    CAS  PubMed  Google Scholar 

  33. Serrano, R., Kielland-Brandt, M. C. & Fink, G. R. Yeast plasma membrane ATPase is essential for growth and has homology with (Na++K+), K+- and Ca2+-ATPases. Nature 319, 689–693 (1986).

    CAS  PubMed  Google Scholar 

  34. Shull, G. E., Lane, L. K. & Lingrel, J. B. Amino-acid sequence of the β-subunit of the (Na++K+)ATPase deduced from a cDNA. Nature 321, 429–431 (1986).

    CAS  PubMed  Google Scholar 

  35. MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316, 696–700 (1985).

    CAS  PubMed  Google Scholar 

  36. Post, R. L., Hegyvary, C. & Kume, S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 247, 6530–6540 (1972).

    CAS  PubMed  Google Scholar 

  37. Albers, R. W. Biochemical aspects of active transport. Annu. Rev. Biochem. 36, 727–756 (1967).

    CAS  PubMed  Google Scholar 

  38. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    CAS  PubMed  Google Scholar 

  39. Lutsenko, S. & Kaplan, J. H. Organization of P-type ATPases: significance of structural diversity. Biochemistry 34, 15607–15613 (1995).

    CAS  PubMed  Google Scholar 

  40. Sorensen, T. L., Moller, J. V. & Nissen, P. Phosphoryl transfer and calcium ion occlusion in the calcium pump. Science 304, 1672–1675 (2004).

    CAS  PubMed  Google Scholar 

  41. Toyoshima, C. & Mizutani, T. Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529–535 (2004).

    CAS  PubMed  Google Scholar 

  42. Jensen, A. M., Sorensen, T. L., Olesen, C., Moller, J. V. & Nissen, P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 25, 2305–2314 (2006).

    PubMed  PubMed Central  Google Scholar 

  43. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002).

    CAS  PubMed  Google Scholar 

  44. Olesen, C., Sorensen, T. L., Nielsen, R. C., Moller, J. V. & Nissen, P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251–2255 (2004).

    CAS  PubMed  Google Scholar 

  45. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature 450, 1036–1042 (2007).

    CAS  PubMed  Google Scholar 

  46. Skriver, E., Maunsbach, A. B. & Jorgensen, P. L. Formation of two-dimensional crystals in pure membrane-bound Na+,K+-ATPase. FEBS Lett. 131, 219–222 (1981).

    CAS  PubMed  Google Scholar 

  47. Herbert, H., Skriver, E. & Maunsbach, A. B. Three-dimensional structure of renal Na,K-ATPase determined by electron microscopy of membrane crystals. FEBS Lett. 187, 182–186 (1985).

    CAS  PubMed  Google Scholar 

  48. Hebert, H., Skriver, E., Soderholm, M. & Maunsbach, A. B. Three-dimensional structure of renal Na,K-ATPase determined from two-dimensional membrane crystals of the p1 form. J. Ultrastruct. Mol. Struct. Res. 100, 86–93 (1988).

    CAS  PubMed  Google Scholar 

  49. Rice, W. J., Young, H. S., Martin, D. W., Sachs, J. R. & Stokes, D. L. Structure of Na+,K+-ATPase at 11-Å resolution: comparison with Ca2+-ATPase in E1 and E2 states. Biophys. J. 80, 2187–2197 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pedersen, B. P., Buch-Pedersen, M. J., Morth, J. P., Palmgren, M. G. & Nissen, P. Crystal structure of the plasma membrane proton pump. Nature 450, 1111–1114 (2007).

    CAS  PubMed  Google Scholar 

  51. Morth, J. P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007).

    CAS  PubMed  Google Scholar 

  52. Morth, J. P. et al. The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 217–227 (2009).

    CAS  PubMed  Google Scholar 

  53. Shinoda, T., Ogawa, H., Cornelius, F. & Toyoshima, C. Crystal structure of the sodium-potassium pump at 2.4 Å resolution. Nature 459, 446–450 (2009).

    CAS  PubMed  Google Scholar 

  54. Ogawa, H., Shinoda, T., Cornelius, F. & Toyoshima, C. Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc. Natl Acad. Sci. USA 106, 13742–13747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jorgensen, P. L. Purification and characterization of (Na+,K+)-ATPase. V. Conformational changes in the enzyme transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim. Biophys. Acta 401, 399–415 (1975).

    CAS  PubMed  Google Scholar 

  56. Jorgensen, P. L. & Andersen, J. P. Structural basis for E1–E2 conformational transitions in Na,K-pump and Ca-pump proteins. J. Membr. Biol. 103, 95–120 (1988).

    CAS  PubMed  Google Scholar 

  57. Zolotarjova, N., Periyasamy, S. M., Huang, W. H. & Askari, A. Functional coupling of phosphorylation and nucleotide binding sites in the proteolytic fragments of Na+/K+-ATPase. J. Biol. Chem. 270, 3989–3995 (1995).

    CAS  PubMed  Google Scholar 

  58. Post, R. L. & Kume, S. Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase. J. Biol. Chem. 248, 6993–7000 (1973).

    CAS  PubMed  Google Scholar 

  59. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    CAS  PubMed  Google Scholar 

  60. de Meis, L. & Vianna, A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48, 275–292 (1979).

    CAS  PubMed  Google Scholar 

  61. Jencks, W. P. How does a calcium pump pump calcium? J. Biol. Chem. 264, 18855–18858 (1989).

    CAS  PubMed  Google Scholar 

  62. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004).

    CAS  PubMed  Google Scholar 

  63. Sorensen, T. L. et al. Localization of a K+-binding site involved in dephosphorylation of the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 279, 46355–46358 (2004).

    CAS  PubMed  Google Scholar 

  64. Buch-Pedersen, M. J. & Palmgren, M. G. Mechanism of proton transport by plant plasma membrane proton ATPases. J. Plant Res. 116, 507–515 (2003).

    CAS  PubMed  Google Scholar 

  65. Takahashi, M., Kondou, Y. & Toyoshima, C. Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc. Natl Acad. Sci. USA 104, 5800–5805 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moncoq, K., Trieber, C. A. & Young, H. S. The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J. Biol. Chem. 282, 9748–9757 (2007).

    CAS  PubMed  Google Scholar 

  67. Laursen, M. et al. Cyclopiazonic acid is complexed to a divalent metal ion when bound to the sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 284, 13513–13518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Moller, J. V., Juul, B. & le Maire, M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996).

    PubMed  Google Scholar 

  69. Jorgensen, P. L., Hakansson, K. O. & Karlish, S. J. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu. Rev. Physiol. 65, 817–849 (2003).

    CAS  PubMed  Google Scholar 

  70. Andersen, J. P. Dissection of the functional domains of the sarcoplasmic reticulum Ca2+-ATPase by site-directed mutagenesis. Biosci. Rep. 15, 243–261 (1995).

    CAS  PubMed  Google Scholar 

  71. MacLennan, D. H., Rice, W. J. & Green, N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272, 28815–28818 (1997).

    CAS  PubMed  Google Scholar 

  72. Vilsen, B., Ramlov, D. & Andersen, J. P. Functional consequences of mutations in the transmembrane core region for cation translocation and energy transduction in the Na+,K+-ATPase and the SR Ca2+-ATPase. Ann. N. Y. Acad. Sci. 834, 297–309 (1997).

    CAS  PubMed  Google Scholar 

  73. Daiho, T., Yamasaki, K., Danko, S. & Suzuki, H. Critical role of Glu40–Ser48 loop linking actuator domain and first transmembrane helix of Ca2+-ATPase in Ca2+ deocclusion and release from ADP-insensitive phosphoenzyme. J. Biol. Chem. 282, 34429–34447 (2007).

    CAS  PubMed  Google Scholar 

  74. Clausen, J. D., Vilsen, B., McIntosh, D. B., Einholm, A. P. & Andersen, J. P. Glutamate-183 in the conserved TGES motif of domain A of sarcoplasmic reticulum Ca2+-ATPase assists in catalysis of E2/E2P partial reactions. Proc. Natl Acad. Sci. USA 101, 2776–2781 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Takeuchi, A., Reyes, N., Artigas, P. & Gadsby, D. C. The ion pathway through the opened Na(+),K(+)-ATPase pump. Nature 456, 413–416 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+-ATPase. Nature 339, 476–478 (1989).

    CAS  PubMed  Google Scholar 

  77. Sumbilla, C. et al. Structural perturbation of the transmembrane region interferes with calcium binding by the Ca2+ transport ATPase. J. Biol. Chem. 266, 12682–12689 (1991).

    CAS  PubMed  Google Scholar 

  78. Inesi, G., Ma, H., Lewis, D. & Xu, C. Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J. Biol. Chem. 279, 31629–31637 (2004).

    CAS  PubMed  Google Scholar 

  79. Toyoshima, C. How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim. Biophys. Acta 1793, 941–946 (2009).

    CAS  PubMed  Google Scholar 

  80. Marchand, A. et al. Crystal structure of D351A and P312A mutant forms of the mammalian sarcoplasmic reticulum Ca2+-ATPase reveals key events in phosphorylation and Ca2+ release. J. Biol. Chem. 283, 14867–14882 (2008).

    CAS  PubMed  Google Scholar 

  81. Belogus, T., Haviv, H. & Karlish, S. J. Neutralization of the charge on Asp369 of Na+,K+-ATPase triggers E1↔E2 conformational changes. J. Biol. Chem. 284, 31038–31051 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Toyoshima, C., Norimatsu, Y., Iwasawa, S., Tsuda, T. & Ogawa, H. How processing of aspartylphosphate is coupled to lumenal gating of the ion pathway in the calcium pump. Proc. Natl Acad. Sci. USA 104, 19831–19836 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Arguello, J. M., Eren, E. & Gonzalez-Guerrero, M. The structure and function of heavy metal transport P1B-ATPases. Biometals 20, 233–248 (2007).

    PubMed  Google Scholar 

  84. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nature Rev. Mol. Cell Biol. 5, 282–295 (2004).

    Google Scholar 

  85. Vilsen, B. & Andersen, J. P. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Biochemistry 37, 10961–10971 (1998).

    CAS  PubMed  Google Scholar 

  86. Ambesi, A., Pan, R. L. & Slayman, C. W. Alanine-scanning mutagenesis along membrane segment 4 of the yeast plasma membrane H+-ATPase. Effects on structure and function. J. Biol. Chem. 271, 22999–23005 (1996).

    CAS  PubMed  Google Scholar 

  87. Fraysse, A. S. et al. A systematic mutagenesis study of Ile-282 in transmembrane segment M4 of the plasma membrane H+-ATPase. J. Biol. Chem. 280, 21785–21790 (2005).

    CAS  PubMed  Google Scholar 

  88. Vilsen, B. Functional consequences of alterations to Pro328 and Leu332 located in the 4th transmembrane segment of the α-subunit of the rat kidney Na+,K+-ATPase. FEBS Lett. 314, 301–307 (1992).

    CAS  PubMed  Google Scholar 

  89. Vilsen, B., Andersen, J. P., Clarke, D. M. & MacLennan, D. H. Functional consequences of proline mutations in the cytoplasmic and transmembrane sectors of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 21024–21030 (1989).

    CAS  PubMed  Google Scholar 

  90. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007).

    CAS  PubMed  Google Scholar 

  91. Li, C., Geering, K. & Horisberger, J. D. The third sodium binding site of Na,K-ATPase is functionally linked to acidic pH-activated inward current. J. Membr. Biol. 213, 1–9 (2006).

    PubMed  Google Scholar 

  92. Li, C., Capendeguy, O., Geering, K. & Horisberger, J. D. A third Na+-binding site in the sodium pump. Proc. Natl Acad. Sci. USA 102, 12706–12711 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ogawa, H. & Toyoshima, C. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl Acad. Sci. USA 99, 15977–15982 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Karlish, S. J. et al. Identification of the cation binding domain of Na/K-ATPase. Acta Physiol. Scand. Suppl. 607, 69–76 (1992).

    CAS  PubMed  Google Scholar 

  95. Or, E., Goldshleger, R. & Karlish, S. J. An effect of voltage on binding of Na+ at the cytoplasmic surface of the Na+-K+ pump. J. Biol. Chem. 271, 2470–2477 (1996).

    CAS  PubMed  Google Scholar 

  96. Axelsen, K. B. & Palmgren, M. G. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol. 126, 696–706 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jiang, Y., Ruta, V., Chen, J., Lee, A. & MacKinnon, R. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423, 42–48 (2003).

    CAS  PubMed  Google Scholar 

  98. Gouaux, E. & Mackinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    CAS  PubMed  Google Scholar 

  99. Einholm, A. P., Toustrup-Jensen, M., Andersen, J. P. & Vilsen, B. Mutation of Gly-94 in transmembrane segment M1 of Na+,K+-ATPase interferes with Na+ and K+ binding in E2P conformation. Proc. Natl Acad. Sci. USA 102, 11254–11259 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Einholm, A. P., Andersen, J. P. & Vilsen, B. Importance of Leu99 in transmembrane segment M1 of the Na+,K+-ATPase in the binding and occlusion of K+. J. Biol. Chem. 282, 23854–23866 (2007).

    CAS  PubMed  Google Scholar 

  101. Buch-Pedersen, M. J., Pedersen, B. P., Veierskov, B., Nissen, P. & Palmgren, M. G. Protons and how they are transported by proton pumps. Pflugers Arch. 457, 573–579 (2009).

    CAS  PubMed  Google Scholar 

  102. Chintalapati, S., Al Kurdi, R., van Scheltinga, A. C. & Kühlbrandt, W. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. J. Mol. Biol. 378, 581–595 (2008).

    CAS  PubMed  Google Scholar 

  103. Hatori, Y., Majima, E., Tsuda, T. & Toyoshima, C. Domain organization and movements in heavy metal ion pumps: papain digestion of CopA, a Cu+-transporting ATPase. J. Biol. Chem. 282, 25213–25221 (2007).

    CAS  PubMed  Google Scholar 

  104. Moller, A. B., Asp, T., Holm, P. B. & Palmgren, M. G. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol. Phylogenet. Evol. 46, 619–634 (2008).

    CAS  PubMed  Google Scholar 

  105. Toustrup-Jensen, M. S. et al. The C-terminus of Na+, K+-ATPase controls Na+ affinity on both sides of the membrane through Arg935. J. Biol. Chem. 284, 18715–18725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tavraz, N. N. et al. Diverse functional consequences of mutations in the Na+/K+-ATPase α2-subunit causing familial hemiplegic migraine type 2. J. Biol. Chem. 283, 31097–31106 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Yaragatupalli, S., Olivera, J. F., Gatto, C. & Artigas, P. Altered Na+ transport after an intracellular α-subunit deletion reveals strict external sequential release of Na+ from the Na/K pump. Proc. Natl Acad. Sci. USA 106, 15507–15512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Poulsen, H. et al. Neurological disease mutations compromise a C-terminal ion pathway in the Na+/K+-ATPase. Nature 467, 99–102 (2010).

    CAS  PubMed  Google Scholar 

  109. Vilsen, B. Mutant Glu781->Ala of the rat kidney Na+,K(+)-ATPase displays low cation affinity and catalyzes ATP hydrolysis at a high rate in the absence of potassium ions. Biochemistry 34, 1455–1463 (1995).

    CAS  PubMed  Google Scholar 

  110. Jewell-Motz, E. A. & Lingrel, J. B. Site-directed mutagenesis of the Na,K-ATPase: consequences of substitutions of negatively-charged amino acids localized in the transmembrane domains. Biochemistry 32, 13523–13530 (1993).

    CAS  PubMed  Google Scholar 

  111. Pedersen, P. A., Nielsen, J. M., Rasmussen, J. H. & Jorgensen, P. L. Contribution to Tl+, K+, and Na+ binding of Asn776, Ser775, Thr774, Thr772, and Tyr771 in cytoplasmic part of fifth transmembrane segment in α-subunit of renal Na,K-ATPase. Biochemistry 37, 17818–17827 (1998).

    CAS  PubMed  Google Scholar 

  112. Vilsen, B. Functional consequences of mutation Asn326->Leu in the 4th transmembrane segment of the α-subunit of the rat kidney Na+,K+-ATPase. FEBS Lett. 363, 179–183 (1995).

    CAS  PubMed  Google Scholar 

  113. Pedersen, P. A., Rasmussen, J. H., Nielsen, J. M. & Jorgensen, P. L. Identification of Asp804 and Asp808 as Na+ and K+ coordinating residues in α-subunit of renal Na,K-ATPase. FEBS Lett. 400, 206–210 (1997).

    CAS  PubMed  Google Scholar 

  114. Imagawa, T., Yamamoto, T., Kaya, S., Sakaguchi, K. & Taniguchi, K. Thr-774 (transmembrane segment M5), Val-920 (M8), and Glu-954 (M9) are involved in Na+ transport, and Gln-923 (M8) is essential for Na,K-ATPase activity. J. Biol. Chem. 280, 18736–18744 (2005).

    CAS  PubMed  Google Scholar 

  115. Li, C. et al. Role of the transmembrane domain of FXYD7 in structural and functional interactions with Na,K-ATPase. J. Biol. Chem. 280, 42738–42743 (2005).

    CAS  PubMed  Google Scholar 

  116. Einholm, A. P., Toustrup-Jensen, M., Holm, R., Andersen, J. P. & Vilsen, B. The rapid-onset dystonia Parkinsonism mutation D923N of the Na+,K+-ATPase 3 isoform disrupts Na+ interaction at the third Na+ site. J. Biol. Chem. 285, 26245–26254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Skou, J. C. & Esmann, M. Effects of ATP and protons on the Na:K selectivity of the (Na++K+)-ATPase studied by ligand effects on intrinsic and extrinsic fluorescence. Biochim. Biophys. Acta 601, 386–402 (1980).

    CAS  PubMed  Google Scholar 

  118. Menguy, T. et al. The cytoplasmic loop located between transmembrane segments 6 and 7 controls activation by Ca2+ of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 273, 20134–20143 (1998).

    CAS  PubMed  Google Scholar 

  119. Schack, V. R. et al. Identification and function of a cytoplasmic K+ site of the Na+,K+ -ATPase. J. Biol. Chem. 283, 27982–27990 (2008).

    CAS  PubMed  Google Scholar 

  120. Buch-Pedersen, M. J., Rudashevskaya, E. L., Berner, T. S., Venema, K. & Palmgren, M. G. Potassium as an intrinsic uncoupler of the plasma membrane H+-ATPase. J. Biol. Chem. 281, 38285–38292 (2006).

    CAS  PubMed  Google Scholar 

  121. Palmgren, M. G. & Axelsen, K. B. Evolution of P-type ATPases. Biochim. Biophys. Acta 1365, 37–45 (1998).

    CAS  PubMed  Google Scholar 

  122. Enyedi, A. et al. The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J. Biol. Chem. 264, 12313–12321 (1989).

    CAS  PubMed  Google Scholar 

  123. Portillo, F., de Larrinoa, I. F. & Serrano, R. Deletion analysis of yeast plasma membrane H+-ATPase and identification of a regulatory domain at the carboxyl-terminus. FEBS Lett. 247, 381–385 (1989).

    CAS  PubMed  Google Scholar 

  124. Palmgren, M. G., Sommarin, M., Serrano, R. & Larsson, C. Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H(+)-ATPase. J. Biol. Chem. 266, 20470–20475 (1991).

    CAS  PubMed  Google Scholar 

  125. Malmstrom, S., Askerlund, P. & Palmgren, M. G. A calmodulin-stimulated Ca2+-ATPase from plant vacuolar membranes with a putative regulatory domain at its N-terminus. FEBS Lett. 400, 324–328 (1997).

    CAS  PubMed  Google Scholar 

  126. Yoon, T. & Lee, K. Isoform-specific interaction of the cytoplasmic domains of Na,K-ATPase. Mol. Cells 8, 606–613 (1998).

    PubMed  Google Scholar 

  127. Kone, B. C. & Higham, S. C. A novel N-terminal splice variant of the rat H+-K+-ATPase α2 subunit. Cloning, functional expression, and renal adaptive response to chronic hypokalemia. J. Biol. Chem. 273, 2543–2552 (1998).

    CAS  PubMed  Google Scholar 

  128. Cornelius, F., Mahmmoud, Y. A., Meischke, L. & Cramb, G. Functional significance of the shark Na,K-ATPase N-terminal domain. Is the structurally variable N-terminus involved in tissue-specific regulation by FXYD proteins? Biochemistry 44, 13051–13062 (2005).

    CAS  PubMed  Google Scholar 

  129. Scanzano, R., Segall, L. & Blostein, R. Specific sites in the cytoplasmic N terminus modulate conformational transitions of the Na,K-ATPase. J. Biol. Chem. 282, 33691–33697 (2007).

    CAS  PubMed  Google Scholar 

  130. Ekberg, K., Palmgren, M. G., Veierskov, B. & Buch-Pedersen, M. J. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein. J. Biol. Chem. 285, 7344–7350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Palmgren, M. G., Larsson, C. & Sommarin, M. Proteolytic activation of the plant plasma membrane H+-ATPase by removal of a terminal segment. J. Biol. Chem. 265, 13423–13426 (1990).

    CAS  PubMed  Google Scholar 

  132. Jahn, T. et al. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell 9, 1805–1814 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Olsson, A., Svennelid, F., Ek, B., Sommarin, M. & Larsson, C. A phosphothreonine residue at the C-terminal end of the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding. Plant Physiol. 118, 551–555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Fuglsang, A. T. et al. Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J. Biol. Chem. 274, 36774–36780 (1999).

    CAS  PubMed  Google Scholar 

  135. Axelsen, K. B., Venema, K., Jahn, T., Baunsgaard, L. & Palmgren, M. G. Molecular dissection of the C-terminal regulatory domain of the plant plasma membrane H+-ATPase AHA2: mapping of residues that when altered give rise to an activated enzyme. Biochemistry 38, 7227–7234 (1999).

    CAS  PubMed  Google Scholar 

  136. Ueno, K., Kinoshita, T., Inoue, S., Emi, T. & Shimazaki, K. Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol. 46, 955–963 (2005).

    CAS  PubMed  Google Scholar 

  137. Tomasi, N. et al. Plasma membrane H-ATPase- dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant. Cell. Environ. 32, 465–475 (2009).

    CAS  PubMed  Google Scholar 

  138. Roberts, M. R. & Bowles, D. J. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119, 1243–1250 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, J., Elmore, J. M. & Coaker, G. Investigating the functions of the RIN4 protein complex during plant innate immune responses. Plant. Signal. Behav. 4, 1107–1110 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lecchi, S. et al. Tandem phosphorylation of Ser-911 and Thr-912 at the C terminus of yeast plasma membrane H+-ATPase leads to glucose-dependent activation. J. Biol. Chem. 282, 35471–35481 (2007).

    CAS  PubMed  Google Scholar 

  141. Venema, K. & Palmgren, M. G. Metabolic modulation of transport coupling ratio in yeast plasma membrane H+-ATPase. J. Biol. Chem. 270, 19659–19667 (1995).

    CAS  PubMed  Google Scholar 

  142. Baunsgaard, L. et al. The 14-3-3 proteins associate with the plant plasma membrane H+-ATPase to generate a fusicoccin binding complex and a fusicoccin responsive system. Plant J. 13, 661–671 (1998).

    CAS  PubMed  Google Scholar 

  143. Fuglsang, A. T. et al. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617–1634 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Duby, G. et al. Activation of plant plasma membrane H+-ATPase by 14-3-3 proteins is negatively controlled by two phosphorylation sites within the H+-ATPase C-terminal region. J. Biol. Chem. 284, 4213–4221 (2009).

    CAS  PubMed  Google Scholar 

  145. Niittyla, T., Fuglsang, A. T., Palmgren, M. G., Frommer, W. B. & Schulze, W. X. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics 6, 1711–1726 (2007).

    CAS  PubMed  Google Scholar 

  146. Hasler, U., Crambert, G., Horisberger, J. D. & Geering, K. Structural and functional features of the transmembrane domain of the Na,K-ATPase β subunit revealed by tryptophan scanning. J. Biol. Chem. 276, 16356–16364 (2001).

    CAS  PubMed  Google Scholar 

  147. Durr, K. L., Abe, K., Tavraz, N. N. & Friedrich, T. E2P state stabilization by the N-terminal tail of the, H,K-ATPase β-subunit is critical for efficient proton pumping under in vivo conditions. J. Biol. Chem. 284, 20147–20154 (2009).

    PubMed  PubMed Central  Google Scholar 

  148. Hasler, U. et al. Role of β-subunit domains in the assembly, stable expression, intracellular routing, and functional properties of Na,K-ATPase. J. Biol. Chem. 273, 30826–30835 (1998).

    CAS  PubMed  Google Scholar 

  149. Durr, K. L., Tavraz, N. N., Dempski, R. E., Bamberg, E. & Friedrich, T. Functional significance of E2 state stabilization by specific α/β-subunit interactions of Na,K- and H,K-ATPase. J. Biol. Chem. 284, 3842–3854 (2009).

    PubMed  Google Scholar 

  150. Gorokhova, S., Bibert, S., Geering, K. & Heintz, N. A novel family of transmembrane proteins interacting with β subunits of the Na,K-ATPase. Hum. Mol. Genet. 16, 2394–2410 (2007).

    CAS  PubMed  Google Scholar 

  151. Hilgenberg, L. G., Su, H., Gu, H., O'Dowd, D. K. & Smith, M. A. α3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125, 359–369 (2006).

    CAS  PubMed  Google Scholar 

  152. Hilgenberg, L. G. et al. Agrin regulation of α3 sodium-potassium ATPase activity modulates cardiac myocyte contraction. J. Biol. Chem. 284, 16956–16965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Garty, H. & Karlish, S. J. Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 68, 431–459 (2006).

    CAS  PubMed  Google Scholar 

  154. Geering, K. FXYD proteins: new regulators of Na-K-ATPase. Am. J. Physiol. Renal Physiol. 290, F241–F250 (2006).

    CAS  PubMed  Google Scholar 

  155. Geering, K. et al. FXYD proteins: new tissue- and isoform-specific regulators of Na,K-ATPase. Ann. N. Y. Acad. Sci. 986, 388–394 (2003).

    CAS  PubMed  Google Scholar 

  156. Garty, H. et al. A specific functional interaction between CHIF and Na,K-ATPase: role of FXYD proteins in the cellular regulation of the pump. Ann. N. Y. Acad. Sci. 986, 395–400 (2003).

    CAS  PubMed  Google Scholar 

  157. Pihakaski-Maunsbach, K. et al. Immunocytochemical localization of Na,K-ATPase γ subunit and CHIF in inner medulla of rat kidney. Ann. N. Y. Acad. Sci. 986, 401–409 (2003).

    CAS  PubMed  Google Scholar 

  158. Cairo, E. R. et al. Impaired routing of wild type FXYD2 after oligomerisation with FXYD2-G41R might explain the dominant nature of renal hypomagnesemia. Biochim. Biophys. Acta 1778, 398–404 (2008).

    CAS  PubMed  Google Scholar 

  159. Sha, Q. et al. Human FXYD2 G41R mutation responsible for renal hypomagnesemia behaves as an inward-rectifying cation channel. Am. J. Physiol. Renal Physiol. 295, F91–F99 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Lingrel, J. B., Arguello, J. M., Van Huysse, J. & Kuntzweiler, T. A. Cation and cardiac glycoside binding sites of the Na,K-ATPase. Ann. N. Y. Acad. Sci. 834, 194–206 (1997).

    CAS  PubMed  Google Scholar 

  161. Koenderink, J. B., Hermsen, H. P., Swarts, H. G., Willems, P. H. & De Pont, J. J. High-affinity ouabain binding by a chimeric gastric H+,K+-ATPase containing transmembrane hairpins M3–M4 and M5–M6 of the α1-subunit of rat Na+,K+-ATPase. Proc. Natl Acad. Sci. USA 97, 11209–11214 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Forbush, B. Cardiotonic steroid binding to Na,K-ATPase. Curr. Top. Membr. Transp. 19, 167–201 (1983).

    CAS  Google Scholar 

  163. Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H. & De Pont, J. J. Mutational analysis of ouabain interaction with the M5–M6 hairpin of Na,K-ATPase. Ann. N. Y. Acad. Sci. 986, 255–257 (2003).

    CAS  PubMed  Google Scholar 

  164. Pierre, S. V. & Xie, Z. The Na,K-ATPase receptor complex: its organization and membership. Cell Biochem. Biophys. 46, 303–316 (2006).

    CAS  PubMed  Google Scholar 

  165. Liu, L. et al. Role of caveolae in signal-transducing function of cardiac Na+/K+-ATPase. Am. J. Physiol. Cell. Physiol. 284, C1550–C1560 (2003).

    CAS  PubMed  Google Scholar 

  166. Xie, Z. & Cai, T. Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol. Interv. 3, 157–168 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Poulsen, A. T. Fuglsang, J. Vuust Møller and N. Fedosova for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poul Nissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

PROSITE

PS00154

Protein Data Bank

3KDP

2ZXE

3BA6

FURTHER INFORMATION

PUMPKIN Centre homepage

Glossary

Membrane potential

The voltage across a biological membrane; typically negative on the cytoplasmic side.

Proton-motive force

The proton potential that is established by the electrochemical gradient of protons across a biological membrane.

Post–Albers cycle

The reaction cycle of P-type ATPases: as cyclical changes between the E1 and E2 states associated with phosphoenzyme intermediates, E1P and E2P. Named after Robert L. Post and Wayne Albers.

Vectorial ion transport

Transport of ions that leads to a non-uniform distribution of ions across the plasma membrane.

Uncoupling

ATPase activity that is uncoupled from function. For P-type ATPases, uncoupling leads to ATPase activity without ion transport.

Half-channel

A gated channel structure that spans approximately half of the membrane bilayer and leads to a central binding site.

Coordination of cations

The side chain carbonyls, or the functional groups of the side chains with a free pair of electrons, can act as ligands to the central transported cation and thus coordinate the cations in a coordination complex.

Cation-π interaction

A non-covalent interaction between an electron-rich -system and a nearby cation. Frequently observed in protein structures between aromatic side chains (Phe, Tyr or Trp) and positively charged side chains (Lys or Arg) or bound cations.

14-3-3 protein

A member of a conserved family of eukaryotic regulatory proteins that interact with a diverse range of target proteins such as kinases, phosphatases, and transmembrane receptors and pumps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morth, J., Pedersen, B., Buch-Pedersen, M. et al. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 12, 60–70 (2011). https://doi.org/10.1038/nrm3031

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing