Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity

Abstract

Lapatinib is a human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor (TKI) that has clinical activity in HER2-amplified breast cancer. In vitro studies have shown that lapatinib enhances the effects of the monoclonal antibody trastuzumab suggesting partially non-overlapping mechanisms of action. To dissect these mechanisms, we have studied the effects of lapatinib and trastuzumab on receptor expression and receptor signaling and have identified a new potential mechanism for the enhanced antitumor activity of the combination. Lapatinib, given alone or in combination with trastuzumab to HER2-overexpressing breast cancer cells SKBR3 and MCF7-HER2, inhibited HER2 phosphorylation, prevented receptor ubiquitination and resulted in a marked accumulation of inactive receptors at the cell surface. By contrast, trastuzumab alone caused enhanced HER2 phosphorylation, ubiquitination and degradation of the receptor. By immunoprecipitation and computational protein modeling techniques we have shown that the lapatinib-induced HER2 accumulation at the cell surface also results in the stabilization of inactive HER2 homo- (HER2/HER2) and hetero- (HER2/EGFR and HER2/HER3) dimers. Lapatinib-induced accumulation of HER2 and trastuzumab-mediated downregulation of HER2 was also observed in vivo, where the combination of the two agents triggered complete tumor remissions in all cases after 10 days of treatment. Accumulation of HER2 at the cell surface by lapatinib enhanced immune-mediated trastuzumab-dependent cytotoxicity. We propose that this is a novel mechanism of action of the combination that may be clinically relevant and exploitable in the therapy of patients with HER2-positive tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anido J, Matar P, Albanell J, Guzman M, Rojo F, Arribas J et al. (2003). ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin Cancer Res 9: 1274–1283.

    CAS  PubMed  Google Scholar 

  • Arteaga CL, Ramsey TT, Shawver LK, Guyer CA . (1997). Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site. J Biol Chem 272: 23247–23254.

    Article  CAS  PubMed  Google Scholar 

  • Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX et al. (2004). Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol Biol Cell 15: 5268–5282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga J . (2006). Targeting tyrosine kinases in cancer: the second wave. Science 312: 1175–1178.

    Article  CAS  PubMed  Google Scholar 

  • Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J . (1998). Recombinant humanized anti-HER2 antibody (Herceptin) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58: 2825–2831.

    CAS  PubMed  Google Scholar 

  • Baselga J, Schoffski F, Rojo F, Dumez H, Ramos FL, Macarulla T et al. (2006). A phase I pharmacokinetic (PK) and molecular pharmacodynamic (PD) study of the combination of two anti-EGFR therapies, the monoclonal antibody (MAb) cetuximab (C) and the tyrosine kinase inhibitor (TKI) gefitinib (G), in patients (pts) with advanced colorectal (CRC), head and neck (HNC) and non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings Part I. Vol 24, No. 18S (June 20 Supplement), 2006: 3006.

  • Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L et al. (1996). Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 14: 737–744.

    Article  CAS  PubMed  Google Scholar 

  • Bleeker WK, Lammerts van Bueren JJ, van Ojik HH, Gerritsen AF, Pluyter M, Houtkamp M et al. (2004). Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 173: 4699–4707.

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M . (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4: 187–217.

    Article  CAS  Google Scholar 

  • Citri A, Yarden Y . (2006). EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 7: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Clynes RA, Towers TL, Presta LG, Ravetch JV . (2000). Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6: 443–446.

    Article  CAS  PubMed  Google Scholar 

  • Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM et al. (2001). Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 61: 4892–4900.

    CAS  PubMed  Google Scholar 

  • Chu I, Blackwell K, Chen S, Slingerland J . (2005). The dual ErbB1/ErbB2 inhibitor, lapatinib (GW572016), cooperates with tamoxifen to inhibit both cell proliferation- and estrogen-dependent gene expression in antiestrogen-resistant breast cancer. Cancer Res 65: 18–25.

    CAS  PubMed  Google Scholar 

  • Diermeier S, Horvath G, Knuechel-Clarke R, Hofstaedter F, Szollosi J, Brockhoff G . (2005). Epidermal growth factor receptor coexpression modulates susceptibility to Herceptin in HER2/neu overexpressing breast cancer cells via specific erbB-receptor interaction and activation. Exp Cell Res 304: 604–619.

    Article  CAS  PubMed  Google Scholar 

  • Gan HK, Walker F, Burgess AW, Rigopoulos A, Scott AM, Johns TG . (2007). The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers. Implications for combination therapy with monoclonal antibody 806. J Biol Chem 282: 2840–2850.

    Article  CAS  PubMed  Google Scholar 

  • Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E et al. (2004). Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 10: 5650–5655.

    Article  CAS  PubMed  Google Scholar 

  • Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al. (2006). Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355: 2733–2743.

    Article  CAS  PubMed  Google Scholar 

  • Henson ES, Hu X, Gibson SB . (2006). Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic Mcl-1 expression. Clin Cancer Res 12: 845–853.

    Article  CAS  PubMed  Google Scholar 

  • Hommelgaard AM, Lerdrup M, van Deurs B . (2004). Association with membrane protrusions makes ErbB2 an internalization-resistant receptor. Mol Biol Cell 15: 1557–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Armstrong EA, Benavente S, Chinnaiyan P, Harari PM . (2004). Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 64: 5355–5362.

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK . (2002). Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416: 279–280.

    Article  CAS  PubMed  Google Scholar 

  • Johns TG, Luwor RB, Murone C, Walker F, Weinstock J, Vitali AA et al. (2003). Antitumor efficacy of cytotoxic drugs and the monoclonal antibody 806 is enhanced by the EGF receptor inhibitor AG1478. Proc Natl Acad Sci USA 100: 15871–15876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JY, Sun Q, Oglesbee M, Yoon SO . (2003). The role of ErbB2 signaling in the onset of terminal differentiation of oligodendrocytes in vivo. J Neurosci 23: 5561–5571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klapper LN, Waterman H, Sela M, Yarden Y . (2000). Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 60: 3384–3388.

    CAS  PubMed  Google Scholar 

  • Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M et al. (2006). Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66: 1630–1639.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Shen L, Zhang J, Su J, Liu X, Han H et al. (2007). Degradation of HER2 by Cbl-based chimeric ubiquitin ligases. Cancer Res 67: 8716–8724.

    Article  CAS  PubMed  Google Scholar 

  • Lichtner RB, Menrad A, Sommer A, Klar U, Schneider MR . (2001). Signaling-inactive epidermal growth factor receptor/ligand complexes in intact carcinoma cells by quinazoline tyrosine kinase inhibitors. Cancer Res 61: 5790–5795.

    CAS  PubMed  Google Scholar 

  • Longva KE, Pedersen NM, Haslekas C, Stang E, Madshus IH . (2005). Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. Int J Cancer 116: 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Li X, Liang K, Luwor R, Siddik ZH, Mills GB et al. (2007). Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab. Cancer Res 67: 8240–8247.

    Article  CAS  PubMed  Google Scholar 

  • Marmor MD, Yarden Y . (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23: 2057–2070.

    Article  CAS  PubMed  Google Scholar 

  • Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M et al. (2005). Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23: 4265–4274.

    Article  CAS  PubMed  Google Scholar 

  • Matar P, Rojo F, Cassia R, Moreno-Bueno G, Di Cosimo S, Tabernero J et al. (2004). Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Clin Cancer Res 10: 6487–6501.

    Article  CAS  PubMed  Google Scholar 

  • Milella M, Trisciuoglio D, Bruno T, Ciuffreda L, Mottolese M, Cianciulli A et al. (2004). Trastuzumab down-regulates Bcl-2 expression and potentiates apoptosis induction by Bcl-2/Bcl-XL bispecific antisense oligonucleotides in HER-2 gene—amplified breast cancer cells. Clin Cancer Res 10: 7747–7756.

    Article  CAS  PubMed  Google Scholar 

  • Mimura K, Kono K, Hanawa M, Kanzaki M, Nakao A, Ooi A et al. (2005). Trastuzumab-mediated antibody-dependent cellular cytotoxicity against esophageal squamous cell carcinoma. Clin Cancer Res 11: 4898–4904.

    Article  CAS  PubMed  Google Scholar 

  • Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G et al. (2008). Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26: 1789–1796.

    Article  CAS  PubMed  Google Scholar 

  • O’Shaughnessy J, Blackwell KL, Burstein H, Storniolo AM, Sledge G, Baselga J et al. (2008). A randomized study of lapatinib alone or in combination with trastuzumab in heavily pretreated HER2+ metastatic breast cancer progressing on trastuzumab therapy. J Clin Oncol 26 (Suppl): abstract 1015.

  • Ozcelik C, Erdmann B, Pilz B, Wettschureck N, Britsch S, Hubner N et al. (2002). Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci USA 99: 8880–8885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perera RM, Narita Y, Furnari FB, Gan HK, Murone C, Ahlkvist M et al. (2005). Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypical epidermal growth factor receptor-specific antibody generates enhanced antitumor activity. Clin Cancer Res 11: 6390–6399.

    Article  CAS  PubMed  Google Scholar 

  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I et al. (2005). Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353: 1659–1672.

    Article  CAS  PubMed  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684.

    Article  CAS  PubMed  Google Scholar 

  • Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N et al. (2001). The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1: 85–94.

    CAS  PubMed  Google Scholar 

  • Sali A, Blundell TL . (1993). Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815.

    Article  CAS  PubMed  Google Scholar 

  • Scaltriti M, Rojo F, Ocana A, Anido J, Guzman M, Cortes J et al. (2007). Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer. J Natl Cancer Inst 99: 628–638.

    Article  CAS  PubMed  Google Scholar 

  • Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM et al. (2007). Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M et al. (2008). NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68: 8022–8030.

    Article  CAS  PubMed  Google Scholar 

  • Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Pawlicki M et al. (2005). Phase III randomized trial comparing doxorubicin and cyclophosphamide followed by docetaxel (ACT) with doxorubicin and cyclophosphamide followed by docetaxel and trastuzumab (ACTH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2 positive early breast cancer patients: BCIRG 006 study. 28th Annual San Antonio Breast Cancer Symposium abstract 1. San Antonio, TX, USA (abstract 1).

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  PubMed  Google Scholar 

  • Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA . (1999). Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26: 60–70.

    CAS  PubMed  Google Scholar 

  • Tang Y, Lou J, Alpaugh RK, Robinson MK, Marks JD, Weiner LM . (2007). Regulation of antibody-dependent cellular cytotoxicity by IgG intrinsic and apparent affinity for target antigen. J Immunol 179: 2815–2823.

    Article  CAS  PubMed  Google Scholar 

  • Tseng PH, Wang YC, Weng SC, Weng JR, Chen CS, Brueggemeier RW et al. (2006). Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol 70: 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  • Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S et al. (1996). A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16: 5276–5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valabrega G, Montemurro F, Sarotto I, Petrelli A, Rubini P, Tacchetti C et al. (2005). TGFalpha expression impairs Trastuzumab-induced HER2 downregulation. Oncogene 24: 3002–3010.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang L, Yeung TK, Chen X . (1999). Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol Biol Cell 10: 1621–1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolpoe ME, Lutz ER, Ercolini AM, Murata S, Ivie SE, Garrett ES et al. (2003). HER-2/neu-specific monoclonal antibodies collaborate with HER-2/neu-targeted granulocyte macrophage colony-stimulating factor secreting whole cell vaccination to augment CD8+ T cell effector function and tumor-free survival in Her-2/neu-transgenic mice. J Immunol 171: 2161–2169.

    Article  CAS  PubMed  Google Scholar 

  • Wood ER, Truesdale AT, McDonald OB, Yuan D, Hassell A, Dickerson SH et al. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res 64: 6652–6659.

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Gerard CM, Liu L, Baudson NM, Ory TL, Spector NL . (2005). Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 24: 6213–6221.

    Article  CAS  PubMed  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Yuste L, Montero JC, Esparis-Ogando A, Pandiella A . (2005). Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin. Cancer Res 65: 6801–6810.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J . (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125: 1137–1149.

    Article  CAS  PubMed  Google Scholar 

  • Zheng JH, Trafny EA, Knighton DR, Xuong NH, Taylor SS, Ten Eyck LF et al. (1993). 2.2-angstrom refined crystal-structure of the catalytic subunit of cAMP-dependent protein-kinase complexed with MnATP and a peptide inhibitor. Acta Crys D 49: 362–365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in full by a grant of the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Baselga.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scaltriti, M., Verma, C., Guzman, M. et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28, 803–814 (2009). https://doi.org/10.1038/onc.2008.432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.432

Keywords

This article is cited by

Search

Quick links