Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal−/− mice

Abstract

Inflammation critically contributes to cancer metastasis, in which myeloid-derived suppressor cells (MDSCs) are an important participant. Although MDSCs are known to suppress immune surveillance, their roles in directly stimulating cancer cell proliferation and metastasis currently remain unclear. Lysosomal acid lipase (LAL) deficiency causes systemic expansion and infiltration of MDSCs in multiple organs and subsequent inflammation. In the LAL-deficient (lal−/−) mouse model, melanoma metastasized massively in allogeneic lal−/− mice, which was suppressed in allogeneic lal+/+ mice owing to immune rejection. Here we report for the first time that MDSCs from lal−/− mice directly stimulated B16 melanoma cell in vitro proliferation and in vivo growth and metastasis. Cytokines, that is, interleukin-1β and tumor necrosis factor-α from MDSCs are required for B16 melanoma cell proliferation in vitro. Myeloid-specific expression of human LAL (hLAL) in lal−/− mice rescues these malignant phenotypes in vitro and in vivo. The tumor-promoting function of lal−/− MDSCs is mediated, at least in part, through overactivation of the mammalian target of rapamycin (mTOR) pathway. Knockdown of mTOR, Raptor or Rictor in lal−/− MDSCs suppressed their stimulation on proliferation of cancer cells, including B16 melanoma, Lewis lung carcinoma and transgenic mouse prostate cancer-C2 cancer cells. Our results indicate that LAL has a critical role in regulating MDSCs’ ability to directly stimulate cancer cell proliferation and overcome immune rejection of cancer metastasis in allogeneic mice through modulation of the mTOR pathway, which provides a mechanistic basis for targeting MDSCs to reduce the risk of cancer metastasis. Therefore MDSCs possess dual functions to facilitate cancer metastasis: suppress immune surveillance and stimulate cancer cell proliferation and growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Qu P, Shelley WC, Yoder MC, Wu L, Du H, Yan C . Critical roles of lysosomal acid lipase in myelopoiesis. Am J Pathol 2010; 176: 2394–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qu P, Yan C, Blum JS, Kapur R, Du H . Myeloid-specific expression of human lysosomal acid lipase corrects malformation and malfunction of myeloid-derived suppressor cells in lal−/− mice. J Immunol 2011; 187: 3854–3866.

    Article  CAS  PubMed  Google Scholar 

  4. Qu P, Yan C, Du H . Matrix metalloproteinase 12 overexpression in myeloid lineage cells plays a key role in modulating myelopoiesis, immune suppression, and lung tumorigenesis. Blood 2011; 117: 4476–4489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qu P, Du H, Li Y, Yan C . Myeloid-specific expression of Api6/AIM/Sp alpha induces systemic inflammation and adenocarcinoma in the lung. J Immunol 2009; 182: 1648–1659.

    Article  CAS  PubMed  Google Scholar 

  6. Wu L, Yan C, Czader M, Foreman O, Blum JS, Kapur R et al. Inhibition of PPARgamma in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 2012; 119: 115–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan C, Lian X, Li Y, Dai Y, White A, Qin Y et al. Macrophage-specific expression of human lysosomal acid lipase corrects inflammation and pathogenic phenotypes in lal−/− mice. Am J Pathol 2006; 169: 916–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S et al. IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 2009; 182: 6562–6568.

    Article  CAS  PubMed  Google Scholar 

  10. Diaz-Montero CM, Salem M, Nishimura M, Garrett-Mayer E, Cole D, Montero A . Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58: 49–59.

    Article  CAS  PubMed  Google Scholar 

  11. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 2009; 15: 2148–2157.

    Article  CAS  PubMed  Google Scholar 

  12. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009; 50: 799–807.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Chang EWY, Wong SC, Ong S-M, Chong DQY, Ling KL . Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 2013; 190: 794–804.

    Article  CAS  PubMed  Google Scholar 

  14. Ostrand-Rosenberg S, Sinha P . Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499–4506.

    Article  CAS  PubMed  Google Scholar 

  15. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 2013; 19: 57–64.

    Article  CAS  PubMed  Google Scholar 

  16. Rothe G, Stohr J, Fehringer P, Gasche C, Schmitz G . Altered mononuclear phagocyte differentiation associated with genetic defects of the lysosomal acid lipase. Atherosclerosis 1997; 130: 215–221.

    Article  CAS  PubMed  Google Scholar 

  17. Elleder M, Chlumska A, Hyanek J, Poupetova H, Ledvinova J, Maas S et al. Subclinical course of cholesteryl ester storage disease in an adult with hypercholesterolemia, accelerated atherosclerosis, and liver cancer. J Hepatol 2000; 32: 528–534.

    Article  CAS  PubMed  Google Scholar 

  18. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  19. Ding X, Du H, Yoder MC, Yan C . Critical role of the mTOR pathway in development and function of myeloid-derived suppressor cells in lal(−/−) mice. Am J Pathol 2014; 184: 397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laplante M, Sabatini David M . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan C, Ding X, Dasgupta N, Wu L, Du H . Gene profile of myeloid-derived suppressive cells from the bone marrow of lysosomal acid lipase knock-out mice. PLoS ONE 2012; 7: e30701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Talmadge JE, Gabrilovich DI . History of myeloid-derived suppressor cells. Nat Rev Cancer 2013; 13: 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lian X, Yan C, Yang L, Xu Y, Du H . Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. Am J Physiol Lung Cell Mol Physiol 2004; 286: L801–L807.

    Article  CAS  PubMed  Google Scholar 

  24. Qu P, Roberts J, Li Y, Albrecht M, Cummings OW, Eble JN et al. Stat3 downstream genes serve as biomarkers in human lung carcinomas and chronic obstructive pulmonary disease. Lung Cancer 2009; 63: 341–347.

    Article  PubMed  Google Scholar 

  25. Chambers AF, Groom AC, MacDonald IC . Metastasis: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  26. Lian X, Yan C, Qin Y, Knox L, Li T, Du H . Neutral lipids and peroxisome proliferator-activated receptor-{gamma} control pulmonary gene expression and inflammation-triggered pathogenesis in lysosomal acid lipase knockout mice. Am J Pathol 2005; 167: 813–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du H, Heur M, Duanmu M, Grabowski GA, Hui DY, Witte DP et al. Lysosomal acid lipase-deficient mice: depletion of white and brown fat, severe hepatosplenomegaly, and shortened life span. J Lipid Res 2001; 42: 489–500.

    CAS  PubMed  Google Scholar 

  28. Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    Article  CAS  PubMed  Google Scholar 

  29. Meyer C, Sevko A, Ramacher M, Bazhin AV, Falk CS, Osen W et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci 2011; 108: 17111–17116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 2009; 324: 1710–1713.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao T, Li J, Chen AF . MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 2010; 299: E110–E116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grants CA138759, CA152099 (to CY) and HL087001 (to HD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Du or C Yan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Table accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Du, H., Ding, X. et al. Activation of mTOR pathway in myeloid-derived suppressor cells stimulates cancer cell proliferation and metastasis in lal−/− mice. Oncogene 34, 1938–1948 (2015). https://doi.org/10.1038/onc.2014.143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.143

This article is cited by

Search

Quick links