Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Myocyte enhancer factor 2C in hematopoiesis and leukemia

Abstract

MEF2C is a selectively expressed transcription factor involved in different transcriptional complexes. Originally identified as an essential regulator of muscle development, ectopic expression of MEF2C as a result of chromosomal rearrangements is now linked to leukemia. Specifically, high MEF2C expression has been linked to mixed lineage leukemia-rearranged acute myeloid leukemia as well as to the immature subgroup of T-cell acute lymphoblastic leukemia. This review focuses on the role of MEF2C in the hematopoietic system and on aberrant MEF2C expression in human leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

MEF2:

myocyte enhancer factor 2

MADS:

MCM1-agamous-deficiens-serum response factor

bHLH:

basic helix-loop-helix

MLP:

muscle LIM-only protein

HDAC:

histone deacetylase

MAML:

Mastermind-like

ICN:

intracellular NOTCH

MMP1:

matrix metallo proteinase1

HSC:

hematopoietic stem cell

CMP:

common myeloid progenitor

GMP:

granulocyte-monocyte/macrophage progenitor

MEP:

megakaryocyte-erythrocyte progenitor

CLP:

common lymphoid progenitor

BCR:

B cell receptor

MPP:

multipotent progenitor

LSC:

leukemic stem cell

MLL:

mixed lineage leukemia

AML:

acute myeloid leukemia

T-ALL:

T cell acute lymphoblastic leukemia

ETP-ALL:

early T cell precursor acute lymphoblastic leukemia.

References

  1. Black BL, Olson EN . Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998; 14: 167–196.

    CAS  PubMed  Google Scholar 

  2. Gossett LA, Kelvin DJ, Sternberg EA, Olson EN . A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 1989; 9: 5022–5033.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Molkentin JD . Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 1996; 16: 2627–2636.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Molkentin JD, Olson EN . Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 1996; 93: 9366–9373.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Olson EN, Perry M, Schulz RA . Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol 1995; 172: 2–14.

    CAS  PubMed  Google Scholar 

  6. Zhu B, Gulick T . Phosphorylation and alternative pre-mRNA splicing converge to regulate myocyte enhancer factor 2C activity. Mol Cell Biol 2004; 24: 8264–8275.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu B, Ramachandran B, Gulick T . Alternative pre-mRNA splicing governs expression of a conserved acidic transactivation domain in myocyte enhancer factor 2 factors of striated muscle and brain. J Biol Chem 2005; 280: 28749–28760.

    CAS  PubMed  Google Scholar 

  8. Sekiyama Y, Suzuki H, Tsukahara T . Functional gene expression analysis of tissue-specific isoforms of Mef2c. Cell Mol Neurobiol 2011; 32: 129–139.

    PubMed  Google Scholar 

  9. Hakim NH, Kounishi T, Alam AH, Tsukahara T, Suzuki H . Alternative splicing of Mef2c promoted by Fox-1 during neural differentiation in P19 cells. Genes to Cells: Devoted to Molecular & Cellular Mechanisms 2010; 15: 255–267.

    Google Scholar 

  10. Kang J, Gocke CB, Yu H . Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem 2006; 7: 5.

    PubMed  PubMed Central  Google Scholar 

  11. Edmondson DG, Lyons GE, Martin JF, Olson EN . Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 1994; 120: 1251–1263.

    CAS  PubMed  Google Scholar 

  12. Lin Q, Schwarz J, Bucana C, Olson EN . Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997; 276: 1404–1407.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN . The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 2001; 128: 4623–4633.

    CAS  PubMed  Google Scholar 

  14. Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 2007; 12: 377–389.

    CAS  PubMed  Google Scholar 

  15. Kramer I, Baertschi S, Halleux C, Keller H, Kneissel M . Mef2c deletion in osteocytes results in increased bone mass. J Bone Miner Res 2012; 27: 360–373.

    CAS  PubMed  Google Scholar 

  16. Akhtar MW, Kim MS, Adachi M, Morris MJ, Qi X, Richardson JA et al. In vivo analysis of MEF2 transcription factors in synapse regulation and neuronal survival. PLoS One 2012; 7: e34863.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Barbosa AC, Kim MS, Ertunc M, Adachi M, Nelson ED, McAnally J et al. MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function. Proc Natl Acad Sci USA 2008; 105: 9391–9396.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho EG, Zaremba JD, McKercher SR, Talantova M, Tu S, Masliah E et al. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a Parkinsonian rat model. PLoS One 2011; 6: e24027.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Radford JC, Ragusa MJ, Shea KL, McKercher SR, Zaremba JD et al. Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo. Proc Natl Acad Sci USA 2008; 105: 9397–9402.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Z, McKercher SR, Cui J, Nie Z, Soussou W, Roberts AJ et al. Myocyte enhancer factor 2C as a neurogenic and antiapoptotic transcription factor in murine embryonic stem cells. J Neurosci 2008; 28: 6557–6568.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Meur N, Holder-Espinasse M, Jaillard S, Goldenberg A, Joriot S, Amati-Bonneau P et al. MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations. J Med Genet 2010; 47: 22–29.

    CAS  PubMed  Google Scholar 

  22. Mikhail FM, Lose EJ, Robin NH, Descartes MD, Rutledge KD, Rutledge SL et al. Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders. Am J Med Genet A 2011; 155A: 2386–2396.

    Article  PubMed  Google Scholar 

  23. Zweier M, Rauch A . The MEF2C-related and 5q14.3q15 microdeletion syndrome. Mol Syndromol 2012; 2: 164–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bienvenu T, Diebold B, Chelly J, Isidor B . Refining the phenotype associated with MEF2C point mutations. Neurogenetics 2013; 14: 71–75.

    PubMed  Google Scholar 

  25. Agarwal P, Verzi MP, Nguyen T, Hu J, Ehlers ML, McCulley DJ et al. The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10. Development 2011; 138: 2555–2565.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Verzi MP, Agarwal P, Brown C, McCulley DJ, Schwarz JJ, Black BL . The transcription factor MEF2C is required for craniofacial development. Dev Cell 2007; 12: 645–652.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ji ZX, Du C, Wu GS, Li SY, An GS, Yang YX et al. Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C. Mol Genet Genomics 2009; 281: 1–10.

    CAS  PubMed  Google Scholar 

  28. Kong Y, Flick MJ, Kudla AJ, Konieczny SF . Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD. Mol Cell Biol 1997; 17: 4750–4760.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sartorelli V, Huang J, Hamamori Y, Kedes L . Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 1997; 17: 1010–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma K, Chan JKL, Zhu G, Wu Z . Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 2005; 25: 3575–3582.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen SL, Dowhan DH, Hosking BM, Muscat GE . The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 2000; 14: 1209–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. McKinsey TA, Zhang CL, Lu J, Olson EN . Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000; 408: 106–111.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu J, McKinsey TA, Nicol RL, Olson EN . Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 2000; 97: 4070–4075.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Youn HD, Sun L, Prywes R, Liu JO . Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 1999; 286: 790–793.

    CAS  PubMed  Google Scholar 

  35. Youn HD, Liu JO . Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 2000; 13: 85–94.

    CAS  PubMed  Google Scholar 

  36. Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 2007; 27: 1280–1295.

    CAS  PubMed  Google Scholar 

  37. Nebbioso A, Manzo F, Miceli M, Conte M, Manente L, Baldi A et al. Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep 2009; 10: 776–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dressel U, Bailey PJ, Wang S-CM, Downes M, Evans RM, Muscat GEO . A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 2001; 276: 17007–17013.

    CAS  PubMed  Google Scholar 

  39. Micheli L, Leonardi L, Conti F, Buanne P, Canu N, Caruso M et al. PC4 coactivates MyoD by relieving the histone deacetylase 4-mediated inhibition of myocyte enhancer factor 2C. Mol Cell Biol 2005; 25: 2242–2259.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Micheli L, Leonardi L, Conti F, Maresca G, Colazingari S, Mattei E et al. PC4/Tis7/IFRD1 stimulates skeletal muscle regeneration and is involved in myoblast differentiation as a regulator of MyoD and NF-kappaB. J Biol Chem 2011; 286: 5691–5707.

    CAS  PubMed  Google Scholar 

  41. Shen H, McElhinny AS, Cao Y, Gao P, Liu J, Bronson R et al. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev 2006; 20: 675–688.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kopan R, Nye JS, Weintraub H . The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 1994; 120: 2385–2396.

    CAS  PubMed  Google Scholar 

  43. Gagan J, Dey BK, Layer R, Yan Z, Dutta A . Notch3 and Mef2c are mutually antagonistic via Mkp1 and miR-1/206 in differentiating myoblasts. J Biol Chem 2012; 287: 40360–40370.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McElhinny AS, Li JL, Wu L . Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 2008; 27: 5138–5147.

    CAS  PubMed  Google Scholar 

  45. Saint Just Ribeiro M, Wallberg AE . Transcriptional mechanisms by the coregulator MAML1. Curr Protein Pept Sci 2009; 10: 570–576.

    CAS  PubMed  Google Scholar 

  46. Wilson-Rawls J, Molkentin JD, Black BL, Olson EN . Activated Notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C. Mol Cell Biol 1999; 19: 2853–2862.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pallavi SK, Ho DM, Hicks C, Miele L, Artavanis-Tsakonas S . Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila. EMBO J 2012; 31: 2895–2907.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schuler A, Schwieger M, Engelmann A, Weber K, Horn S, Muller U et al. The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate. Blood 2008; 111: 4532–4541.

    PubMed  Google Scholar 

  49. Stehling-Sun S, Dade J, Nutt SL, DeKoter RP, Camargo FD . Regulation of lymphoid versus myeloid fate ‘choice’ by the transcription factor Mef2c. Nat Immunol 2009; 10: 289–296.

    CAS  PubMed  Google Scholar 

  50. Swanson BJ, Jack HM, Lyons GE . Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol Immunol 1998; 35: 445–458.

    CAS  PubMed  Google Scholar 

  51. Vong LH, Ragusa MJ, Schwarz JJ . Generation of conditional Mef2cloxP/loxP mice for temporal- and tissue-specific analyses. Genesis 2005; 43: 43–48.

    CAS  PubMed  Google Scholar 

  52. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.

    CAS  PubMed  Google Scholar 

  53. Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451: 1125–1129.

    CAS  PubMed  Google Scholar 

  54. Gekas C, Rhodes KE, Gereige LM, Helgadottir H, Ferrari R, Kurdistani SK et al. Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood 2009; 113: 3461–3471.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Khiem D, Cyster JG, Schwarz JJ, Black BL . A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proc Natl Acad Sci USA 2008; 105: 17067–17072.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O, Schwarz JJ et al. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol 2008; 9: 603–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Winslow MM, Gallo EM, Neilson JR, Crabtree GR . The calcineurin phosphatase complex modulates immunogenic B cell responses. Immunity 2006; 24: 141–152.

    CAS  PubMed  Google Scholar 

  58. Debnath I, Roundy KM, Pioli PD, Weis JJ, Weis JH . Bone marrow-induced Mef2c deficiency delays B-cell development and alters the expression of key B-cell regulatory proteins. Int Immunol 2013; 25: 99–115.

    CAS  PubMed  Google Scholar 

  59. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  60. Du Y, Spence SE, Jenkins NA, Copeland NG . Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 2005; 106: 2498–2505.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwieger M, Schüler A, Forster M, Engelmann A, Arnold MA, Delwel R et al. Homing and invasiveness of MLL/ENL leukemic cells is regulated by MEF2C. Blood 2009; 114: 2476–2488.

    CAS  PubMed  Google Scholar 

  62. Homminga I, Pieters R, Langerak Anton W, de Rooi Johan J, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    CAS  PubMed  Google Scholar 

  63. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009; 113: 2375–2385.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 2012; 26: 1829–1841.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG et al. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270–277.

    CAS  PubMed  Google Scholar 

  66. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 2007; 12: 457–466.

    CAS  PubMed  Google Scholar 

  67. Agatheeswaran S, Singh S, Biswas S, Biswas G, Chandra Pattnayak N, Chakraborty S . BCR-ABL mediated repression of miR-223 results in the activation of MEF2C and PTBP2 in chronic myeloid leukemia. Leukemia 2013; 27: 1578–1580.

    CAS  PubMed  Google Scholar 

  68. Meijerink JP . Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2010; 23: 307–318.

    CAS  PubMed  Google Scholar 

  69. Van Vlierberghe P, van Grotel M, Tchinda J, Lee C, Beverloo HB, van der Spek PJ et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 2008; 111: 4668–4680.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 2009; 10: 147–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nagel S, Kaufmann M, Drexler HG, MacLeod RA . The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 2003; 63: 5329–5334.

    CAS  PubMed  Google Scholar 

  72. Przybylski GK, Dik WA, Grabarczyk P, Wanzeck J, Chudobska P, Jankowski K et al. The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. Haematologica 2006; 91: 317–321.

    CAS  PubMed  Google Scholar 

  73. Vincentz JW, Barnes RM, Firulli BA, Conway SJ, Firulli AB . Cooperative interaction of Nkx2.5 and Mef2c transcription factors during heart development. Dev Dyn 2008; 237: 3809–3819.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Nagel S, Meyer C, Quentmeier H, Kaufmann M, Drexler HG, MacLeod RA . MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia 2008; 22: 600–607.

    CAS  PubMed  Google Scholar 

  75. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Prima V, Gore L, Caires A, Boomer T, Yoshinari M, Imaizumi M et al. Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia 2005; 19: 806–813.

    CAS  PubMed  Google Scholar 

  77. Prima V, Hunger SP . Cooperative transformation by MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins generated by the variant t(1;19) in acute lymphoblastic leukemia. Leukemia 2007; 21: 2470–2475.

    CAS  PubMed  Google Scholar 

  78. Yuki Y, Imoto I, Imaizumi M, Hibi S, Kaneko Y, Amagasa T et al. Identification of a novel fusion gene in a pre-B acute lymphoblastic leukemia with t(1;19)(q23;p13). Cancer Sci 2004; 95: 503–507.

    CAS  PubMed  Google Scholar 

  79. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Andrews SF, Dai X, Ryu BY, Gulick T, Ramachandran B, Rawlings DJ . Developmentally regulated expression of MEF2C limits the response to BCR engagement in transitional B cells. Eur J Immunol 2012; 42: 1327–1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, Haydu JE, Rigo I, Hadler M et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med 2012; 208: 2571–2579.

    Google Scholar 

  82. Rothenberg EV, Scripture-Adams DD . Competition and collaboration: GATA-3, PU.1, and Notch signaling in early T-cell fate determination. Semin Immunol 2008; 20: 236–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D et al. Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 2003; 4: 168–174.

    CAS  PubMed  Google Scholar 

  84. Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 2003; 4: 1029–1036.

    CAS  PubMed  Google Scholar 

  85. Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L . Nutt SL PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 2005; 201: 1487–1502.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004; 36: 624–630.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Children Cancer Free Foundation (Stichting Kinderen Kankervrij (KIKA), 2008-029 (KCB)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P P Meijerink.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canté-Barrett, K., Pieters, R. & Meijerink, J. Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene 33, 403–410 (2014). https://doi.org/10.1038/onc.2013.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.56

Keywords

This article is cited by

Search

Quick links