Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mycoplasma infection suppresses p53, activates NF-κB and cooperates with oncogenic Ras in rodent fibroblast transformation

Abstract

Prokaryotes of the genus Mycoplasma are the smallest cellular organisms that persist as obligate extracellular parasites. Although mycoplasma infection is known to be associated with chromosomal instability and can promote malignant transformation, the mechanisms underlying these phenomena remain unknown. Since persistence of many cellular parasites requires suppression of apoptosis in host cells, we tested the effect of mycoplasma infection on the activity of the p53 and nuclear factor (NF)-κB pathways, major mechanisms controlling programmed cell death. To monitor the activity of p53 and NF-κB in mycoplasma-infected cells, we used a panel of reporter cell lines expressing the bacterial β-galactosidase gene under the control of p53- or NF-κB-responsive promoters. Cells incubated with media conditioned with different species of mycoplasma showed constitutive activation of NF-κB and reduced activation of p53, common characteristics of the majority of human tumor cells, with M. arginini having the strongest effect among the species tested. Moreover, mycoplasma infection reduced the expression level and inducibility of an endogenous p53-responsive gene, p21waf1, and inhibited apoptosis induced by genotoxic stress. Infection with M. arginini made rat and mouse embryo fibroblasts susceptible to transformation with oncogenic H-Ras, whereas mycoplasma-free cells underwent irreversible p53-dependent growth arrest. Mycoplasma infection was as effective as shRNA-mediated knockdown of p53 expression in making rodent fibroblasts permissive to Ras-induced transformation. These observations indicate that mycoplasma infection plays the role of a p53-suppressing oncogene that cooperates with Ras in cell transformation and suggest that the carcinogenic and mutagenic effects of mycoplasma might be due to inhibition of p53 tumor suppressor function by this common human parasite.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baek KH, Shin HJ, Yoo JK, Cho JH, Choi YH, Sung YC et al. (2003). p53 deficiency and defective mitotic checkpoint in proliferating T lymphocytes increase chromosomal instability through aberrant exit from mitotic arrest. J Leukoc Biol 73: 850–861.

    Article  CAS  Google Scholar 

  • Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV et al. (2006). A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev 20: 236–252.

    Article  CAS  Google Scholar 

  • Bubici C, Papa S, Pham CG, Zazzeroni F, Franzoso G . (2006). The NF-kappaB-mediated control of ROS and JNK signaling. Histol Histopathol 21: 69–80.

    CAS  PubMed  Google Scholar 

  • Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M, Elsing A . (2002). Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 269: 273–318.

    CAS  PubMed  Google Scholar 

  • Chu HW, Jeyaseelan S, Rino JG, Voelker DR, Wexler RB, Campbell K et al. (2005). TLR2 signaling is critical for Mycoplasma pneumoniae-induced airway mucin expression. J Immunol 9: 5713–5719.

    Article  Google Scholar 

  • Cimolai N . (2001). Do mycoplasmas cause human cancer? Can J Microbiol 47: 691–697.

    Article  CAS  Google Scholar 

  • Correa P, Houghton J . (2007). Carcinogenesis of Helicobacter pylori. Gastroenterology 133: 659–672.

    Article  CAS  Google Scholar 

  • De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG et al. (2007). Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 56–69.

    Article  Google Scholar 

  • Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D et al. (1996). The role of p53 loss in genomic instability and tumor progression in a murine mammary cancer model. Prog Clin Biol Res 395: 1–11.

    CAS  PubMed  Google Scholar 

  • Efeyan A, Serrano M . (2007). p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6: 1006–1010.

    Article  CAS  Google Scholar 

  • Feng SH, Tsai S, Rodriguez J, Lo SC . (1999). Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol Cell Biol 12: 7995–8002.

    Article  Google Scholar 

  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. Mol Cell Biol 22: 3497–3508.

    Article  CAS  Google Scholar 

  • Gartel AL, Tyner AL . (1999). Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246: 280–289.

    Article  CAS  Google Scholar 

  • Gurova KV, Hill JE, Guo C, Prokvolit A, Burdelya LG, Samoylova E et al. (2005). Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc Natl Acad Sci USA 48: 17448–17453.

    Article  Google Scholar 

  • Gurova KV, Hill JE, Razorenova OV, Chumakov PM, Gudkov AV . (2004). p53 pathway in renal cell carcinoma is repressed by a dominant mechanism. Cancer Res 64: 1951–1958.

    Article  CAS  Google Scholar 

  • Jiang S, Zhang S, Langenfeld J, Lo SC, Rogers MB . (2007). Mycoplasma infection transforms normal lung cells and induces bone morphogenetic protein 2 expression by post-transcriptional mechanisms. J Cell Biochem e-pub ahead of print 4 Dec 2007.

  • Karin M . (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.

    Article  CAS  Google Scholar 

  • Karin M, Lawrence T, Nizet V . (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124: 823–835.

    Article  CAS  Google Scholar 

  • Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR et al. (1997). Transgenic mice with p53-responsive lacZ: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16: 1391–1400.

    Article  CAS  Google Scholar 

  • Lee CH, Jeon YT, Kim SH, Song YS . (2007). NF-kappaB as a potential molecular target for cancer therapy. Biofactors 29: 19–35.

    Article  CAS  Google Scholar 

  • Lisowska K, Witkowski JM . (2003). Viral strategies in modulation of NF-kappaB activity. Arch Immunol Ther Exp (Warsz) 51: 367–375.

    CAS  Google Scholar 

  • Lu T, Burdelya LG, Swiatkowski SM, Boiko AD, Howe PH, Stark GR et al. (2004a). Secreted transforming growth factor beta2 activates NF-kappaB, blocks apoptosis, and is essential for the survival of some tumor cells. Proc Natl Acad Sci USA 18: 7112–7117.

    Article  Google Scholar 

  • Lu T, Sathe SS, Swiatkowski SM, Hampole CV, Stark GR . (2004b). Secretion of cytokines and growth factors as a general cause of constitutive NFkappaB activation in cancer. Oncogene 12: 2138–2145.

    Article  Google Scholar 

  • Mantovani F, Banks L . (2001). The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20: 7874–7887.

    Article  CAS  Google Scholar 

  • McCormick F . (2000). Interactions between adenovirus proteins and the p53 pathway: the development of ONYX-015. Semin Cancer Biol 10: 453–459.

    Article  CAS  Google Scholar 

  • Nelyudova AM, Tararova ND, Aksenov ND, Pospelov VA, Pospelova TV . (2004). Restoration of G1/S arrest in E1A+c-Ha-ras-transformed cells by Bcl-2 overexpression. Cell Cycle 11: 1427–1432.

    Article  Google Scholar 

  • Oriel JD . (1983). Role of genital mycoplasmas in nongonococcal urethritis and prostatitis. Sex Transm Dis 10: 263–270.

    CAS  PubMed  Google Scholar 

  • Poyurovsky MV, Prives C . (2006). Unleashing the power of p53: lessons from mice and men. Genes Dev 20: 125–131.

    Article  CAS  Google Scholar 

  • Prozorovskiy SV, Rakovskaya IV, Vulfovich YuV . (1995). Medical Mycoplasmology. Medicine Publishers: Moscow, Russia, pp 187–188 (in Russian).

    Google Scholar 

  • Razin S, Yogev D, Naot Y . (1998). Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62: 1094–1156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rottem S . (2003). Interaction of mycoplasmas with host cells. Physiol Rev 83: 417–432.

    Article  CAS  Google Scholar 

  • Sablina AA, Agapova LS, Chumakov PM, Kopnin BP . (1999). p53 does not control the spindle assembly cell cycle checkpoint but mediates G1 arrest in response to disruption of microtubule system. Cell Biol Int 23: 323–334.

    Article  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Takeda K, Takeuchi O, Akira S . (2002). Recognition of lipopeptides by Toll-like receptors. J Endotoxin Res 8: 459–463.

    Article  CAS  Google Scholar 

  • Tsai S, Wear DJ, Shih JW, Lo SC . (1995). Mycoplasmas and oncogenesis: persistent infection and multistage malignant transformation. Proc Natl Acad Sci USA 22: 10197–10201.

    Article  Google Scholar 

  • Yaswen P, Campisi J . (2007). Oncogene-induced senescence pathways weave an intricate tapestry. Cell 128: 233–234.

    Article  CAS  Google Scholar 

  • Zhang B, Shih JW, Wear DJ, Tsai S, Lo SC . (1997). High-level expression of H-ras and c-myc oncogenes in mycoplasma-mediated malignant cell transformation. Proc Soc Exp Biol Med 214: 359–366.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Patti Baker for help in paper preparation and editing. We thank Tatiana Pospelova for the gift of E-Ras cells, Alex Shakhov for providing R-Pam2 and Galina Ilyinskaya for technical assistance. This work was supported by grants from Cleveland BioLabs Inc. and NIH (CA60730, CA75179 and CA098374) to AVG.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B S Naroditsky or A V Gudkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logunov, D., Scheblyakov, D., Zubkova, O. et al. Mycoplasma infection suppresses p53, activates NF-κB and cooperates with oncogenic Ras in rodent fibroblast transformation. Oncogene 27, 4521–4531 (2008). https://doi.org/10.1038/onc.2008.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.103

Keywords

This article is cited by

Search

Quick links