Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

NKG2D ligands in tumor immunity

Abstract

The activating receptor NKG2D (natural-killer group 2, member D) and its ligands play an important role in the NK, γδ+ and CD8+ T-cell-mediated immune response to tumors. Ligands for NKG2D are rarely detectable on the surface of healthy cells and tissues, but are frequently expressed by tumor cell lines and in tumor tissues. It is evident that the expression levels of these ligands on target cells have to be tightly regulated to allow immune cell activation against tumors, but at the same time avoid destruction of healthy tissues. Importantly, it was recently discovered that another safeguard mechanism controlling activation via the receptor NKG2D exists. It was shown that NKG2D signaling is coupled to the IL-15 receptor pathway in a cell-specific manner suggesting that priming of NKG2D-mediated activation depends on the cellular microenvironment and the distinct cellular context. This review will provide a broad overview of our up-to-date knowledge of the NKG2D receptor and its ligands in the context of tumor immunology. Strategies to amplify NKG2D-mediated antitumor responses and counteract tumor immune escape mechanisms will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allez M, Tieng V, Nakazawa A, Treton X, Pacault V, Dulphy N et al. (2007). CD4+NKG2D+ T cells in Crohn's disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132: 2346–2358.

    CAS  PubMed  Google Scholar 

  • Angel P, Szabowski A, Schorpp-Kistner M . (2001). Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20: 2413–2423.

    CAS  PubMed  Google Scholar 

  • Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M et al. (2005). Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 65: 6321–6329.

    CAS  PubMed  Google Scholar 

  • Bacon L, Eagle RA, Meyer M, Easom N, Young NT, Trowsdale J . (2004). Two human ULBP/RAET1 molecules with transmembrane regions are ligands for NKG2D. J Immunol 173: 1078–1084.

    CAS  PubMed  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T . (1994). A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91: 6259–6263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahram S, Inoko H, Shiina T, Radosavljevic M . (2005). MIC and other NKG2D ligands: from none to too many. Curr Opin Immunol 17: 505–509.

    CAS  PubMed  Google Scholar 

  • Barnett B, Kryczek I, Cheng P, Zou W, Curiel TJ . (2005). Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am J Reprod Immunol 54: 369–377.

    CAS  PubMed  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. (1999). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285: 727–729.

    Article  CAS  PubMed  Google Scholar 

  • Boissel N, Rea D, Tieng V, Dulphy N, Brun M, Cayuela JM et al. (2006). BCR/ABL oncogene directly controls MHC class I chain-related molecule A expression in chronic myelogenous leukemia. J Immunol 176: 5108–5116.

    CAS  PubMed  Google Scholar 

  • Borchers MT, Harris NL, Wesselkamper SC, Zhang S, Chen Y, Young L et al. (2006). The NKG2D-activating receptor mediates pulmonary clearance of Pseudomonas aeruginosa. Infect Immun 74: 2578–2586.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo MJ, Colmenero JD, Martin J, Alonso A, Caballero A . (2007). Polymorphism of the transmembrane region of the MICA gene and human brucellosis. Tissue Antigens 69: 358–360.

    CAS  PubMed  Google Scholar 

  • Bryceson YT, March ME, Ljunggren HG, Long EO . (2006). Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107: 159–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bui JD, Carayannopoulos LN, Lanier LL, Yokoyama WM, Schreiber RD . (2006). IFN-dependent down-regulation of the NKG2D ligand H60 on tumors. J Immunol 176: 905–913.

    CAS  PubMed  Google Scholar 

  • Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE . (2006). IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 176: 1490–1497.

    CAS  PubMed  Google Scholar 

  • Cao W, Xi X, Hao Z, Li W, Kong Y, Cui L et al. (2007). RAET1E2, a soluble isoform of the UL16-binding protein RAET1E produced by tumor cells, inhibits NKG2D-mediated NK cytotoxicity. J Biol Chem 282: 18922–18928.

    CAS  PubMed  Google Scholar 

  • Carayannopoulos LN, Naidenko OV, Fremont DH, Yokoyama WM . (2002). Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J Immunol 169: 4079–4083.

    CAS  PubMed  Google Scholar 

  • Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D et al. (2005). HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 105: 251–258.

    CAS  PubMed  Google Scholar 

  • Carlsten M, Bjorkstrom NK, Norell H, Bryceson Y, van Hall T, Baumann BC et al. (2007). DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 67: 1317–1325.

    CAS  PubMed  Google Scholar 

  • Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R et al. (2003). Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100: 4120–4125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castriconi R, Dondero A, Negri F, Bellora F, Nozza P, Carnemolla B et al. (2007). Both CD133(+) and CD133(−) medulloblastoma cell lines express ligands for triggering NK receptors and are susceptible to NK-mediated cytotoxicity. Eur J Immunol 37: 3190–3196.

    CAS  PubMed  Google Scholar 

  • Catellani S, Poggi A, Bruzzone A, Dadati P, Ravetti JL, Gobbi M et al. (2007). Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins. Blood 109: 2078–2085.

    CAS  PubMed  Google Scholar 

  • Cerboni C, Zingoni A, Cippitelli M, Piccoli M, Frati L, Santoni A . (2007). Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK-cell lysis. Blood 110: 606–615.

    CAS  PubMed  Google Scholar 

  • Cerwenka A, Bakker AB, McClanahan T, Wagner J, Wu J, Phillips JH et al. (2000). Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12: 721–727.

    CAS  PubMed  Google Scholar 

  • Cerwenka A, Baron JL, Lanier LL . (2001). Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98: 11521–11526.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerwenka A, Lanier LL . (2001). Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev 181: 158–169.

    CAS  PubMed  Google Scholar 

  • Chalupny NJ, Sutherland CL, Lawrence WA, Rein-Weston A, Cosman D . (2003). ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305: 129–135.

    PubMed  Google Scholar 

  • Chan CW, Crafton E, Fan HN, Flook J, Yoshimura K, Skarica M et al. (2006). Interferon-producing killer dendritic cells provide a link between innate and adaptive immunity. Nat Med 12: 207–213.

    CAS  PubMed  Google Scholar 

  • Chang C, Dietrich J, Harpur AG, Lindquist JA, Haude A, Loke Y et al. (1999). Cutting edge: KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties. J Immunol 163: 4651–4654.

    CAS  PubMed  Google Scholar 

  • Choi BK, Kim YH, Kang WJ, Lee SK, Kim KH, Shin SM et al. (2007). Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res 67: 8891–8899.

    CAS  PubMed  Google Scholar 

  • Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W et al. (2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14: 123–133.

    CAS  PubMed  Google Scholar 

  • Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al. (2005). Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106: 1711–1717.

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Bhattacharya-Chatterjee M, O’Malley Jr BW, Chatterjee SK . (2005). Inhibition of NK cell activity through TGF-beta 1 by down-regulation of NKG2D in a murine model of head and neck cancer. J Immunol 175: 5541–5550.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Hsia JK, Hsiung MY, Raulet DH . (2003). A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur J Immunol 33: 381–391.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH . (2000). Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 1: 119–126.

    CAS  PubMed  Google Scholar 

  • Diefenbach A, Jensen ER, Jamieson AM, Raulet DH . (2001). Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413: 165–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E et al. (2002). Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3: 1142–1149.

    CAS  PubMed  Google Scholar 

  • Diermayr S, Himmelreich H, Durovic B, Mathys-Schneeberger A, Siegler U, Langenkamp U et al. (2007). NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK cell lines with single KIR-HLA-class I specificities. Blood 111: 1428–1436.

    PubMed  Google Scholar 

  • Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B et al. (2003). Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171: 6891–6899.

    CAS  PubMed  Google Scholar 

  • Eagle RA, Trowsdale J . (2007). Promiscuity and the single receptor: NKG2D. Nat Rev Immunol 7: 737–744.

    CAS  PubMed  Google Scholar 

  • Ehrlich LI, Ogasawara K, Hamerman JA, Takaki R, Zingoni A, Allison JP et al. (2005). Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J Immunol 174: 1922–1931.

    CAS  PubMed  Google Scholar 

  • Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A et al. (2006). TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129: 2416–2425.

    PubMed  Google Scholar 

  • El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW et al. (2007). The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67: 8444–8449.

    CAS  PubMed  Google Scholar 

  • Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F et al. (2003). MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 63: 8996–9006.

    CAS  PubMed  Google Scholar 

  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A et al. (2004). RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64: 7596–7603.

    CAS  PubMed  Google Scholar 

  • Garrity D, Call ME, Feng J, Wucherpfennig KW . (2005). The activating NKG2D receptor assembles in the membrane with two signaling dimers into a hexameric structure. Proc Natl Acad Sci USA 102: 7641–7646.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH . (2005). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436: 1186–1190.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germain C, Larbouret C, Cesson V, Donda A, Held W, Mach JP et al. (2005). MHC class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin Cancer Res 11: 7516–7522.

    CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N et al. (2005). CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202: 1075–1085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilfillan S, Ho EL, Cella M, Yokoyama WM, Colonna M . (2002). NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol 3: 1150–1155.

    CAS  PubMed  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R et al. (2001). Regulation of cutaneous malignancy by gammadelta T cells. Science 294: 605–609.

    CAS  PubMed  Google Scholar 

  • Glienke J, Sobanov Y, Brostjan C, Steffens C, Nguyen C, Lehrach H et al. (1998). The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex. Immunogenetics 48: 163–173.

    CAS  PubMed  Google Scholar 

  • Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T . (1996). Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93: 12445–12450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T . (2003). Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100: 9452–9457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T . (1999). Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96: 6879–6884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groh V, Smythe K, Dai Z, Spies T . (2006). Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nat Immunol 7: 755–762.

    CAS  PubMed  Google Scholar 

  • Groh V, Wu J, Yee C, Spies T . (2002). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419: 734–738.

    CAS  PubMed  Google Scholar 

  • Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F, Xiong N et al. (2008). NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28: 571–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilloton F, de Thonel A, Jean C, Demur C, Mansat-De Mas V, Laurent G et al. (2005). TNFalpha stimulates NKG2D-mediated lytic activity of acute myeloid leukemic cells. Leukemia 19: 2206–2214.

    CAS  PubMed  Google Scholar 

  • Gumireddy K, Sun F, Klein-Szanto AJ, Gibbins JM, Gimotty PA, Saunders AJ et al. (2008). In vivo selection for metastasis promoting genes in the mouse. Proc Natl Acad Sci USA 104: 6696–6701.

    Google Scholar 

  • Hamerman JA, Ogasawara K, Lanier LL . (2004). Cutting edge: toll-like receptor signaling in macrophages induces ligands for the NKG2D receptor. J Immunol 172: 2001–2005.

    CAS  PubMed  Google Scholar 

  • Hamerman JA, Ogasawara K, Lanier LL . (2005). NK cells in innate immunity. Curr Opin Immunol 17: 29–35.

    CAS  PubMed  Google Scholar 

  • Ho EL, Heusel JW, Brown MG, Matsumoto K, Scalzo AA, Yokoyama WM . (1998). Murine Nkg2d and Cd94 are clustered within the natural killer complex and are expressed independently in natural killer cells. Proc Natl Acad Sci USA 95: 6320–6325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . (2006a). Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 55: 1584–1589.

    PubMed  Google Scholar 

  • Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR . (2006b). Soluble MICA in malignant diseases. Int J Cancer 118: 684–687.

    CAS  PubMed  Google Scholar 

  • Horng T, Bezbradica JS, Medzhitov R . (2007). NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat Immunol 8: 1345–1352.

    CAS  PubMed  Google Scholar 

  • Houchins JP, Yabe T, McSherry C, Bach FH . (1991). DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173: 1017–1020.

    CAS  PubMed  Google Scholar 

  • Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J et al. (2004). A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21: 367–377.

    PubMed  Google Scholar 

  • Jack A, Boyes C, Aydin N, Alam K, Wallack M . (2006). The treatment of melanoma with an emphasis on immunotherapeutic strategies. Surg Oncol 15: 13–24.

    PubMed  Google Scholar 

  • Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH . (2002). The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17: 19–29.

    CAS  PubMed  Google Scholar 

  • Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, Spies T et al. (2003a). Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol 170: 1249–1256.

    CAS  PubMed  Google Scholar 

  • Jinushi M, Takehara T, Tatsumi T, Hiramatsu N, Sakamori R, Yamaguchi S et al. (2005). Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas. J Hepatol 43: 1013–1020.

    CAS  PubMed  Google Scholar 

  • Jinushi M, Takehara T, Tatsumi T, Kanto T, Groh V, Spies T et al. (2003b). Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104: 354–361.

    CAS  PubMed  Google Scholar 

  • Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 105: 1285–1290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z, Mann HH et al. (2007). Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447: 482–486.

    CAS  PubMed  Google Scholar 

  • Kriegeskorte AK, Gebhardt FE, Porcellini S, Schiemann M, Stemberger C, Franz TJ et al. (2005). NKG2D-independent suppression of T cell proliferation by H60 and MICA. Proc Natl Acad Sci USA 102: 11805–11810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Lee KM, Kim DW, Heo DS . (2004). Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172: 7335–7340.

    CAS  PubMed  Google Scholar 

  • Li J, Rabinovich BA, Hurren R, Cosman D, Miller RG . (2005). Survival versus neglect: redefining thymocyte subsets based on expression of NKG2D ligand(s) and MHC class I. Eur J Immunol 35: 439–448.

    CAS  PubMed  Google Scholar 

  • Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR et al. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109: 4336–4342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A . (2007). Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26: 503–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maccalli C, Pende D, Castelli C, Mingari MC, Robbins PF, Parmiani G . (2003). NKG2D engagement of colorectal cancer-specific T cells strengthens TCR-mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur J Immunol 33: 2033–2043.

    CAS  PubMed  Google Scholar 

  • Malarkannan S, Shih PP, Eden PA, Horng T, Zuberi AR, Christianson G et al. (1998). The molecular and functional characterization of a dominant minor H antigen, H60. J Immunol 161: 3501–3509.

    CAS  PubMed  Google Scholar 

  • Marten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J . (2006). Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119: 2359–2365.

    PubMed  Google Scholar 

  • Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN et al. (2004). Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21: 357–366.

    CAS  PubMed  Google Scholar 

  • Mistry AR, O’Callaghan CA . (2007). Regulation of ligands for the activating receptor NKG2D. Immunology 121: 439–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molinero LL, Fuertes MB, Rabinovich GA, Fainboim L, Zwirner NW . (2002). Activation-induced expression of MICA on T lymphocytes involves engagement of CD3 and CD28. J Leukoc Biol 71: 791–797.

    CAS  PubMed  Google Scholar 

  • Molinero LL, Fuertes MB, Girart MV, Fainboim L, Rabinovich GA, Costas MA et al. (2004). NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes. J Immunol 173: 5583–5590.

    CAS  PubMed  Google Scholar 

  • Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126–129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nausch N, Florin L, Hartenstein B, Angel P, Schorpp-Kistner M, Cerwenka A . (2006). Cutting edge: the AP-1 subunit JunB determines NK cell-mediated target cell killing by regulation of the NKG2D-ligand RAE-1epsilon. J Immunol 176: 7–11.

    CAS  PubMed  Google Scholar 

  • Nedvetzki S, Sowinski S, Eagle RA, Harris J, Vely F, Pende D et al. (2007). Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood 109: 3776–3785.

    CAS  PubMed  Google Scholar 

  • Nomura M, Zou Z, Joh T, Takihara Y, Matsuda Y, Shimada K . (1996). Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J Biochem (Tokyo) 120: 987–995.

    CAS  Google Scholar 

  • Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. (2005). Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 105: 3615–3622.

    CAS  PubMed  Google Scholar 

  • O’Callaghan CA, Cerwenka A, Willcox BE, Lanier LL, Bjorkman PJ . (2001). Molecular competition for NKG2D: H60 and RAE1 compete unequally for NKG2D with dominance of H60. Immunity 15: 201–211.

    PubMed  Google Scholar 

  • Ogasawara K, Benjamin J, Takaki R, Phillips JH, Lanier LL . (2005). Function of NKG2D in natural killer cell-mediated rejection of mouse bone marrow grafts. Nat Immunol 6: 938–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara K, Lanier LL . (2005). NKG2D in NK and T cell-mediated immunity. J Clin Immunol 25: 534–540.

    CAS  PubMed  Google Scholar 

  • Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE et al. (2005). Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6: 928–937.

    CAS  PubMed  Google Scholar 

  • Paloneva J, Kestila M, Wu J, Salminen A, Bohling T, Ruotsalainen V et al. (2000). Loss-of-function mutations in TyroBP (DAP12) result in a presenile dementia with bone cysts. Nat Genet 25: 357–361.

    CAS  PubMed  Google Scholar 

  • Pappworth IY, Wang EC, Rowe M . (2007). The switch from latent to productive infection in Epstein–Barr virus-infected B cells is associated with sensitization to NK cell killing. J Virol 81: 474–482.

    CAS  PubMed  Google Scholar 

  • Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R et al. (2002). Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res 62: 6178–6186.

    CAS  PubMed  Google Scholar 

  • Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP . (2004). Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol 172: 1009–1017.

    CAS  PubMed  Google Scholar 

  • Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M et al. (2004). Vdelta1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 64: 9172–9179.

    CAS  PubMed  Google Scholar 

  • Rabinovich B, Li J, Wolfson M, Lawrence W, Beers C, Chalupny J et al. (2006). NKG2D splice variants: a reexamination of adaptor molecule associations. Immunogenetics 58: 81–88.

    CAS  PubMed  Google Scholar 

  • Rabinovich BA, Li J, Shannon J, Hurren R, Chalupny J, Cosman D et al. (2003). Activated, but not resting, T cells can be recognized and killed by syngeneic NK cells. J Immunol 170: 3572–3576.

    CAS  PubMed  Google Scholar 

  • Radosavljevic M, Cuillerier B, Wilson MJ, Clement O, Wicker S, Gilfillan S et al. (2002). A cluster of ten novel MHC class I related genes on human chromosome 6q24.2–q25.3. Genomics 79: 114–123.

    CAS  PubMed  Google Scholar 

  • Raffaghello L, Prigione I, Airoldi I, Camoriano M, Levreri I, Gambini C et al. (2004). Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia 6: 558–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rausch A, Hessmann M, Holscher A, Schreiber T, Bulfone-Paus S, Ehlers S et al. (2006). Interleukin-15 mediates protection against experimental tuberculosis: a role for NKG2D-dependent effector mechanisms of CD8+ T cells. Eur J Immunol 36: 1156–1167.

    CAS  PubMed  Google Scholar 

  • Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC et al. (2001). NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167: 5527–5530.

    CAS  PubMed  Google Scholar 

  • Roda-Navarro P, Reyburn HT . (2007). Intercellular protein transfer at the NK cell immune synapse: mechanisms and physiological significance. FASEB J 21: 1636–1646.

    CAS  PubMed  Google Scholar 

  • Roda-Navarro P, Vales-Gomez M, Chisholm SE, Reyburn HT . (2006). Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function. Proc Natl Acad Sci USA 103: 11258–11263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rohner A, Langenkamp U, Siegler U, Kalberer CP, Wodnar-Filipowicz A . (2007). Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk Res 31: 1393–1402.

    CAS  PubMed  Google Scholar 

  • Roos WP, Kaina B . (2006). DNA damage-induced cell death by apoptosis. Trends Mol Med 12: 440–450.

    CAS  PubMed  Google Scholar 

  • Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL . (2004). A structural basis for the association of DAP12 with mouse, but not human, NKG2D. J Immunol 173: 2470–2478.

    CAS  PubMed  Google Scholar 

  • Routes JM, Ryan S, Morris K, Takaki R, Cerwenka A, Lanier LL . (2005). Adenovirus serotype 5 E1A sensitizes tumor cells to NKG2D-dependent NK cell lysis and tumor rejection. J Exp Med 202: 1477–1482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG et al. (2003). Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102: 1389–1396.

    CAS  PubMed  Google Scholar 

  • Salih HR, Goehlsdorf D, Steinle A . (2006). Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum Immunol 67: 188–195.

    CAS  PubMed  Google Scholar 

  • Salih HR, Rammensee HG, Steinle A . (2002). Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169: 4098–4102.

    CAS  PubMed  Google Scholar 

  • Schrambach S, Ardizzone M, Leymarie V, Sibilia J, Bahram S . (2007). In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS ONE 2: e518.

    PubMed  PubMed Central  Google Scholar 

  • Siren J, Sareneva T, Pirhonen J, Strengell M, Veckman V, Julkunen I et al. (2004). Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85: 2357–2364.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y . (2005). NKG2D function protects the host from tumor initiation. J Exp Med 202: 583–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth MJ, Swann J, Kelly JM, Cretney E, Yokoyama WM, Diefenbach A et al. (2004). NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200: 1325–1335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y . (2006). CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176: 1582–1587.

    CAS  PubMed  Google Scholar 

  • Song H, Hur DY, Kim KE, Park H, Kim T, Kim C et al. (2006b). IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-beta in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 242: 39–45.

    CAS  PubMed  Google Scholar 

  • Song H, Kim J, Cosman D, Choi I . (2006a). Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol 239: 22–30.

    CAS  PubMed  Google Scholar 

  • Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK et al. (2001). Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53: 279–287.

    CAS  PubMed  Google Scholar 

  • Strong RK . (2002). Asymmetric ligand recognition by the activating natural killer cell receptor NKG2D, a symmetric homodimer. Mol Immunol 38: 1029–1037.

    CAS  PubMed  Google Scholar 

  • Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M et al. (2006). A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 12: 214–219.

    CAS  PubMed  Google Scholar 

  • Takada A, Yoshida S, Kajikawa M, Miyatake Y, Tomaru U, Sakai M et al. (2008). Two novel NKG2D ligands of the mouse H60 family with differential expression patterns and binding affinities to NKG2D. J Immunol 180: 1678–1685.

    CAS  PubMed  Google Scholar 

  • Takaki R, Hayakawa Y, Nelson A, Sivakumar PV, Hughes S, Smyth MJ et al. (2005). IL-21 enhances tumor rejection through a NKG2D-dependent mechanism. J Immunol 175: 2167–2173.

    CAS  PubMed  Google Scholar 

  • Tallman MS . (2006). New agents for the treatment of acute myeloid leukemia. Best Pract Res Clin Haematol 19: 311–320.

    CAS  PubMed  Google Scholar 

  • Teng MW, Kershaw MH, Hayakawa Y, Cerutti L, Jane SM, Darcy PK et al. (2005). T cells gene-engineered with DAP12 mediate effector function in an NKG2D-dependent and major histocompatibility complex-independent manner. J Biol Chem 280: 38235–38241.

    CAS  PubMed  Google Scholar 

  • Tieng V, Le Bouguenec C, du Merle L, Bertheau P, Desreumaux P, Janin A et al. (2002). Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc Natl Acad Sci USA 99: 2977–2982.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turkcapar N, Tuncali T, Kutlay S, Burhan BY, Kinikli G, Erturk S et al. (2007). The contribution of genotypes at the MICA gene triplet repeat polymorphisms and MEFV mutations to amyloidosis and course of the disease in the patients with familial Mediterranean fever. Rheumatol Int 27: 545–551.

    CAS  PubMed  Google Scholar 

  • Venkataraman GM, Suciu D, Groh V, Boss JM, Spies T . (2007). Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J Immunol 178: 961–969.

    CAS  PubMed  Google Scholar 

  • Verneris MR, Karami M, Baker J, Jayaswal A, Negrin RS . (2004). Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood 103: 3065–3072.

    CAS  PubMed  Google Scholar 

  • Vetter CS, Groh V, thor Straten P, Spies T, Brocker EB, Becker JC . (2002). Expression of stress-induced MHC class I related chain molecules on human melanoma. J Invest Dermatol 118: 600–605.

    CAS  PubMed  Google Scholar 

  • Vilarinho S, Ogasawara K, Nishimura S, Lanier LL, Baron JL . (2007). Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci USA 104: 18187–18192.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vosshenrich CA, Lesjean-Pottier S, Hasan M, Richard-Le Goff O, Corcuff E, Mandelboim O et al. (2007). CD11cloB220+ interferon-producing killer dendritic cells are activated natural killer cells. J Exp Med 204: 2569–2578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldhauer I, Steinle A . (2006). Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66: 2520–2526.

    CAS  PubMed  Google Scholar 

  • Ward J, Bonaparte M, Sacks J, Guterman J, Fogli M, Mavilio D et al. (2007). HIV modulates the expression of ligands important in triggering natural killer cell cytotoxic responses on infected primary T-cell blasts. Blood 110: 1207–1214.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson NF, Spendlove I, Madjd Z, McGilvray R, Green AR, Ellis IO et al. (2006). Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118: 1445–1452.

    CAS  PubMed  Google Scholar 

  • Weizman N, Shiloh Y, Barzilai A . (2003). Contribution of the Atm protein to maintaining cellular homeostasis evidenced by continuous activation of the AP-1 pathway in Atm-deficient brains. J Biol Chem 278: 6741–6747.

    CAS  PubMed  Google Scholar 

  • Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T et al. (2005). Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175: 720–729.

    CAS  PubMed  Google Scholar 

  • Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL et al. (1999). An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285: 730–732.

    CAS  PubMed  Google Scholar 

  • Yokoyama WM . (2002). Immunology: catch us if you can. Nature 419: 679–680.

    CAS  PubMed  Google Scholar 

  • Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z . (2005a). Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptors: negative regulation of IFNgamma on NK cells. Int Immunopharmacol 5: 1057–1067.

    CAS  PubMed  Google Scholar 

  • Zhang J, Sun R, Wei H, Tian Z . (2004). Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica 89: 338–347.

    CAS  PubMed  Google Scholar 

  • Zhang T, Barber A, Sentman CL . (2007). Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways. Cancer Res 67: 11029–11036.

    CAS  PubMed  Google Scholar 

  • Zhang T, Lemoi BA, Sentman CL . (2005b). Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy. Blood 106: 1544–1551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Luo Y, Kaplan CD, Kruger JA, Lee SH, Xiang R et al. (2006). A DNA-based cancer vaccine enhances lymphocyte cross talk by engaging the NKG2D receptor. Blood 107: 3251–3257.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Luo Y, Lo JF, Kaplan CD, Mizutani M, Mizutani N et al. (2005). DNA-based vaccines activate innate and adaptive antitumor immunity by engaging the NKG2D receptor. Proc Natl Acad Sci USA 102: 10846–10851.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z, Nomura M, Takihara Y, Yasunaga T, Shimada K . (1996). Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules. J Biochem (Tokyo) 119: 319–328.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Lewis Lanier and Ioanna Galani for critically reading the paper. The work is supported by a Marie Curie Excellent Grant, Deutsche José Carreras Leukämie Stiftung, German-Israel DKFZ/MOST cooperation and Boehringer Ingelheim Fonds. We want to apologize to all authors whose work could not be cited in this review because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Cerwenka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nausch, N., Cerwenka, A. NKG2D ligands in tumor immunity. Oncogene 27, 5944–5958 (2008). https://doi.org/10.1038/onc.2008.272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.272

Keywords

This article is cited by

Search

Quick links