Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Looking into the functional architecture of the brain with diffusion MRI

Key Points

  • The basic principles of diffusion MRI (dMRI) were introduced in the mid-1980s. This method is deeply rooted in the concept that, during their diffusion-driven displacements, molecules probe tissue structure on a microscopic scale, well beyond the usual (millimetric) image resolution.

  • During diffusion times of about 50 ms, water molecules move in the brain over distances of around 10 μm on average, bouncing off, crossing or interacting with many tissue components, such as cell membranes, fibres or macromolecules. The observation of this displacement distribution, on a statistical basis, provides unique clues to the structural features and the geometric organization of neural tissues, and to changes in those features with physiological or pathological states.

  • Potential clinical applications of dMRI were indicated early on, but the most successful application since the early 1990s has been in brain ischaemia. Water diffusion decreases significantly immediately after ischaemic injury, possibly because of changes in membrane permeability or cell swelling. With its unmatched sensitivity, dMRI provides some patients with the opportunity to receive suitable treatment at a stage when brain tissue might still be salvageable.

  • Diffusion is a three-dimensional process, and molecular mobility in tissues might not be the same in all directions. Diffusion anisotropy was observed at the end of the 1980s in brain white matter, where it reflects the specific organization into bundles of myelinated axonal fibres running in parallel. It quickly became apparent that this feature could be exploited to map out the orientation in space of the white matter tracks in the brain.

  • With the introduction of the more rigorous formalism of diffusion tensor MRI (DTI), diffusion anisotropy effects could be fully extracted, characterized and exploited, providing even more exquisite details on tissue microstructure. The most advanced application is certainly that of fibre tracking in the brain, which, in combination with functional MRI, opens a new window on the important issue of brain connectivity. DTI is also a promising tool for examining aspects of brain development and maturation, especially the myelination process, as well as changes in brain connectivity in disorders such as dyslexia.

  • Recent data indicate that dMRI could also be used to image brain activation by directly visualizing dynamic tissue changes associated with neuronal activation, an exciting departure from current functional imaging methods, which are based on the local modulation of cerebral blood flow. With the advent of very-high-field magnets, which will push the spatial and temporal limits of MRI, it seems likely that new advances will be made in the already flourishing field of diffusion imaging.

Abstract

Water diffusion magnetic resonance imaging (dMRI) allows tissue structure to be probed and imaged on a microscopic scale, providing unique clues to the fine architecture of neural tissues and to changes associated with various physiological and pathological states, such as acute brain ischaemia. Because diffusion is anisotropic in brain white matter, reflecting its organization in bundles of fibres running in parallel, dMRI can also be used to map the orientation in space of the white matter tracks in the brain, opening a new window on brain connectivity and brain maturation studies. This article provides an introduction to the key physical concepts that underlie dMRI, and reviews its potential applications in the neurosciences and associated clinical fields.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Water diffusion and tissue microstructure.
Figure 2: Principles of diffusion magnetic resonance imaging (dMRI).
Figure 3: Diffusion-weighting.
Figure 4: Acute brain ischaemia.
Figure 5: Water diffusion and brain activation.
Figure 6: Anisotropic diffusion.
Figure 7: Fibre orientation.
Figure 8: Fibre tracking: connecting voxels.

Similar content being viewed by others

References

  1. Einstein, A. Investigations on the Theory of Brownian Motion (eds Furthe, R. & Cowper, A. D.) (Dover, New York, 1956).

    Google Scholar 

  2. Le Bihan, D. & Breton, E. Imagerie de diffusion in vivo par résonance magnétique nucléaire. C. R. Acad. Sci. (Paris) 301, 1109–1112 (1985).

    Google Scholar 

  3. Merboldt, K. D., Hanicke, W. & Frahm, J. Self-diffusion NMR imaging using stimulated echoes. J. Magn. Reson. 64, 479–486 (1985).

    CAS  Google Scholar 

  4. Taylor, D. G. & Bushell, M. C. The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys. Med. Biol. 30, 345–349 (1985).

    CAS  PubMed  Google Scholar 

  5. Le Bihan, D. Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed. 8, 375–386 (1995).

    CAS  PubMed  Google Scholar 

  6. Lauterbur, P. C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242, 190–191 (1973).

    CAS  Google Scholar 

  7. Kumar, A., Welti, D. & Ernst, R. NMR Fourier zeugmatography. J. Magn. Reson. 18, 69–83 (1975).

    CAS  Google Scholar 

  8. Stejskal, E. O. & Tanner, J. E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288–292 (1965).

    CAS  Google Scholar 

  9. Le Bihan, D. in Diffusion and Perfusion Magnetic Resonance Imaging. Applications to Functional MRI (ed. Le Bihan, D.) (Raven, New York, 1995).

    Google Scholar 

  10. Tanner, J. E. Self diffusion of water in frog muscle. Biophys. J. 28, 107–116 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanner, J. E. Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J. Chem. Phys. 69, 1748–1754 (1978).

    CAS  Google Scholar 

  12. Cooper, R. L., Chang, D. B., Young, A. C., Martin, J. & Ancker-Johnson, B. Restricted diffusion in biophysical systems. Biophys. J. 14, 161–177 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Le Bihan, D. et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161, 401–407 (1986).

    CAS  PubMed  Google Scholar 

  14. Bougeault, P. & Geleyn, J. F. Some problems of closure assumption and scale dependency in the parameterization of moist deep convection for numerical weather prediction. Meteorol. Atmos. Phys. 40, 123–135 (1988).

    Google Scholar 

  15. Callaghan, P. T. Principles of Nuclear Magnetic Resonance Microscopy (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  16. Anderson, A. W. & Gore, J. C. Analysis and correction of motion artifacts in diffusion weighted imaging. Magn. Reson. Med. 32, 379–387 (1994).

    CAS  PubMed  Google Scholar 

  17. Baird, A. E. & Warach, S. Magnetic resonance imaging of acute stroke. J. Cereb. Blood Flow Metab. 18, 583–609 (1998).

    CAS  PubMed  Google Scholar 

  18. Chien, D. et al. MR diffusion imaging of cerebral infarction in humans. Am. J. Neuroradiol. 13, 1097–1102 (1992).

    CAS  PubMed  Google Scholar 

  19. Moseley, M. E. et al. Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. Am. J. Neuroradiol. 11, 423–429 (1990).

    CAS  PubMed  Google Scholar 

  20. Mintorovitch, J. et al. Comparison of diffusion- and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn. Reson. Med. 18, 39–50 (1991).

    CAS  PubMed  Google Scholar 

  21. Hossmann, K. A. & Hoehn Berlage, M. Diffusion and perfusion MR imaging of cerebral ischemia. Cerebrovasc. Brain Metab. Rev. 7, 187–217 (1995).

    CAS  PubMed  Google Scholar 

  22. Sotak, C. H. The role of diffusion tensor imaging in the evaluation of ischemic brain injury — a review. NMR Biomed. 15, 561–569 (2002).

    PubMed  Google Scholar 

  23. Warach, S., Chien, D., Li, W., Ronthal, M. & Edelman, R. R. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42, 1717–1723 (1992).

    CAS  PubMed  Google Scholar 

  24. Sorensen, A. G. et al. Hyperacute stroke: evaluation with combined multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. Radiology 199, 391–401 (1996).

    CAS  PubMed  Google Scholar 

  25. Sorensen, A. G. et al. Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210, 519–527 (1999).

    CAS  PubMed  Google Scholar 

  26. Knight, R. A. et al. Temporal evolution of ischemic damage in rat brain measured by proton nuclear magnetic resonance imaging. Stroke 22, 802–808 (1991).

    CAS  PubMed  Google Scholar 

  27. Norris, D. G., Niendorf, T. & Leibfritz, D. Healthly and infarcted brain tissues studied at short diffusion times: the origins of apparent restriction and the reduction in apparent diffusion coefficient. NMR Biomed. 7, 304–310 (1994).

    CAS  PubMed  Google Scholar 

  28. Rohl, L. et al. Viability thresholds of ischemic penumbra of hyperacute stroke defined by perfusion-weighted MRI and apparent diffusion coefficient. Stroke 32, 1140–1146 (2001).

    CAS  PubMed  Google Scholar 

  29. Warach, S., Boska, M. & Welch, K. M. A. Pitfalls and potential of clinical diffusion-weighted MR imaging in acute stroke. Stroke 28, 481–482 (1997).

    CAS  PubMed  Google Scholar 

  30. Warach, S., Dashe, J. F. & Edelman, R. R. Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J. Cereb. Blood Flow Metab. 16, 53–59 (1996).

    CAS  PubMed  Google Scholar 

  31. Lovblad, K. O. et al. Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann. Neurol. 42, 164–170 (1997).

    CAS  PubMed  Google Scholar 

  32. Gonzalez, R. G. et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210, 155–162 (1999).

    CAS  PubMed  Google Scholar 

  33. Warach, S., Boska, M. & Welch, K. M. Pitfalls and potential of clinical diffusion-weighted MR imaging in acute stroke. Stroke 28, 481–482 (1997).

    CAS  PubMed  Google Scholar 

  34. Dreher, W. et al. Temporal and regional changes during focal ischemia in rat brain studied by proton spectroscopic imaging and quantitative diffusion NMR imaging. Magn. Reson. Med. 39, 878–888 (1998).

    CAS  PubMed  Google Scholar 

  35. Basser, P. J. & Jones, D. K. Diffusion-tensor MRI: theory, experimental design and data analysis — a technical review. NMR Biomed. 15, 456–467 (2002).

    PubMed  Google Scholar 

  36. Bammer, R. et al. Diffusion tensor imaging using single-shot SENSE–EPI. Magn. Reson. Med. 48, 128–136 (2002).

    PubMed  Google Scholar 

  37. Bammer, R. et al. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn. Reson. Med. 46, 548–554 (2001).

    CAS  PubMed  Google Scholar 

  38. Vavrek, R. M. & MacFall, J. R. in Diffusion and Perfusion Magnetic Resonance Imaging. Applications to Functional MRI (ed. Le Bihan, D.) 67–72 (Raven, New York, 1995).

    Google Scholar 

  39. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation — functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    CAS  PubMed  Google Scholar 

  40. Logothetis, N. K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Phil. Trans. R. Soc. Lond. B 357, 1003–1037 (2002).

    Google Scholar 

  41. Zhong, J., Petroff, O. A. C., Prichard, J. W. & Gore, J. C. Changes in water diffusion and relaxation properties of rat cerebrum during status epilepticus. Magn. Reson. Med. 30, 241–246 (1993).

    CAS  PubMed  Google Scholar 

  42. Darquie, A., Poline, J. B., Poupon, C., Saint Jalmes, H. & Le Bihan, D. Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. Proc. Natl Acad. Sci. USA 98, 9391–9395 (2001).

    CAS  PubMed  Google Scholar 

  43. Cohen, L. B. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 53, 373–418 (1973).

    CAS  PubMed  Google Scholar 

  44. Andrew, R. D. & MacVicar, B. A. Imaging cell volume changes and neuronal excitation in the hippocampal slice. Neuroscience 62, 371–383 (1994).

    CAS  PubMed  Google Scholar 

  45. Ransom, B. R., Yamate, C. L. & Connors, B. W. Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J. Neurosci. 5, 532–535 (1985).

    CAS  PubMed  Google Scholar 

  46. Svoboda, J. & Sykova, E. Extracellular space volume changes in the rat spinal cord produced by nerve stimulation and peripheral injury. Brain Res. 560, 216–224 (1991).

    CAS  PubMed  Google Scholar 

  47. Crick, F. Do dentritic spines twitch? Trends Neurosci. 5, 44–47 (1982).

    Google Scholar 

  48. Halpain, S. Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146 (2000).

    CAS  PubMed  Google Scholar 

  49. Cleveland, G. G., Chang, D. C., Hazelwood, C. F. & Rorschach, H. E. Nuclear magnetic resonance measurement of skeletal muscle. Anisotropy of the diffusion coefficient of the intracellular water. Biophys. J. 16, 1043–1053 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hansen, J. R. Pulsed NMR study of water mobility in muscle and brain tissue. Biochim. Biophys. Acta 230, 482–486 (1971).

    CAS  PubMed  Google Scholar 

  51. Moseley, M. E., Cohen, Y. & Mintorovitch, J. Early detection of regional cerebral ischemic injury in cats: evaluation of diffusion and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14, 330–346 (1990).

    CAS  PubMed  Google Scholar 

  52. Chenevert, T. L., Brunberg, J. A. & Pipe, J. G. Anisotropic diffusion within human white matter: demonstration with NMR techniques in vivo. Radiology 177, 401–405 (1990).

    CAS  PubMed  Google Scholar 

  53. Beaulieu, C. The basis of anisotropic water diffusion in the nervous system — a technical review. NMR Biomed. 15, 435–455 (2002).

    PubMed  Google Scholar 

  54. Douek, P., Turner, R., Pekar, J., Patronas, N. J. & Le Bihan, D. MR color mapping of myelin fiber orientation. J. Comput. Assist. Tomogr. 15, 923–929 (1991).

    CAS  PubMed  Google Scholar 

  55. Basser, P. J., Mattiello, J. & Le Bihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Basser, P. J., Mattiello, J. & Le Bihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. 103, 247–254 (1994).

    CAS  Google Scholar 

  57. Le Bihan, D. & van Zijl, P. From the diffusion coefficient to the diffusion tensor. NMR Biomed. 15, 431–434 (2002).

    PubMed  Google Scholar 

  58. Basser, P. J. in Imaging Brain Structure and Function (eds Lester, D. S., Felder, C. C. & Lewis, E. N.) 123–138 (New York Academy of Sciences, New York, 1997).

    Google Scholar 

  59. Basser, P. J. & Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 111, 209–219 (1996).

    CAS  Google Scholar 

  60. Pajevic, S. & Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn. Reson. Med. 42, 526–540 (1999).

    CAS  PubMed  Google Scholar 

  61. Moseley, M. E., Cohen, Y. & Kucharczyk, J. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176, 439–446 (1990).

    CAS  PubMed  Google Scholar 

  62. Turner, R. et al. Echo-planar imaging of intravoxel incoherent motions. Radiology 177, 407–414 (1990).

    CAS  PubMed  Google Scholar 

  63. Rutherford, M. A. et al. MR imaging of anisotropically restricted diffusion in the brain of neonates and infants. J. Comput. Assist. Tomogr. 15, 188–198 (1991).

    CAS  PubMed  Google Scholar 

  64. Neil, J. J. et al. Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209, 57–66 (1998).

    CAS  PubMed  Google Scholar 

  65. Toft, P. B., Leth, H., Peitersen, B., Lou, H. C. & Thomsen, C. The apparent diffusion coefficient of water in gray and white matter of the infant brain. J. Comput. Assist. Tomogr. 20, 1006–1011 (1996).

    CAS  PubMed  Google Scholar 

  66. Baratti, C., Barnett, A. S. & Pierpaoli, C. Comparative MR imaging study of brain maturation in kittens with T1, T2, and the trace of the diffusion tensor. Radiology 210, 133–142 (1999).

    CAS  PubMed  Google Scholar 

  67. Vorisek, I. & Sykova, E. Evolution of anisotropic diffusion in the developing rat corpus callosum. J. Neurophysiol. 78, 912–919 (1997).

    CAS  PubMed  Google Scholar 

  68. Prayer, D. et al. Diffusion-weighted MRI of myelination in the rat brain following treatment with gonadal hormones. Neuroradiology 39, 320–325 (1997).

    CAS  PubMed  Google Scholar 

  69. Takeda, K. et al. MR assessment of normal brain development in neonates and infants: Comparative study of T1- and diffusion-weighted images. J. Comput. Assist. Tomogr. 21, 1–7 (1997).

    CAS  PubMed  Google Scholar 

  70. Beaulieu, C., Fenrich, F. R. & Allen, P. S. Multicomponent water proton transverse relaxation and T2-discriminated water diffusion in myelinated and nonmyelinated nerve. Magn. Reson. Imaging 16, 1201–1210 (1998).

    CAS  PubMed  Google Scholar 

  71. Le Bihan, D., Turner, R. & Douek, P. Is water diffusion restricted in human brain white matter? An echo-planar NMR imaging study. Neuroreport 4, 887–890 (1993).

    CAS  PubMed  Google Scholar 

  72. Moonen, C. T. W. et al. Restricted and anisotropic displacement of water in healthy cat brain and in stroke studied by NMR diffusion imaging. Magn. Reson. Med. 19, 327–332 (1991).

    CAS  PubMed  Google Scholar 

  73. Clark, C. A. & Le Bihan, D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn. Reson. Med. 44, 852–859 (2000).

    CAS  PubMed  Google Scholar 

  74. Hajnal, J. V., Doran, M. & Hall, A. S. MR imaging of anisotropically restricted diffusion of water in the nervous system: technical, anatomic, and pathological considerations. J. Comput. Assist. Tomogr. 15, 1–18 (1991).

    CAS  PubMed  Google Scholar 

  75. Sakuma, H. et al. Adult and neonatal human brain: diffusional anisotropy and myelination with diffusion-weighted MR imaging. Radiology 180, 229–233 (1991).

    CAS  PubMed  Google Scholar 

  76. Assaf, Y. & Cohen, Y. Detection of different water populations in brain tissue using 2H single- and double-quantum-filtered diffusion NMR spectroscopy. J. Magn. Reson. 112, 151–159 (1996).

    CAS  Google Scholar 

  77. Silva, M. D. et al. Deconvolution of compartmental water diffusion coefficients in yeast-cell suspensions using combined T1 and diffusion measurements. J. Magn. Reson. 156, 52–63 (2002).

    CAS  PubMed  Google Scholar 

  78. Sukstanskii, A. L. & Yablonskiy, D. A. Effects of restricted diffusion on MR signal formation. J. Magn. Reson. 157, 92–105 (2002).

    CAS  PubMed  Google Scholar 

  79. Mori, S. & van Zijl, P. C. M. Fiber tracking: principles and strategies — a technical review. NMR Biomed. 15, 468–480 (2002).

    PubMed  Google Scholar 

  80. Mori, S., Crain, B. J., Chacko, V. P. & van Zijl, P. C. M. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).

    CAS  PubMed  Google Scholar 

  81. Conturo, T. E. et al. Tracking neuronal fiber pathways in the living human brain. Proc. Natl Acad. Sci. USA 96, 10422–10427 (1999).

    CAS  Google Scholar 

  82. Poupon, C. et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12, 184–195 (2000).

    CAS  PubMed  Google Scholar 

  83. Mangin, J. F. et al. A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data — a technical review. NMR Biomed. 15, 481–492 (2002).

    PubMed  Google Scholar 

  84. Koch, M. A., Norris, D. G. & Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16, 241–250 (2002).

    PubMed  Google Scholar 

  85. Lin, C. P., Tseng, W. Y. I., Cheng, H. C. & Chen, J. H. Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 14, 1035–1047 (2001).

    CAS  PubMed  Google Scholar 

  86. Ananth, H. et al. Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. Am. J. Psychiatry 159, 1497–1505 (2002).

    PubMed  Google Scholar 

  87. Rugg-Gunn, F. J., Eriksson, S. H., Symms, M. R., Barker, G. J. & Duncan, J. S. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 124, 627–636 (2001).

    CAS  PubMed  Google Scholar 

  88. Frank, L. R. Anisotropy in high angular resolution diffusion-weighted MRI. Magn. Reson. Med. 45, 935–939 (2001).

    CAS  PubMed  Google Scholar 

  89. Wiegell, M. R., Larsson, H. B. W. & Wedeen, V. J. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology 217, 897–903 (2000).

    CAS  PubMed  Google Scholar 

  90. Tuch, D. S. et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002).

    PubMed  Google Scholar 

  91. Mori, S. et al. Diffusion tensor imaging of the developing mouse brain. Magn. Reson. Med. 46, 18–23 (2001).

    CAS  PubMed  Google Scholar 

  92. Le Bihan, D. et al. Diffusion and perfusion magnetic resonance imaging in brain tumors. Top. Magn. Reson. Imaging 5, 25–31 (1993).

    CAS  PubMed  Google Scholar 

  93. Ikezaki, K. et al. Apparent diffusion coefficient (ADC) and magnetization transfer contrast (MTC) mapping of experimental brain tumor. Acta Neurochir. Suppl. (Wien) 70, 170–172 (1997).

    CAS  Google Scholar 

  94. Krabbe, K. et al. MR diffusion imaging of human intracranial tumours. Neuroradiology 39, 483–489 (1997).

    CAS  PubMed  Google Scholar 

  95. Barzo, P., Marmarou, A., Fatouros, P., Hayasaki, K. & Corwin, F. Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J. Neurosurg. 87, 900–907 (1997).

    CAS  PubMed  Google Scholar 

  96. Schwartz, R. B., Mulkern, R. V., Gudbjartsson, H. & Jolesz, F. Diffusion-weighted MR imaging in hypertensive encephalopathy: clues to pathogenesis. Am. J. Neuroradiol. 19, 859–862 (1998).

    CAS  PubMed  Google Scholar 

  97. Chang, L. & Ernst, T. MR spectroscopy and diffusion-weighted MR imaging in focal brain lesions in AIDS. Neuroimaging Clin. N. Am. 7, 409–426 (1997).

    CAS  PubMed  Google Scholar 

  98. Schaefer, P. W., Buonanno, F. S., Gonzalez, R. G. & Schwamm, L. H. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke 28, 1082–1085 (1997).

    CAS  PubMed  Google Scholar 

  99. Okada, K., Wu, L. H. & Kobayashi, S. Diffusion-weighted MRI in severe leukoaraiosis. Stroke 30, 478–479 (1999).

    CAS  PubMed  Google Scholar 

  100. Jones, D. K. et al. Characterization of white matter damage in ischemic leukoaraiosis with diffusion tensor MRI. Stroke 30, 393–397 (1999).

    CAS  PubMed  Google Scholar 

  101. Chabriat, H. et al. Decreased hemispheric water mobility in hemiplegic migraine related to mutation of CACNA1A gene. Neurology 54, 510–512 (2000).

    CAS  PubMed  Google Scholar 

  102. Gulani, V. et al. A multiple echo pulse sequence for diffusion tensor imaging and its application in excised rat spinal cords. Magn. Reson. Med. 38, 868–873 (1997).

    CAS  PubMed  Google Scholar 

  103. Ford, J. C., Hackney, D. B., Lavi, E., Phillips, M. & Patel, U. Dependence of apparent diffusion coefficients on axonal spacing, membrane permeability, and diffusion time in spinal cord white matter. J. Magn. Reson. Imaging 8, 775–782 (1998).

    CAS  PubMed  Google Scholar 

  104. Inglis, B. A., Yang, L., Wirth, E. D. III, Plant, D. & Mareci, T. H. Diffusion anisotropy in excised normal rat spinal cord measured by NMR microscopy. Magn. Reson. Imaging 15, 441–450 (1997).

    CAS  PubMed  Google Scholar 

  105. Clark, C. A., Barker, G. J. & Tofts, P. S. Magnetic resonance diffusion imaging of the human cervical spinal cord in vivo. Magn. Reson. Med. 41, 1269–1273 (1999).

    CAS  PubMed  Google Scholar 

  106. Ries, M., Jones, R. A., Dousset, V. & Moonen, C. T. W. Diffusion tensor MRI of the spinal cord. Magn. Reson. Med. 44, 884–892 (2000).

    CAS  PubMed  Google Scholar 

  107. Ono, J., Harada, K., Mano, T., Sakurai, K. & Okada, S. Differentiation of dys- and demyelination using diffusional anisotropy. Pediatr. Neurol. 16, 63–66 (1997).

    CAS  PubMed  Google Scholar 

  108. Werring, D. J., Clark, C. A., Barker, G. J., Thompson, A. J. & Miller, D. H. Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52, 1626–1632 (1999).

    CAS  PubMed  Google Scholar 

  109. Tievsky, A. L., Ptak, T. & Farkas, J. Investigation of apparent diffusion coefficient and diffusion tensor anisotropy in acute and chronic multiple sclerosis lesions. Am. J. Neuroradiol. 20, 1491–1499 (1999).

    CAS  PubMed  Google Scholar 

  110. Iwasawa, T. et al. Diffusion-weighted imaging of the human optic nerve: a new approach to evaluate optic neuritis in multiple sclerosis. Magn. Reson. Med. 38, 484–491 (1997).

    CAS  PubMed  Google Scholar 

  111. Horsfield, M. A., Larsson, H. B., Jones, D. K. & Gass, A. Diffusion magnetic resonance imaging in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 64 (Suppl. 1), S80–S84 (1998).

    PubMed  Google Scholar 

  112. Ay, H. et al. Posterior leukoencephalopathy without severe hypertension: utility of diffusion-weighted MRI. Neurology 51, 1369–1376 (1998).

    CAS  PubMed  Google Scholar 

  113. Eichler, F. S. et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology 225, 245–252 (2002).

    PubMed  Google Scholar 

  114. Filippi, C. G., Ulug, A. M., Ryan, E., Ferrando, S. J. & van Gorp, W. Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. Am. J. Neuroradiol. 22, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  115. Hanyu, H. et al. Increased water diffusion in cerebral white matter in Alzheimer's disease. Gerontology 43, 343–351 (1997).

    CAS  PubMed  Google Scholar 

  116. Hanyu, H. et al. Diffusion-weighted MR imaging of the hippocampus and temporal white matter in Alzheimer's disease. J. Neurol. Sci. 156, 195–200 (1998).

    CAS  PubMed  Google Scholar 

  117. Chabriat, H. et al. Clinical severity in CADASIL related to ultrastructural damage in white matter — in vivo study with diffusion tensor MRI. Stroke 30, 2637–2643 (1999).

    CAS  PubMed  Google Scholar 

  118. Horsfield, M. A. & Jones, D. K. Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases — a review. NMR Biomed. 15, 570–577 (2002).

    PubMed  Google Scholar 

  119. Lim, K. O. & Helpern, J. A. Neuropsychiatric applications of DTI — a review. NMR Biomed. 15, 587–593 (2002).

    CAS  PubMed  Google Scholar 

  120. Buchsbaum, M. S. et al. MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport 9, 425–430 (1998).

    CAS  PubMed  Google Scholar 

  121. Lim, K. O. et al. Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch. Gen. Psychiatry 56, 367–374 (1999).

    CAS  PubMed  Google Scholar 

  122. Pfefferbaum, A. et al. In vivo detection and functional correlates of white matter microstructural disruption in chronic alcoholism. Alcohol Clin. Exp. Res. 24, 1214–1221 (2000).

    CAS  PubMed  Google Scholar 

  123. Klingberg, T. et al. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25, 493–500 (2000).

    CAS  PubMed  Google Scholar 

  124. Molko, N. et al. Visualizing the neural bases of a disconnection syndrome with diffusion tensor imaging. J. Cogn. Neurosci. 14, 629–636 (2002).

    CAS  PubMed  Google Scholar 

  125. Moseley, M. Diffusion tensor imaging and aging — a review. NMR Biomed. 15, 553–560 (2002).

    PubMed  Google Scholar 

  126. Schmithorst, V. J., Wilke, M., Dardzinski, B. J. & Holland, S. K. Correlation of white matter diffusivity and anisotropy with age during childhood and adolescence: a cross-sectional diffusion-tensor MR imaging study. Radiology 222, 212–218 (2002).

    PubMed  PubMed Central  Google Scholar 

  127. Neil, J., Miller, J., Mukherjee, P. & Huppi, P. S. Diffusion tensor imaging of normal and injured developing human brain — a technical review. NMR Biomed. 15, 543–552 (2002).

    CAS  PubMed  Google Scholar 

  128. Takahashi, M., Ono, J., Harada, K., Maeda, M. & Hackney, D. B. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology 216, 881–885 (2000).

    CAS  PubMed  Google Scholar 

  129. Zimmerman, R. A. et al. Advances in pediatric neuroimaging. Brain Dev. 20, 275–289 (1998).

    CAS  PubMed  Google Scholar 

  130. Huppi, P. S. et al. Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr. Res. 44, 584–590 (1998).

    CAS  PubMed  Google Scholar 

  131. Engelbrecht, V., Scherer, A., Rassek, M., Witsack, H. J. & Modder, U. Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222, 410–418 (2002).

    PubMed  Google Scholar 

  132. Eriksson, S. H. et al. Exploring white matter tracts in band heterotopia using diffusion tractography. Ann. Neurol. 52, 327–334 (2002).

    PubMed  Google Scholar 

  133. Eriksson, S. H., Rugg-Gunn, F. J., Symms, M. R., Barker, G. J. & Duncan, J. S. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 124, 617–626 (2001).

    CAS  PubMed  Google Scholar 

  134. Assaf, Y. & Cohen, Y. In vivo and in vitro bi-exponential diffusion of N-acetyl aspartate (NAA) in rat brain: a potential structural probe? NMR Biomed. 11, 67–74 (1998).

    CAS  PubMed  Google Scholar 

  135. Cohen, Y. & Assaf, Y. High b-value q-space analyzed diffusion-weighted MRS and MRI in neuronal tissues — a technical review. NMR Biomed. 15, 516–542 (2002).

    PubMed  Google Scholar 

  136. Callaghan, P. T. NMR imaging, NMR diffraction and applications of pulsed gradient spin echoes in porous media. Magn. Reson. Imaging 14, 701–709 (1996).

    CAS  PubMed  Google Scholar 

  137. Merboldt, K. D., Hörstermann, D., Hänicke, W., Bruhn, H. & Frahm, J. Molecular self-diffusion of intracellular metabolites in rat brain in vivo investigated by localized proton NMR diffusion sprectroscopy. Magn. Reson. Med. 29, 125–129 (1993).

    CAS  PubMed  Google Scholar 

  138. Posse, S., Cuenod, C. A. & Le Bihan, D. Human brain: proton diffusion MR spectroscopy. Radiology 188, 719–725 (1993).

    CAS  PubMed  Google Scholar 

  139. Wick, M., Nagatomo, Y., Prielmeier, F. & Frahm, J. Alteration of intracellular metabolite diffusion in rat brain in vivo during ischemia and reperfusion. Stroke 26, 1930–1934 (1995).

    CAS  PubMed  Google Scholar 

  140. Sehy, J. V., Ackerman, J. J. H. & Neil, J. J. Apparent diffusion of water, ions, and small molecules in the Xenopus oocyte is consistent with Brownian displacement. Magn. Reson. Med. 48, 42–51 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE

OMIM

Alzheimer disease

CADASIL

Hydrocephalus

Multiple sclerosis

FURTHER INFORMATION

Encyclopedia of Life Science

AIDS and the nervous system

Dyslexia

Human immunodeficiency viruses

Migraine

Schizophrenia

Stroke

Glossary

ANISOTROPY

The characteristic of a medium in which physical properties have different values when measured along axes orientated in different directions.

VASOGENIC OEDEMA

The accumulation of extracellular fluid that results from changes in capillary permeability, allowing for the seepage of plasma molecules and water.

CYTOTOXIC OEDEMA

Swelling of cellular elements and reduction in extracellular space that are commonly associated to anoxia and ischaemia. The underlying mechanism is a failure of the ATP-dependent Na+/K+ pumps, and the subsequent accumulation of intracellular sodium and water. By contrast to vasogenic oedema, capillary permeability is not impaired in cytotoxic oedema.

VOXEL-BASED MORPHOMETRY

Technique that uses a voxel-by-voxel comparison of the local concentration of grey and white matter between different groups of subjects. It involves the spatial normalization of the images to the same stereotactic space, segmenting the grey and white matter, smoothing the segments, and comparing the smoothed images between the different groups.

ECLAMPSIA

Seizures that occur in pregnant or puerperal women in association with hypertension, proteinuria or oedema.

LEUKOARAIOSIS

A Periventricular increase in the intensity of the white matter that is revealed by magnetic resonance imaging. Leukoaraiosis is frequently found in elderly people, and is commonly unrelated to any clinical manifestations.

WALLERIAN DEGENERATION

A form of degeneration occurring in nerve fibres as a result of their division. Named after A. V. Waller, who published an account of it in 1850.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bihan, D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4, 469–480 (2003). https://doi.org/10.1038/nrn1119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1119

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing