Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Follicular helper T cells in immunity and systemic autoimmunity

Abstract

Follicular helper T (TFH) cells are essential for B-cell maturation and immunoglobulin production after immunization with thymus-dependent antigens. Nevertheless, the development and function of TFH cells have been less clearly defined than classic CD4+ effector T-cell subsets, including T-helper-1 (TH1), TH2 and TH17 cells. As such, our understanding of the genesis of TFH cells in humans and their role in the development of autoimmunity remains incomplete. However, evidence from animal models of systemic lupus erythematosus (SLE) and patients with systemic autoimmune diseases suggests that these cells are necessary for pathogenic autoantibody production, in a manner analogous to their role in promotion of B-cell maturation during normal immune responses. In this Review, I discuss the findings that have increased our knowledge of TFH-cell development and function in normal and aberrant immune responses. Such information might improve our understanding of autoimmune diseases, such as SLE, and highlights the potential of TFH cells as therapeutic targets in these diseases.

Key Points

  • Follicular helper T (TFH) cells—a subset of CD4+ T cells—are located within the B-cell follicles of secondary lymphoid organs

  • TFH cells are important regulators of B-cell maturation within germinal centres during normal immune responses

  • Characterization of the developmental program of TFH cells could aid their identification and provide insight into the function of these cells in normal and autoimmune responses

  • The transcription factor B-cell lymphoma 6 is both necessary and sufficient for development of TFH cells, controlling expression of molecules essential for TFH-cell trafficking and function

  • TFH cells promote pathogenic autoantibody production in systemic autoimmunity, and potentially represent novel therapeutic targets in autoimmune diseases

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CD4+ T cell development paradigm.
Figure 2: TFH-cell development and TFH-cell–B-cell collaboration in extrafollicular and GC responses.
Figure 3: The interaction between TFH cells and GC B cells.
Figure 4: Subsets of T cells that promote or regulate B-cell help.

Similar content being viewed by others

References

  1. Campbell, D. J., Kim, C. H. & Butcher, E. C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat. Immunol. 2, 876–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Dang, E. V. et al. Control of T(H)17/T(REG) balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T Helper Cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, X. O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by TH17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eyerich, S. et al. TH22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koenders, M. I. et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol. 167, 141–149 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crispín, J. C. & Tsokos, G. C. Interleukin-17-producing T cells in lupus. Curr. Opin. Rheum. 22, 499–503 (2010).

    Article  CAS  Google Scholar 

  13. Parker, D. C. T cell-dependent B cell activation. Annu. Rev. Immunol. 11, 331–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y. J., Zhang, J., Lane, P. J., Chan, E. Y. & MacLennan, I. C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Jacob, J., Kassir, R. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. I. The architecture and dynamics of responding cell populations. J. Exp. Med. 173, 1165–1175 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Berek, C., Berger, A. & Apel, M. Maturation of the immune response in germinal centers. Cell 67, 1121–1129 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Coffey, F., Alabyev, B. & Manser, T. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 30, 599–609 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerfoot, S. M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Willimann, K. et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur. J. Immunol. 28, 2025–2034 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Nagira, M. et al. A lymphocyte-specific CC chemokine, secondary lymphoid tissue chemokine (SLC), is a highly efficient chemoattractant for B cells and activated T cells. Eur. J. Immunol. 28, 1516–1523 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular TH cell positioning and appearance of a programmed cell death gene-1High germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Poholek, A. C. et al. In vivo regulation of Bcl6 and T follicular helper cell development. J. Immunol. 185, 313–326 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Veerman, K. M. et al. Interaction of the selectin ligand PSGL-1 with chemokines CCL21 and CCL19 facilitates efficient homing of T cells to secondary lymphoid organs. Nat. Immunol. 8, 532–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walker, L. S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hardtke, S., Ohl, L. & Forster, R. Balanced expression of CXCR5 and CCR7 on follicular T helper cells determines their transient positioning to lymph node follicles and is essential for efficient B-cell help. Blood 106, 1924–1931 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Nurieva, R. I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baumjohann, D., Okada, T. & Ansel, K. M. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187, 2089–2092 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Dong, C., Temann, U. A. & Flavell, R. A. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166, 3659–3662 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Odegard, J. M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+ CD4 germinal center TH cells. J. Immunol. 177, 4927–4932 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Burmeister, Y. et al. ICOS controls the pool size of effector-memory and regulatory T cells. J. Immunol. 180, 774–782 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Good-Jacobson, K. L. et al. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 11, 535–542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  PubMed  Google Scholar 

  41. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Pereira, J. P., Kelly, L. M., Xu, Y. & Cyster, J. G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gatto, D., Paus, D., Basten, A., Mackay, C. R. & Brink, R. Guidance of B Cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Crotty, S., Kersh, E. N., Cannons, J., Schwartzberg, P. L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Cannons, J. L. et al. SAP regulates T cell-mediated help for humoral immunity by a mechanism distinct from cytokine regulation. J. Exp. Med. 203, 1551–1565 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qi, H., Cannons, J. L., Klauschen, F., Schwartzberg, P. L. & Germain, R. N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cunningham, A. F., Serre, K., Mohr, E., Khan, M. & Toellner, K. M. Loss of CD154 impairs the TH2 extrafollicular plasma cell response but not early T cell proliferation and interleukin-4 induction. Immunology 113, 187–193 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deenick, E. K. et al. Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling. Immunity 33, 241–253, (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schaerli, P., Loetscher, P. & Moser, B. Cutting edge: induction of follicular homing precedes effector TH cell development. J. Immunol. 167, 6082–6086 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Springer, T. A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57, 827–872 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385, 81–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Ley, K. & Kansas, G. S. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 4, 325–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, C. H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Ye, B. H. et al. The BCL-6 proto-oncogene controls germinal-centre formation and TH2-type inflammation. Nat. Genet. 16, 161–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-TH1/TH2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. http://dx.doi.org/10.1084/jem.20111174.

  61. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, C. H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jacob, J., Kelsoe, G., Rajewsky, K. & Weiss, U. Intraclonal generation of antibody mutants in germinal centres. Nature 354, 389–392 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Liu, Y. J. et al. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4, 241–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Parrish-Novak, J. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Mehta, D. S. et al. IL-21 induces the apoptosis of resting and activated primary B cells. J. Immunol. 170, 4111–4118 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jin, H., Carrio, R., Yu, A. & Malek, T. R. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J. Immunol. 173, 657–665 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ozaki, K. et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173, 5361–5371 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Ettinger, R. et al. IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J. Immunol. 175, 7867–7879 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Kuchen, S. et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J. Immunol. 179, 5886–5896 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (TFH) differentiation. PLoS One 6, e17739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Reinhardt, R. L., Liang, H. E. & Locksley, R. M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. King, I. L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Hams, E. et al. Blockade of B7-H1 (programmed death ligand 1) enhances humoral immunity by positively regulating the generation of T follicular helper cells. J. Immunol. 186, 5648–5655 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Mempel, T. R., Henrickson, S. E. & Von Andrian, U. H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Callard, R. E., Armitage, R. J., Fanslow, W. C. & Spriggs, M. K. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol. Today 14, 559–564 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. McAdam, A. J. et al. ICOS is critical for CD40-mediated antibody class switching. Nature 409, 102–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, S. K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barral, P. et al. B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc. Natl Acad. Sci. USA 105, 8345–8350 (2008).

    Article  PubMed  Google Scholar 

  89. Leadbetter, E. A. et al. NK T cells provide lipid antigen-specific cognate help for B cells. Proc. Natl Acad. Sci. USA 105, 8339–8344 (2008).

    Article  PubMed  Google Scholar 

  90. King, I. L. et al. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat. Immunol. 13, 44–50, (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Chang, P. P. et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13, 35–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Vinuesa, C. G., Sanz, I. & Cook, M. C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wollenberg, I. et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187, 4553–4560 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alexander, C. M. et al. T regulatory cells participate in the control of germinal centre reactions. Immunology 133, 452–468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jang, E. et al. Foxp3+ regulatory T cells control humoral autoimmunity by suppressing the development of long-lived plasma cells. J. Immunol. 186, 1546–1553 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Ritchie, A. W., James, K. & Micklem, H. S. The distribution and possible significance of cells identified in human lymphoid tissue by the monoclonal antibody HNK-1. Clin. Exp. Immunol. 51, 439–447 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Banerjee, D. & Thibert, R. F. Natural killer-like cells found in B-cell compartments of human lymphoid tissues. Nature 304, 270–272 (1983).

    Article  CAS  PubMed  Google Scholar 

  100. Kim, J. R., Lim, H. W., Kang, S. G., Hillsamer, P. & Kim, C. H. Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination. BMC Immunol. 6, 3 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Casamayor-Palleja, M., Khan, M. & MacLennan, I. C. A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J. Exp. Med. 181, 1293–1301 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Rasheed, A. U., Rahn, H. P., Sallusto, F., Lipp, M. & Müller, G. Follicular B helper T cell activity is confined to CXCR5hiICOShi CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Lim, H. W. & Kim, C. H. Loss of IL-7 receptor α on CD4+ T cells defines terminally differentiated B cell-helping effector T cells in a B cell-rich lymphoid tissue. J. Immunol. 179, 7448–7456 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Chevalier, N. et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J. Immunol. 186, 5556–5568 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. MacLeod, M. K. et al. Memory CD4 T cells that express CXCR5 provide accelerated help to B cells. J. Immunol. 186, 2889–2896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bentebibel, S. E., Schmitt, N., Banchereau, J. & Ueno, H. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc. Natl Acad. Sci. USA 108, E488–E497 (2011).

    Article  PubMed  Google Scholar 

  108. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Pepper, M., Pagán, A. J., Igyártó, B. Z., Taylor, J. J. & Jenkins, M. K. Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells. Immunity 35, 583–595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marshall, H. D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory TH1 CD4+ cell properties during viral infection. Immunity 35, 633–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Luzina, I. G. et al. Spontaneous formation of germinal centers in autoimmune mice. J. Leukoc. Biol. 70, 578–584 (2001).

    CAS  PubMed  Google Scholar 

  114. Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bertossi, A. et al. Loss of Roquin induces early death and immune deregulation but not autoimmunity. J. Exp. Med. 208, 1749–1756 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312, 1669–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    Article  PubMed  Google Scholar 

  118. Herber, D. et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 178, 3822–3830 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Peng, S. L., Moslehi, J. & Craft, J. Roles of interferon-γ and interleukin-4 in murine lupus. J. Clin. Invest. 99, 1936–1946 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Masutani, K. et al. Predominance of TH1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum. 44, 2097–2106 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Mohan, C., Shi, Y., Laman, J. D. & Datta, S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480 (1995).

    CAS  PubMed  Google Scholar 

  122. Ma, J. et al. Autoimmune lpr/lpr mice deficient in CD40 ligand: spontaneous Ig class switching with dichotomy of autoantibody responses. J. Immunol. 157, 417–426 (1996).

    CAS  PubMed  Google Scholar 

  123. Daikh, D. I., Finck, B. K., Linsley, P. S., Hollenbaugh, D. & Wofsy, D. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J. Immunol. 159, 3104–3108 (1997).

    CAS  PubMed  Google Scholar 

  124. Grammer, A. C. et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154–CD40 interactions. J. Clin. Invest. 112, 1506–1520 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Duffau, P. et al. Platelet CD154 potentiates interferon-α secretion by plasmacytoid dendritic cells in systemic lupus erythematosus. Sci. Transl. Med. 2, 47ra63 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Peters, A. L., Stunz, L. L. & Bishop, G. A. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Iwai, H. et al. Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J. Immunol. 171, 2848–2854 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297, 2066–2070 (2002).

    Article  PubMed  Google Scholar 

  129. Hoyer, B. F. et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J. Exp. Med. 199, 1577–1584 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rankin, A. L. et al. IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Faslpr/lpr/J mice. J. Immunol. http://dx.doi.org/10.4049/jimmunol.1003871.

  131. Hargreaves, D. C. et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J. Exp. Med. 194, 45–56 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cappione, A. 3rd. et al. Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J. Clin. Invest. 115, 3205–3216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang, J. H. et al. Expression and function of inducible costimulator on peripheral blood T cells in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44, 1245–1254 (2005).

    Article  CAS  Google Scholar 

  134. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Weyand, C. M., Kang, Y. M., Kurtin, P. J. & Goronzy, J. J. The power of the third dimension: tissue architecture and autoimmunity in rheumatoid arthritis. Curr. Opin. Rheumatol. 15, 259–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Cantaert, T. et al. B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis. J. Immunol. 181, 785–794 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Victoratos, P. & Kollias, G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 30, 130–142 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NIH grants R01 AR40072, R01 AR44076 and P30 AR053495, and by Rheuminations, Inc. and the Alliance for Lupus Research. The author also acknowledges the many helpful discussions at lab meetings and other forums with his past and present trainees.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craft, J. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol 8, 337–347 (2012). https://doi.org/10.1038/nrrheum.2012.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.58

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing