Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1

Abstract

Protein synthesis has a key role in the control of cell proliferation, and its deregulation is associated with pathological conditions, notably cancer. Rapamycin, an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), was known to inhibit protein synthesis. However, it does not substantially inhibit protein synthesis and cell proliferation in many cancer types. We were interested in finding a novel target in rapamycin-resistant cancer. The rate-limiting factor for translation is eukaryotic translation initiation factor 4E (eIF4E), which is negatively regulated by eIF4E-binding protein 1 (4E-BP1). Here, we provide evidence that glycogen synthase kinase (GSK)-3β promotes cell proliferation through positive regulation of protein synthesis. We found that GSK-3β phosphorylates and inactivates 4E-BP1, thereby increasing eIF4E-dependent protein synthesis. Considering the clinical relevance of pathways regulating protein synthesis, our study provides a promising new strategy and target for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lee J, Kim MS . The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract 2007; 77 (Suppl 1): S49–S57.

    Article  CAS  Google Scholar 

  2. Hur EM, Zhou FQ . GSK3 signalling in neural development. Nat Rev Neurosci 2010; 11: 539–551.

    Article  CAS  Google Scholar 

  3. Luo J . Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 2009; 273: 194–200.

    Article  CAS  Google Scholar 

  4. Patel S, Woodgett J . Glycogen synthase kinase-3 and cancer: good cop, bad cop? Cancer Cell 2008; 14: 351–353.

    Article  CAS  Google Scholar 

  5. Manoukian AS, Woodgett JR . Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv Cancer Res 2002; 84: 203–229.

    Article  CAS  Google Scholar 

  6. Miyashita K, Nakada M, Shakoori A, Ishigaki Y, Shimasaki T, Motoo Y et al. An emerging strategy for cancer treatment targeting aberrant glycogen synthase kinase 3beta. Anticancer Agents Med Chem 2009; 9: 1114–1122.

    Article  CAS  Google Scholar 

  7. Wang Z, Iwasaki M, Ficara F, Lin C, Matheny C, Wong SH et al. GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell 2010; 17: 597–608.

    Article  CAS  Google Scholar 

  8. Wang Z, Smith KS, Murphy M, Piloto O, Somervaille TC, Cleary ML . Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008; 455: 1205–1209.

    Article  CAS  Google Scholar 

  9. Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO . Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA 2011; 108: E1204–E1213.

    Article  Google Scholar 

  10. Ougolkov AV, Bone ND, Fernandez-Zapico ME, Kay NE, Billadeau DD . Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor kappaB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood 2007; 110: 735–742.

    Article  CAS  Google Scholar 

  11. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR . Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature 2000; 406: 86–90.

    Article  CAS  Google Scholar 

  12. Foltz DR, Santiago MC, Berechid BE, Nye JS . Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol 2002; 12: 1006–1011.

    Article  CAS  Google Scholar 

  13. Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta. Genes Dev 2004; 18: 261–277.

    Article  CAS  Google Scholar 

  14. Rocques N, Abou Zeid N, Sii-Felice K, Lecoin L, Felder-Schmittbuhl MP, Eychene A et al. GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol Cell 2007; 28: 584–597.

    Article  CAS  Google Scholar 

  15. Lu Y, Muller M, Smith D, Dutta B, Komurov K, Iadevaia S et al. Kinome siRNA-phosphoproteomic screen identifies networks regulating AKT signaling. Oncogene 2011; 30: 4567–4577.

    Article  CAS  Google Scholar 

  16. Ougolkov AV, Billadeau DD . Targeting GSK-3: a promising approach for cancer therapy? Future Oncol 2006; 2: 91–100.

    Article  CAS  Google Scholar 

  17. Liu T, Yacoub R, Taliaferro-Smith LD, Sun SY, Graham TR, Dolan R et al. Combinatorial effects of lapatinib and rapamycin in triple-negative breast cancer cells. Mol Cancer Ther 2011; 10: 1460–1469.

    Article  CAS  Google Scholar 

  18. Zeng Q, Yang Z, Gao YJ, Yuan H, Cui K, Shi Y et al. Treating triple-negative breast cancer by a combination of rapamycin and cyclophosphamide: an in vivo bioluminescence imaging study. Eur J Cancer 2010; 46: 1132–1143.

    Article  CAS  Google Scholar 

  19. Blagden SP, Willis AE . The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol 2011; 8: 280–291.

    Article  CAS  Google Scholar 

  20. Mir MA, Panganiban AT . A protein that replaces the entire cellular eIF4F complex. EMBO J 2008; 27: 3129–3139.

    Article  CAS  Google Scholar 

  21. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999; 13: 1422–1437.

    Article  CAS  Google Scholar 

  22. Ayuso MI, Hernandez-Jimenez M, Martin ME, Salinas M, Alcazar A . New hierarchical phosphorylation pathway of the translational repressor eIF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J Biol Chem 2010; 285: 34355–34363.

    Article  CAS  Google Scholar 

  23. Wang X, Proud CG . Methods for studying signal-dependent regulation of translation factor activity. Methods Enzymol 2007; 431: 113–142.

    Article  CAS  Google Scholar 

  24. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 2001; 15: 2852–2864.

    Article  CAS  Google Scholar 

  25. Wang X, Li W, Parra JL, Beugnet A, Proud CG . The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol 2003; 23: 1546–1557.

    Article  CAS  Google Scholar 

  26. Tullai JW, Graham JR, Cooper GM . A GSK-3-mediated transcriptional network maintains repression of immediate early genes in quiescent cells. Cell Cycle 2011; 10: 3072–3077.

    Article  Google Scholar 

  27. Hardt SE, Sadoshima J . Glycogen synthase kinase-3beta: a novel regulator of cardiac hypertrophy and development. Circ Res 2002; 90: 1055–1063.

    Article  CAS  Google Scholar 

  28. Eldar-Finkelman H . Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 2002; 8: 126–132.

    Article  CAS  Google Scholar 

  29. Doble BW, Woodgett JR . GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003; 116: 1175–1186.

    Article  CAS  Google Scholar 

  30. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332: 1322–1326.

    Article  CAS  Google Scholar 

  31. Lobry C, Oh P, Aifantis I . Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J Exp Med 2011; 208: 1931–1935.

    Article  CAS  Google Scholar 

  32. Tabares-Seisdedos R, Dumont N, Baudot A, Valderas JM, Climent J, Valencia A et al. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases. Lancet Oncol 2011; 12: 604–608.

    Article  Google Scholar 

  33. Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 2008; 300: 2754–2764.

    Article  CAS  Google Scholar 

  34. Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B . Diabetes mellitus and breast cancer. Lancet Oncol 2005; 6: 103–111.

    Article  CAS  Google Scholar 

  35. Birch NW, Zeleznik-Le NJ . Glycogen synthase kinase-3 and leukemia: restoring the balance. Cancer Cell 2010; 17: 529–531.

    Article  CAS  Google Scholar 

  36. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 2004; 431: 200–205.

    Article  CAS  Google Scholar 

  37. Jiang YP, Ballou LM, Lin RZ . Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver. J Biol Chem 2001; 276: 10943–10951.

    Article  CAS  Google Scholar 

  38. Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J . Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 2008; 105: 17414–17419.

    Article  CAS  Google Scholar 

  39. Zhang Y, Zheng XF . mTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors. Cell Cycle 2012; 11: 594–603.

    Article  CAS  Google Scholar 

  40. Hsieh AC, Costa M, Zollo O, Davis C, Feldman ME, Testa JR et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell 2010; 17: 249–261.

    Article  CAS  Google Scholar 

  41. Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, Timm J et al. A directed protein interaction network for investigating intracellular signal transduction. Sci Signal 2011; 4: rs8.

    Article  Google Scholar 

  42. Alessi DR, Pearce LR, Garcia-Martinez JM . New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2009; 2: pe27.

    Article  Google Scholar 

  43. Efeyan A, Sabatini DM . mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 2010; 22: 169–176.

    Article  CAS  Google Scholar 

  44. Horton LE, Bushell M, Barth-Baus D, Tilleray VJ, Clemens MJ, Hensold JO . p53 activation results in rapid dephosphorylation of the eIF4E-binding protein 4E-BP1, inhibition of ribosomal protein S6 kinase and inhibition of translation initiation. Oncogene 2002; 21: 5325–5334.

    Article  CAS  Google Scholar 

  45. Kulikov R, Boehme KA, Blattner C . Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol 2005; 25: 7170–7180.

    Article  CAS  Google Scholar 

  46. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 2010; 29: 3939–3951.

    Article  CAS  Google Scholar 

  47. Keshwani MM, von Daake S, Newton AC, Harris TK, Taylor SS . Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1). J Biol Chem 2011; 286: 23552–23558.

    Article  CAS  Google Scholar 

  48. Kim GP, Billadeau DD . GSK-3β inhibition in pancreatic cancer. In: Lowy AM, Leach SD, Philip PA, (eds). Pancreatic Cancer. Springer, US,, 2008, pp 635–646.

    Chapter  Google Scholar 

  49. Ougolkov AV, Fernandez-Zapico ME, Savoy DN, Urrutia RA, Billadeau DD . Glycogen synthase kinase-3beta participates in nuclear factor kappaB-mediated gene transcription and cell survival in pancreatic cancer cells. Cancer Res 2005; 65: 2076–2081.

    Article  CAS  Google Scholar 

  50. Mishra R . Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 2010; 9: 144.

    Article  Google Scholar 

  51. Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD et al. Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 2005; 334: 1365–1373.

    Article  CAS  Google Scholar 

  52. Shin S, Dimitri CA, Yoon SO, Dowdle W, Blenis J . ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell 2010; 38: 114–127.

    Article  CAS  Google Scholar 

  53. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  Google Scholar 

  54. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007; 282: 14056–14064.

    Article  CAS  Google Scholar 

  55. Chen Y, Azad MB, Gibson SB . Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 2010; 88: 285–295.

    Article  CAS  Google Scholar 

  56. Shakoori A, Mai W, Miyashita K, Yasumoto K, Takahashi Y, Ooi A et al. Inhibition of GSK-3 beta activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci 2007; 98: 1388–1393.

    Article  CAS  Google Scholar 

  57. Mai W, Kawakami K, Shakoori A, Kyo S, Miyashita K, Yokoi K et al. Deregulated GSK3(beta) sustains gastrointestinal cancer cells survival by modulating human telomerase reverse transcriptase and telomerase. Clin Cancer Res 2009; 15: 6810–6819.

    Article  CAS  Google Scholar 

  58. Ikenoue T, Hong S, Inoki K . Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol 2009; 452: 165–180.

    Article  CAS  Google Scholar 

  59. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1: 84–96.

    Article  CAS  Google Scholar 

  60. Lee GY, Kenny PA, Lee EH, Bissell MJ . Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 2007; 4: 359–365.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs John Blenis, Do-Hyung Kim, Andrew L Kung, David Baltimore and Anne E Willis for generously providing reagents. We also thank Dr Belinda Peace for editing this manuscript and Teng Teng for polysome analysis. This work was supported by a start-up fund from the University of Cincinnati College of Medicine and the Marlene Harris-Ride Cincinnati Breast Cancer Pilot Grant Program (S-OY), by the Canadian Cancer Society Research Institute and the Cancer Research Society (PPR), and by the Cancer Prevention and Research Institute of Texas (R1103), the Welch Foundation (I-1800), and a start-up fund from the University of Texas Southwestern Medical Center (YY). PP Roux holds a Canada Research Chair in Signal Transduction and Proteomics and Y Yu is a CPRIT scholar in Cancer Research and a Virginia Murchison Linthicum Scholar in Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-O Yoon.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S., Wolgamott, L., Tcherkezian, J. et al. Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene 33, 1690–1699 (2014). https://doi.org/10.1038/onc.2013.113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.113

Keywords

This article is cited by

Search

Quick links