Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1

This article has been updated

Abstract

ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin. The structure reveals an open conformation with a large interior compartment. An extended groove originating from the enzyme's catalytic center can accommodate long peptides and has features that explain ERAP1's broad specificity for antigenic peptide precursors. Structural and biochemical analyses suggest a mechanism for ERAP1's length-dependent trimming activity, whereby binding of long rather than short substrates induces a conformational change with reorientation of a key catalytic residue toward the active site. ERAP1's unique structural elements suggest how a generic aminopeptidase structure has been adapted for the specialized function of trimming antigenic precursors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ERAP1 structure and domain arrangement.
Figure 2: ERAP1 active site.
Figure 3: Open and closed conformations of ERAP1.
Figure 4: Length-dependent peptide cleavage and allosteric activation by ERAP1.
Figure 5: Kinetic analysis.
Figure 6: Non-hydrolyzable peptide activates L-AMC hydrolysis but inhibits full-length peptide hydrolysis.
Figure 7: Model for ERAP1 length-dependent cleavage activity.
Figure 8: Ankylosing spondylitis–associated mutations mapped on the surface of ERAP1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 24 April 2011

    In the version of this article initially published online, nucleotide should have read peptide in a number of places. The error has been corrected for all versions of this article.

References

  1. Rock, K.L., York, I.A. & Goldberg, A.L. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5, 670–677 (2004).

    Article  CAS  Google Scholar 

  2. Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P.M. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001).

    Article  CAS  Google Scholar 

  3. Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat. Immunol. 2, 644–651 (2001).

    Article  CAS  Google Scholar 

  4. Saric, T. et al. An IFN-gamma-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  5. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  Google Scholar 

  6. York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    Article  CAS  Google Scholar 

  7. Blanchard, N. et al. Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I peptide repertoire in normal and virus-infected cells. J. Immunol. 184, 3033–3042 (2010).

    Article  CAS  Google Scholar 

  8. York, I.A., Brehm, M.A., Zendzian, S., Towne, C.F. & Rock, K.L. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc. Natl. Acad. Sci. USA 103, 9202–9207 (2006).

    Article  CAS  Google Scholar 

  9. Yan, J. et al. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. J. Exp. Med. 203, 647–659 (2006).

    Article  CAS  Google Scholar 

  10. Firat, E. et al. The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation. J. Immunol. 178, 2241–2248 (2007).

    Article  CAS  Google Scholar 

  11. Blanchard, N. et al. Immunodominant, protective response to the parasite Toxoplasma gondii requires antigen processing in the endoplasmic reticulum. Nat. Immunol. 9, 937–944 (2008).

    Article  CAS  Google Scholar 

  12. Brown, M.A. Genetics of ankylosing spondylitis. Curr. Opin. Rheumatol. 22, 126–132 (2010).

    Article  CAS  Google Scholar 

  13. Fung, E.Y. et al. Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/TNFAIP3 as a susceptibility locus. Genes Immun. 10, 188–191 (2009).

    Article  CAS  Google Scholar 

  14. Mehta, A.M. et al. Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. Genes Chromosom. Cancer 48, 410–418 (2009).

    Article  CAS  Google Scholar 

  15. Yamamoto, N. et al. Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension. Hum. Mutat. 19, 251–257 (2002).

    Article  CAS  Google Scholar 

  16. Chang, S.C., Momburg, F., Bhutani, N. & Goldberg, A.L. The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a 'molecular ruler' mechanism. Proc. Natl. Acad. Sci. USA 102, 17107–17112 (2005).

    Article  CAS  Google Scholar 

  17. Kisselev, A.F., Akopian, T.N., Woo, K.M. & Goldberg, A.L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

    Article  CAS  Google Scholar 

  18. Momburg, F., Roelse, J., Hammerling, G.J. & Neefjes, J.J. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J. Exp. Med. 179, 1613–1623 (1994).

    Article  CAS  Google Scholar 

  19. Schumacher, T.N. et al. Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J. Exp. Med. 179, 533–540 (1994).

    Article  CAS  Google Scholar 

  20. van Endert, P.M. et al. A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1, 491–500 (1994).

    Article  CAS  Google Scholar 

  21. Kanaseki, T., Blanchard, N., Hammer, G.E., Gonzalez, F. & Shastri, N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 25, 795–806 (2006).

    Article  CAS  Google Scholar 

  22. Falk, K., Rotzschke, O. & Rammensee, H.G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251 (1990).

    Article  CAS  Google Scholar 

  23. Infantes, S. et al. H-2Ld class I molecule protects an HIV N-extended epitope from in vitro trimming by endoplasmic reticulum aminopeptidase associated with antigen processing. J. Immunol. 184, 3351–3355 (2010).

    Article  CAS  Google Scholar 

  24. Hattori, A., Matsumoto, H., Mizutani, S. & Tsujimoto, M. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J. Biochem. 125, 931–938 (1999).

    Article  CAS  Google Scholar 

  25. Evnouchidou, I. et al. The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1. PLoS ONE 3, e3658 (2008).

    Article  Google Scholar 

  26. Hearn, A., York, I.A. & Rock, K.L. The specificity of trimming of MHC class I-presented peptides in the endoplasmic reticulum. J. Immunol. 183, 5526–5536 (2009).

    Article  CAS  Google Scholar 

  27. Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6, 689–697 (2005).

    Article  CAS  Google Scholar 

  28. Rawlings, N.D., Barrett, A.J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).

    Article  CAS  Google Scholar 

  29. Andrade, M.A., Petosa, C., O'Donoghue, S.I., Muller, C.W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001).

    Article  CAS  Google Scholar 

  30. Suhre, K. & Sanejouand, Y.H. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 32, W610–W614 (2004).

    Article  CAS  Google Scholar 

  31. Thompson, M.W., Archer, E.D., Romer, C.E. & Seipelt, R.L. A conserved tyrosine residue of Saccharomyces cerevisiae leukotriene A4 hydrolase stabilizes the transition state of the peptidase activity. Peptides 27, 1701–1709 (2006).

    Article  CAS  Google Scholar 

  32. Addlagatta, A., Gay, L. & Matthews, B.W. Structure of aminopeptidase N from Escherichia coli suggests a compartmentalized, gated active site. Proc. Natl. Acad. Sci. USA 103, 13339–13344 (2006).

    Article  CAS  Google Scholar 

  33. Thunnissen, M.M., Nordlund, P. & Haeggstrom, J.Z. Crystal structure of human leukotriene A(4) hydrolase, a bifunctional enzyme in inflammation. Nat. Struct. Biol. 8, 131–135 (2001).

    Article  CAS  Google Scholar 

  34. Ito, K. et al. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis. J. Mol. Biol. 362, 228–240 (2006).

    Article  CAS  Google Scholar 

  35. Tholander, F. et al. Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design. Chem. Biol. 15, 920–929 (2008).

    Article  CAS  Google Scholar 

  36. Fournié-Zaluski, M.C. et al. Structure of aminopeptidase N from Escherichia coli complexed with the transition-state analogue aminophosphinic inhibitor PL250. Acta Crystallogr. D Biol. Crystallogr. 65, 814–822 (2009).

    Article  Google Scholar 

  37. Tsujimoto, M. & Hattori, A. The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta 1751, 9–18 (2005).

    Article  CAS  Google Scholar 

  38. Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003).

    Article  CAS  Google Scholar 

  39. Goto, Y., Tanji, H., Hattori, A. & Tsujimoto, M. Glutamine-181 is crucial in the enzymatic activity and substrate specificity of human endoplasmic-reticulum aminopeptidase-1. Biochem. J. 416, 109–116 (2008).

    Article  CAS  Google Scholar 

  40. Monecke, T. et al. Crystal structure of the nuclear export receptor CRM1 in complex with Snurportin1 and RanGTP. Science 324, 1087–1091 (2009).

    Article  CAS  Google Scholar 

  41. Kochan, G. et al. Crystal structures of the endoplasmic reticulum aminopeptidase-1 ERAP1 reveal the molecular basis of N-terminal peptide trimming. Proc. Natl. Acad. Sci. USA (in the press).

  42. Evnouchidou, I., Berardi, M.J. & Stratikos, E. A continuous fluorigenic assay for the measurement of the activity of endoplasmic reticulum aminopeptidase 1: competition kinetics as a tool for enzyme specificity investigation. Anal. Biochem. 395, 33–40 (2009).

    Article  CAS  Google Scholar 

  43. Segel, I. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems 984 (Wiley, New York, 1993).

  44. Moussaoui, M., Guasch, A., Boix, E., Cuchillo, C. & Nogues, M. The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A. J. Biol. Chem. 271, 4687–4692 (1996).

    Article  CAS  Google Scholar 

  45. Birrell, G.B., Zaikova, T.O., Rukavishnikov, A.V., Keana, J.F. & Griffith, O.H. Allosteric interactions within subsites of a monomeric enzyme: kinetics of fluorogenic substrates of PI-specific phospholipase C. Biophys. J. 84, 3264–3275 (2003).

    Article  CAS  Google Scholar 

  46. Kyrieleis, O.J., Goettig, P., Kiefersauer, R., Huber, R. & Brandstetter, H. Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations. J. Mol. Biol. 349, 787–800 (2005).

    Article  CAS  Google Scholar 

  47. Towler, P. et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem. 279, 17996–18007 (2004).

    Article  CAS  Google Scholar 

  48. Comellas-Bigler, M., Lang, R., Bode, W. & Maskos, K. Crystal structure of the E. coli dipeptidyl carboxypeptidase Dcp: further indication of a ligand-dependent hinge movement mechanism. J. Mol. Biol. 349, 99–112 (2005).

    Article  CAS  Google Scholar 

  49. Holland, D.R. et al. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry 31, 11310–11316 (1992).

    Article  CAS  Google Scholar 

  50. Grams, F. et al. Structure of astacin with a transition-state analogue inhibitor. Nat. Struct. Biol. 3, 671–675 (1996).

    Article  CAS  Google Scholar 

  51. Matsuura, Y. & Stewart, M. Structural basis for the assembly of a nuclear export complex. Nature 432, 872–877 (2004).

    Article  CAS  Google Scholar 

  52. Shen, Y., Joachimiak, A., Rosner, M.R. & Tang, W.J. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 443, 870–874 (2006).

    Article  CAS  Google Scholar 

  53. Malito, E. et al. Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme. Biochemistry 47, 12822–12834 (2008).

    Article  CAS  Google Scholar 

  54. Georgiadou, D. et al. Placental leucine aminopeptidase efficiently generates mature antigenic peptides in vitro but in patterns distinct from endoplasmic reticulum aminopeptidase 1. J. Immunol. 185, 1584–1592 (2010).

    Article  CAS  Google Scholar 

  55. Burton, P.R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 39, 1329–1337 (2007).

    Article  CAS  Google Scholar 

  56. Harvey, D. et al. Investigating the genetic association between ERAP1 and ankylosing spondylitis. Hum. Mol. Genet. 18, 4204–4212 (2009).

    Article  CAS  Google Scholar 

  57. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  58. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  59. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  60. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Livaniou and P. Klimentzou (National Centre for Scientific Research 'Demokritos') for assistance with chemical synthesis of the LMe peptide, L. Lee for cell culture, L. Lu for assistance with baculovirus, protein expression and purification, D. Panne, Z. Zavala-Ruiz and E. Schreiter for help with cryocrystallography, and H. Robinson, A. Heroux and V. Stojanoff for assistance with data collection. Data for this study were measured at beamlines X6, X25 and X29 of the National Synchrotron Light Source. These beamlines are supported by the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and by the National Center for Research Resources of the National Institutes of Health. Resources of the University of Massachusetts Medical School Mass Spectrometry Facility and Diabetes and Endocrine Research Center were used. Funding for this work was provided by the Sixth Framework Programme of the European Union (Marie Curie International Reintegration grant 017157 to E.S.) and the National Institutes of Health grants AI-38996 (L.J.S.). I.E. acknowledges financial support from NCSR Demokritos graduate fellowship program. L.J.S. and K.L.R. are members of the University of Massachusetts Diabetes and Endocrinology Research Center (DK32520).

Author information

Authors and Affiliations

Authors

Contributions

T.T.N. determined the crystal structure, designed and conducted enzymatic studies, interpreted results and helped write the paper, S.-C.C. expressed ERAP1 in insect cells and designed and conducted peptide trimming and allosteric activation experiments, I.E. designed and conducted peptide trimming and allosteric activation and inhibition experiments and interpreted results, I.A.Y. interpreted data and helped write the paper, C.Z. synthesized the LMe peptide, K.L.R. and A.L.G. designed experiments, interpreted data and helped write the paper, and E.S. and L.J.S. designed and conducted experiments, interpreted data and helped write the paper.

Corresponding author

Correspondence to Lawrence J Stern.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Tables 1 and 2 (PDF 9320 kb)

Supplementary Movie 1

Normal mode analysis (MOV 2244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Chang, SC., Evnouchidou, I. et al. Structural basis for antigenic peptide precursor processing by the endoplasmic reticulum aminopeptidase ERAP1. Nat Struct Mol Biol 18, 604–613 (2011). https://doi.org/10.1038/nsmb.2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing