Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies

Abstract

The discovery of constitutive nuclear factor-κB (NF-κB) activation in Hodgkin's lymphoma tumor cells almost two decades ago was one of the first reports that directly connected deregulated NF-κB signaling to human cancer. Subsequent studies demonstrated that enhanced NF-κB signaling is a common hallmark of many lymphoid malignancies, including Hodgkin lymphoma, mucosa-associated lymphoid tissue lymphoma, diffuse large B-cell lymphoma and multiple myeloma. By inducing an anti-apoptotic and pro-proliferative gene program, NF-κB is involved in lymphoma survival and growth. Identification of somatic mutations that led to activation of oncogenes and inactivation of tumor suppressor genes in the pathway revealed that specific pathogenic mechanisms are responsible for constitutive NF-κB activation in different lymphoma entities. Thus, the identification of distinct oncogenic events is reflecting the diverse cellular origins of the different lymphomas. Further, elucidation of the mechanisms that drive NF-κB in lymphoma is of high clinical relevance as it will allow the design of target-directed precision therapy. Indeed, a number of drugs that impair constitutive NF-κB activation in lymphoid malignancies are currently in preclinical or clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Napetschnig J, Wu H . Molecular basis of NF-kappaB signaling. Annu Rev Biophys 2013; 42: 443–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oeckinghaus A, Ghosh S . The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1: a000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kanarek N, Ben-Neriah Y . Regulation of NF-kappaB by ubiquitination and degradation of the IkappaBs. Immunol Rev 2012; 246: 77–94.

    Article  PubMed  CAS  Google Scholar 

  4. Hayden MS, Ghosh S . NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012; 26: 203–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheidereit C . IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene 2006; 25: 6685–6705.

    Article  CAS  PubMed  Google Scholar 

  6. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  7. Sun SC . Non-canonical NF-kappaB signaling pathway. Cell Res 2011; 21: 71–85.

    Article  CAS  PubMed  Google Scholar 

  8. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS . Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood 2006; 107: 265–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K . Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996; 184: 1495–1505.

    Article  CAS  PubMed  Google Scholar 

  10. Marafioti T, Hummel M, Foss HD, Laumen H, Korbjuhn P, Anagnostopoulos I et al. Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000; 95: 1443–1450.

    Article  CAS  PubMed  Google Scholar 

  11. Brauninger A, Wacker HH, Rajewsky K, Kuppers R, Hansmann ML . Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin's lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin's lymphoma. Cancer Res 2003; 63: 1644–1651.

    PubMed  Google Scholar 

  12. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K et al. High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 1996; 87: 4340–4347.

    Article  CAS  PubMed  Google Scholar 

  13. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B, Scheidereit C . Molecular mechanisms of constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg cells. Oncogene 1999; 18: 943–953.

    Article  CAS  PubMed  Google Scholar 

  15. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196: 605–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmitz R, Stanelle J, Hansmann ML, Kuppers R . Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol 2009; 4: 151–174.

    Article  CAS  PubMed  Google Scholar 

  17. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F et al. Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 1999; 94: 3129–3134.

    Article  CAS  PubMed  Google Scholar 

  18. Kapatai G, Murray P . Contribution of the Epstein Barr virus to the molecular pathogenesis of Hodgkin lymphoma. J Clin Pathol 2007; 60: 1342–1349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Graham JP, Arcipowski KM, Bishop GA . Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1. Immunol Rev 2010; 237: 226–248.

    Article  CAS  PubMed  Google Scholar 

  20. Pang MF, Lin KW, Peh SC . The signaling pathways of Epstein-Barr virus-encoded latent membrane protein 2A (LMP2A) in latency and cancer. Cell Mol Biol Lett 2009; 14: 222–247.

    Article  CAS  PubMed  Google Scholar 

  21. Kilger E, Kieser A, Baumann M, Hammerschmidt W . Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 1998; 17: 1700–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luftig M, Yasui T, Soni V, Kang MS, Jacobson N, Cahir-McFarland E et al. Epstein-Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKK alpha-dependent noncanonical NF-kappaB activation. Proc Natl Acad Sci USA 2004; 101: 141–146.

    Article  CAS  PubMed  Google Scholar 

  23. Eliopoulos AG, Caamano JH, Flavell J, Reynolds GM, Murray PG, Poyet JL et al. Epstein-Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene 2003; 22: 7557–7569.

    Article  CAS  PubMed  Google Scholar 

  24. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N . Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA 1998; 95: 11963–11968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N et al. Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 1999; 286: 300–303.

    Article  CAS  PubMed  Google Scholar 

  26. Mao Y, Lu MP, Lin H, Zhang da W, Liu Y, Li QD et al. Prognostic significance of EBV latent membrane protein 1 expression in lymphomas: evidence from 15 studies. PloS One 2013; 8: doi doi:10.1371 e60313.

  27. Fruehling S, Longnecker R . The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology 1997; 235: 241–251.

    Article  CAS  PubMed  Google Scholar 

  28. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R . Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 1998; 9: 405–411.

    Article  CAS  PubMed  Google Scholar 

  29. Mancao C, Hammerschmidt W . Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 2007; 110: 3715–3721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Casola S, Otipoby KL, Alimzhanov M, Humme S, Uyttersprot N, Kutok JL et al. B cell receptor signal strength determines B cell fate. Nat Immunol 2004; 5: 317–327.

    Article  CAS  PubMed  Google Scholar 

  31. Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  32. Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov SW, Moller P et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 2006; 107: 2493–2500.

    Article  CAS  PubMed  Google Scholar 

  33. Re D, Hartlapp I, Greiner A, Diehl V, Wickenhauser C . Analysis of CARMA1/BCL10/MALT1 expression in Reed-Sternberg cells of classical Hodgkin lymphoma. Leuk Lymphoma 2008; 49: 362–364.

    Article  CAS  PubMed  Google Scholar 

  34. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 2002; 99: 1474–1477.

    Article  CAS  PubMed  Google Scholar 

  35. Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 2003; 101: 3681–3686.

    Article  CAS  PubMed  Google Scholar 

  36. Joos S, Menz CK, Wrobel G, Siebert R, Gesk S, Ohl S et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 2002; 99: 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  37. Mathas S, Johrens K, Joos S, Lietz A, Hummel F, Janz M et al. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood 2005; 106: 4287–4293.

    Article  CAS  PubMed  Google Scholar 

  38. Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D . The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-kappa B p50 homodimers. Genes dev 1993; 7: 1354–1363.

    Article  CAS  PubMed  Google Scholar 

  39. Martin-Subero JI, Wlodarska I, Bastard C, Picquenot JM, Hoppner J, Giefing M et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood 2006; 108: 401–402 author reply 402-403.

    Article  CAS  PubMed  Google Scholar 

  40. Jungnickel B, Staratschek-Jox A, Brauninger A, Spieker T, Wolf J, Diehl V et al. Clonal deleterious mutations in the IkappaBalpha gene in the malignant cells in Hodgkin's lymphoma. J Exp Med 2000; 191: 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lake A, Shield LA, Cordano P, Chui DT, Osborne J, Crae S et al. Mutations of NFKBIA, encoding IkappaB alpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer 2009; 125: 1334–1342.

    Article  CAS  PubMed  Google Scholar 

  42. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Dohner K et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol 2003; 201: 413–420.

    Article  CAS  PubMed  Google Scholar 

  43. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 2009; 459: 712–716.

    Article  CAS  PubMed  Google Scholar 

  44. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 2009; 206: 981–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vereecke L, Beyaert R, van Loo G . The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol 2009; 30: 383–391.

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt A, Schmitz R, Giefing M, Martin-Subero JI, Gesk S, Vater I et al. Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosomes Cancer 2010; 49: 803–809.

    CAS  PubMed  Google Scholar 

  47. Harhaj EW, Dixit VM . Regulation of NF-kappaB by deubiquitinases. Immunol Rev 2012; 246: 107–124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nonaka M, Horie R, Itoh K, Watanabe T, Yamamoto N, Yamaoka S . Aberrant NF-kappaB2/p52 expression in Hodgkin/Reed-Sternberg cells and CD30-transformed rat fibroblasts. Oncogene 2005; 24: 3976–3986.

    Article  CAS  PubMed  Google Scholar 

  49. Ranuncolo SM, Pittaluga S, Evbuomwan MO, Jaffe ES, Lewis BA . Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival. Blood 2012; 120: 3756–3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Otto C, Giefing M, Massow A, Vater I, Gesk S, Schlesner M et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 2012; 157: 702–708.

    Article  CAS  PubMed  Google Scholar 

  51. Ferme C, Eghbali H, Meerwaldt JH, Rieux C, Bosq J, Berger F et al. Chemotherapy plus involved-field radiation in early-stage Hodgkin's disease. N Engl J Med 2007; 357: 1916–1927.

    Article  CAS  PubMed  Google Scholar 

  52. McAllister-Lucas LM, Baens M, Lucas PC . MALT1 protease: a new therapeutic target in B lymphoma and beyond? Clin Cancer Res 2011; 17: 6623–6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Isaacson PG, Du MQ . MALT lymphoma: from morphology to molecules. Nat Rev Cancer 2004; 4: 644–653.

    Article  CAS  PubMed  Google Scholar 

  54. Hussell T, Isaacson PG, Crabtree JE, Spencer J . Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue. J Pathol 1996; 178: 122–127.

    Article  CAS  PubMed  Google Scholar 

  55. Liu H, Ye H, Ruskone-Fourmestraux A, De Jong D, Pileri S, Thiede C et al. T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology 2002; 122: 1286–1294.

    Article  CAS  PubMed  Google Scholar 

  56. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul-Rauf M et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 1999; 96: 35–45.

    Article  CAS  PubMed  Google Scholar 

  57. Ye H, Dogan A, Karran L, Willis TG, Chen L, Wlodarska I et al. BCL10 expression in normal and neoplastic lymphoid tissue. Nuclear localization in MALT lymphoma. Am J Pathol 2000; 157: 1147–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thome M, Charton JE, Pelzer C, Hailfinger S . Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol 2010; 2: a003004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Li Z, Wang H, Xue L, Shin DM, Roopenian D, Xu W et al. Emu-BCL10 mice exhibit constitutive activation of both canonical and noncanonical NF-kappaB pathways generating marginal zone (MZ) B-cell expansion as a precursor to splenic MZ lymphoma. Blood 2009; 114: 4158–4168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Du MQ . MALT lymphoma: many roads lead to nuclear factor-kappab activation. Histopathology 2011; 58: 26–38.

    Article  PubMed  Google Scholar 

  61. Streubel B, Lamprecht A, Dierlamm J, Cerroni L, Stolte M, Ott G et al. T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood 2003; 101: 2335–2339.

    Article  CAS  PubMed  Google Scholar 

  62. Sanchez-Izquierdo D, Buchonnet G, Siebert R, Gascoyne RD, Climent J, Karran L et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 2003; 101: 4539–4546.

    Article  CAS  PubMed  Google Scholar 

  63. Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 2008; 9: 272–281.

    Article  CAS  PubMed  Google Scholar 

  64. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 2008; 9: 263–271.

    Article  CAS  PubMed  Google Scholar 

  65. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE et al. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci USA 2011; 108: 14596–14601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K et al. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 2013; 153: 1036–1049.

    Article  CAS  PubMed  Google Scholar 

  67. Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 2000; 6: 961–967.

    CAS  PubMed  Google Scholar 

  68. Rosebeck S, Lucas PC, McAllister-Lucas LM . Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment. Future Oncol 2011; 7: 613–617.

    Article  CAS  PubMed  Google Scholar 

  69. Kingeter LM, Schaefer BC . Malt1 and cIAP2-Malt1 as effectors of NF-kappaB activation: kissing cousins or distant relatives? Cell Signal 2010; 22: 9–22.

    Article  CAS  PubMed  Google Scholar 

  70. Ferch U, Kloo B, Gewies A, Pfander V, Duwel M, Peschel C et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2009; 206: 2313–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ho L, Davis RE, Conne B, Chappuis R, Berczy M, Mhawech P et al. MALT1 and the API2-MALT1 fusion act between CD40 and IKK and confer NF-kappa B-dependent proliferative advantage and resistance against FAS-induced cell death in B cells. Blood 2005; 105: 2891–2899.

    Article  CAS  PubMed  Google Scholar 

  72. Vicente-Duenas C, Fontan L, Gonzalez-Herrero I, Romero-Camarero I, Segura V, Aznar MA et al. Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice. Proc Natl Acad USA 2012; 109: 10534–10539.

    Article  CAS  Google Scholar 

  73. Ott G, Katzenberger T, Greiner A, Kalla J, Rosenwald A, Heinrich U et al. The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin's lymphomas of the mucosa-associated lymphoid tissue (MALT-) type. Cancer Res 1997; 57: 3944–3948.

    CAS  PubMed  Google Scholar 

  74. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H et al. A novel gene, MALT1 at 18q21, is involved in t(11;18) (q21;q21) found in low-grade B-cell lymphoma of mucosa-associated lymphoid tissue. Oncogene 1999; 18: 5785–5794.

    Article  CAS  PubMed  Google Scholar 

  75. Ye H, Liu H, Attygalle A, Wotherspoon AC, Nicholson AG, Charlotte F et al. Variable frequencies of t(11;18)(q21;q21) in MALT lymphomas of different sites: significant association with CagA strains of H pylori in gastric MALT lymphoma. Blood 2003; 102: 1012–1018.

    Article  CAS  PubMed  Google Scholar 

  76. Baens M, Maes B, Steyls A, Geboes K, Marynen P, De Wolf-Peeters C . The product of the t(11;18), an API2-MLT fusion, marks nearly half of gastric MALT type lymphomas without large cell proliferation. Am JPathol 2000; 156: 1433–1439.

    Article  CAS  Google Scholar 

  77. Baens M, Fevery S, Sagaert X, Noels H, Hagens S, Broeckx V et al. Selective expansion of marginal zone B cells in Emicro-API2-MALT1 mice is linked to enhanced IkappaB kinase gamma polyubiquitination. Cancer Res 2006; 66: 5270–5277.

    Article  CAS  PubMed  Google Scholar 

  78. Conze DB, Zhao Y, Ashwell JD . Non-canonical NF-kappaB activation and abnormal B cell accumulation in mice expressing ubiquitin protein ligase-inactive c-IAP2. PLoS Biology 2010; 8: e1000518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lucas PC, Kuffa P, Gu S, Kohrt D, Kim DS, Siu K et al. A dual role for the API2 moiety in API2-MALT1-dependent NF-kappaB activation: heterotypic oligomerization and TRAF2 recruitment. Oncogene 2007; 26: 5643–5654.

    Article  CAS  PubMed  Google Scholar 

  80. Garrison JB, Samuel T, Reed JC . TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 2009; 28: 1584–1593.

    Article  CAS  PubMed  Google Scholar 

  81. Noels H, van Loo G, Hagens S, Broeckx V, Beyaert R, Marynen P et al. A Novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-kappaB activation by API2middle dotMALT1 fusions. J Biol Chem 2007; 282: 10180–10189.

    Article  CAS  PubMed  Google Scholar 

  82. Rosebeck S, Rehman AO, Apel IJ, Kohrt D, Appert A, O'Donnell MA et al. The API2–MALT1 fusion exploits TNFR pathway-associated RIP1 ubiquitination to promote oncogenic NF-κB signaling. Oncogene (e-pub ahead of print 17 June 2013; doi: 10.1038/onc.2013.195).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Rosebeck S, Madden L, Jin X, Gu S, Apel IJ, Appert A et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 2011; 331: 468–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 2011; 30: 1742–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 2012; 22: 825–837.

    Article  CAS  PubMed  Google Scholar 

  86. Fontan L, Yang C, Kabaleeswaran V, Volpon L, Osborne MJ, Beltran E et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell 2012; 22: 812–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Staudt LM, Dave S . The biology of human lymphoid malignancies revealed by gene expression profiling. Adv Immunol 2005; 87: 163–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403: 503–511.

    Article  CAS  PubMed  Google Scholar 

  89. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003; 198: 851–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Copie-Bergman C, Boulland ML, Dehoulle C, Moller P, Farcet JP, Dyer MJ et al. Interleukin 4-induced gene 1 is activated in primary mediastinal large B-cell lymphoma. Blood 2003; 101: 2756–2761.

    Article  CAS  PubMed  Google Scholar 

  92. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA 2008; 105: 13520–13525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 2003; 102: 3871–3879.

    Article  CAS  PubMed  Google Scholar 

  94. Weniger MA, Gesk S, Ehrlich S, Martin-Subero JI, Dyer MJ, Siebert R et al. Gains of REL in primary mediastinal B-cell lymphoma coincide with nuclear accumulation of REL protein. Genes Chromosomes Cancer 2007; 46: 406–415.

    Article  CAS  PubMed  Google Scholar 

  95. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  96. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M et al. Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 2005; 11: 28–40.

    Article  CAS  PubMed  Google Scholar 

  97. Davis RE, Brown KD, Siebenlist U, Staudt LM . Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194: 1861–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q et al. BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 2010; 18: 568–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Calado DP, Zhang B, Srinivasan L, Sasaki Y, Seagal J, Unitt C et al. Constitutive canonical NF-kappaB activation cooperates with disruption of BLIMP1 in the pathogenesis of activated B cell-like diffuse large cell lymphoma. Cancer Cell 2010; 18: 580–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010; 463: 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lam LT, Davis RE, Ngo VN, Lenz G, Wright G, Xu W et al. Compensatory IKKalpha activation of classical NF-kappaB signaling during IKKbeta inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA 2008; 105: 20798–20803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 2006; 441: 106–110.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang J, Grubor V, Love CL, Banerjee A, Richards KL, Mieczkowski PA et al. Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 2013; 110: 1398–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kurosaki T, Hikida M . Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev 2009; 228: 132–148.

    Article  CAS  PubMed  Google Scholar 

  105. Cornall RJ, Cyster JG, Hibbs ML, Dunn AR, Otipoby KL, Clark EA et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 1998; 8: 497–508.

    Article  CAS  PubMed  Google Scholar 

  106. Ma H, Yankee TM, Hu J, Asai DJ, Harrison ML, Geahlen RL . Visualization of Syk-antigen receptor interactions using green fluorescent protein: differential roles for Syk and Lyn in the regulation of receptor capping and internalization. J Immunol 2001; 166: 1507–1516.

    Article  CAS  PubMed  Google Scholar 

  107. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 2008; 319: 1676–1679.

    Article  CAS  PubMed  Google Scholar 

  108. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 2011; 43: 830–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rawlings DJ, Sommer K, Moreno-Garcia ME . The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol 2006; 6: 799–812.

    Article  CAS  PubMed  Google Scholar 

  110. Lamason RL, McCully RR, Lew SM, Pomerantz JL . Oncogenic CARD11 mutations induce hyperactive signaling by disrupting autoinhibition by the PKC-responsive inhibitory domain. Biochemistry 2010; 49: 8240–8250.

    Article  CAS  PubMed  Google Scholar 

  111. Naylor TL, Tang H, Ratsch BA, Enns A, Loo A, Chen L et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas. Cancer Res 2011; 71: 2643–2653.

    Article  CAS  PubMed  Google Scholar 

  112. Yang Y, Shaffer AL 3rd, Emre NC, Ceribelli M, Zhang M, Wright G et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell 2012; 21: 723–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jeelall YS, Wang JQ, Law HD, Domaschenz H, Fung HK, Kallies A et al. Human lymphoma mutations reveal CARD11 as the switch between self-antigen-induced B cell death or proliferation and autoantibody production. J Exp Med 2012; 209: 1907–1917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L et al. Congenital B cell lymphocytosis explained by novel germline CARD11 mutations. J Exp Med 2012; 209: 2247–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hailfinger S, Lenz G, Ngo V, Posvitz-Fejfar A, Rebeaud F, Guzzardi M et al. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci USA 2009; 106: 19946–19951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pelzer C, Cabalzar K, Wolf A, Gonzalez M, Lenz G, Thome M . The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat Immunol 2013; 14: 337–345.

    Article  CAS  PubMed  Google Scholar 

  117. Kloo B, Nagel D, Pfeifer M, Grau M, Duwel M, Vincendeau M et al. Critical role of PI3K signaling for NF-kappaB-dependent survival in a subset of activated B-cell-like diffuse large B-cell lymphoma cells. Proc Natl Acad Sci USA 2011; 108: 272–277.

    Article  CAS  PubMed  Google Scholar 

  118. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nogai H, Wenzel SS, Hailfinger S, Grau M, Kaergel E, Seitz V et al. IkappaB-zeta controls the constitutive NF-kappaB target gene network and survival of ABC DLBCL. Blood 2013; 122: 2242–2250.

    Article  CAS  PubMed  Google Scholar 

  120. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    Article  CAS  PubMed  Google Scholar 

  121. Lam LT, Wright G, Davis RE, Lenz G, Farinha P, Dang L et al. Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-{kappa}B pathways in subtypes of diffuse large B-cell lymphoma. Blood 2008; 111: 3701–3713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Troen G, Warsame A, J Delabie . CD79B and MYD88 Mutations in splenic marginal zone lymphoma. ISRN Oncol 2013; 2013: 252318.

    PubMed  PubMed Central  Google Scholar 

  124. Poulain S, Roumier C, Galiegue-Zouitina S, Daudignon A, Herbaux C, Aiijou R et al. Genome wide SNP array identified multiple mechanisms of genetic changes in Waldenstrom macroglobulinemia. Am J Hematol 88: 948–54 2013.

    Article  CAS  PubMed  Google Scholar 

  125. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilson WH, Gerecitano JF, Goy A, de Vos S. The Bruton’s tyrosine kinase inhibitor, ibrutinib (PCI-32765), has preferential activity in the ABC subtype of relapsed/refractory de novo DLBCL: interim results of a multicenter, open-label, phase 2 study. 54th ASH Annual Meeting and Exposition; 8–11 December, 2012; Atlanta, GA, USA.

  127. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cormier F, Monjanel H, Fabre C, Billot K, Sapharikas E, Chereau F et al. Frequent engagement of RelB activation is critical for cell survival in multiple myeloma. PloS One 2013; 8: e59127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. O'Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C et al. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004; 199: 91–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P et al. The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 2005; 106: 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  132. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 2009; 113: 5412–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM . Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 2010; 115: 3541–3552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Migliazza A, Lombardi L, Rocchi M, Trecca D, Chang CC, Antonacci R et al. Heterogeneous chromosomal aberrations generate 3′ truncations of the NFKB2/lyt-10 gene in lymphoid malignancies. Blood 1994; 84: 3850–3860.

    Article  CAS  PubMed  Google Scholar 

  135. Hideshima T, Neri P, Tassone P, Yasui H, Ishitsuka K, Raje N et al. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res 2006; 12: 5887–5894.

    Article  CAS  PubMed  Google Scholar 

  136. Jourdan M, Moreaux J, Vos JD, Hose D, Mahtouk K, Abouladze M et al. Targeting NF-kappaB pathway with an IKK2 inhibitor induces inhibition of multiple myeloma cell growth. Br J Haematol 2007; 138: 160–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ramakrishnan P, Wang W, Wallach D . Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 2004; 21: 477–489.

    Article  CAS  PubMed  Google Scholar 

  138. Naumann M, Nieters A, Hatada EN, Scheidereit C . NF-kappa B precursor p100 inhibits nuclear translocation and DNA binding of NF-kappa B/rel-factors. Oncogene 1993; 8: 2275–2281.

    CAS  PubMed  Google Scholar 

  139. Scheinman RI, Beg AA, Baldwin AS. Jr, NF-kappa B . p100 (Lyt-10) is a component of H2TF1 and can function as an I kappa B-like molecule. Mol Cell Biol 1993; 13: 6089–6101.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Basak S, Kim H, Kearns JD, Tergaonkar V, O’Dea E, Werner SL et al. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 2007; 128: 369–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A et al. Proteasome inhibitors in multiple myeloma: 10 years later. Blood 2012; 120: 947–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Li ZW, Chen H, Campbell RA, Bonavida B, Berenson JR . NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 2008; 15: 391–399.

    Article  CAS  PubMed  Google Scholar 

  143. Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Iland H et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica 2012; 97: 64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P et al. Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 2005; 65: 11510–11519.

    Article  CAS  PubMed  Google Scholar 

  145. Li K, McGee LR, Fisher B, Sudom A, Liu J, Rubenstein SM et al. Inhibiting NF-kappaB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures. Bioorg Med Chem Lett 2013; 23: 1238–1244.

    Article  CAS  PubMed  Google Scholar 

  146. Mortier J, Masereel B, Remouchamps C, Ganeff C, Piette J, Frederick R . NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett 2010; 20: 4515–4520.

    Article  CAS  PubMed  Google Scholar 

  147. Fabre C, Mimura N, Bobb K, Kong SY, Gorgun G, Cirstea D et al. Dual inhibition of canonical and noncanonical NF-kappaB pathways demonstrates significant antitumor activities in multiple myeloma. Clin Cancer Res 2012; 18: 4669–4681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wessendorf S, Barth TF, Viardot A, Mueller A, Kestler HA, Kohlhammer H et al. Further delineation of chromosomal consensus regions in primary mediastinal B-cell lymphomas: an analysis of 37 tumor samples using high-resolution genomic profiling (array-CGH). Leukemia 2007; 21: 2463–2469.

    Article  CAS  PubMed  Google Scholar 

  149. Kimm LR, deLeeuw RJ, Savage KJ, Rosenwald A, Campo E, Delabie J et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosomes Cancer 2007; 46: 1090–1097.

    Article  CAS  PubMed  Google Scholar 

  150. Thomas RK, Wickenhauser C, Tawadros S, Diehl V, Kuppers R, Wolf J et al. Mutational analysis of the IkappaBalpha gene in activated B cell-like diffuse large B-cell lymphoma. Br J Haematol 2004; 126: 50–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize for incomplete citations due to space constraints. We acknowledge support from the Deutsche Krebshilfe and Wilhelm Sander Stiftung to DK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Krappmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, D., Vincendeau, M., Eitelhuber, A. et al. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene 33, 5655–5665 (2014). https://doi.org/10.1038/onc.2013.565

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.565

Keywords

This article is cited by

Search

Quick links