Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A long non-coding RNA links calreticulin-mediated immunogenic cell removal to RB1 transcription

Abstract

A subset of promoters bidirectionally expresses long non-coding RNAs (ncRNAs) of unknown function and protein-coding genes (PCGs) in parallel. Here, we define a set of 1107 highly conserved human bidirectional promoters that mediate the linked expression of long ncRNAs and PCGs. Depletion of the long ncRNA expressed from the RB1 promoter, ncRNA-RB1, reveals regulatory effects different from the RB1-controlled transcriptional program. ncRNA-RB1 positively regulates the expression of calreticulin (CALR) that in response to certain therapeutic interventions can translocate from the endoplasmic reticulum to the cell surface, hence activating anticancer immune responses. Knockdown of ncRNA-RB1 in tumor cells reduced expression of CALR, impaired the translocation of the protein to the cell surface upon treatment with anthracylines and consequently inhibited the cellular uptake by macrophages. In conclusion, co-transcription of ncRNA-RB1 and RB1 provides a positive link between the expression of the two tumor suppressors RB1 and the immune-relevant CALR protein. This regulatory interplay exemplifies disease-relevant co-regulation of two distinct gene products, in which loss of expression of one oncosuppressor protein entails the abolition of additional tumor-inhibitory mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Orom UA, Shiekhattar R . Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 2013; 154: 1190–1193.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25: 1915–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 2012; 22: 1775–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT . Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322: 750–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129: 1311–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 2011; 472: 120–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 2013; 494: 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melo CA, Drost J, Wijchers PJ, van de Werken H, de Wit E, Oude Vrielink JA et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 2013; 49: 524–535.

    Article  CAS  PubMed  Google Scholar 

  9. Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, Dalla-Favera R, Tsirigos A et al. Genome-wide mapping and characterization of notch-regulated long noncoding RNAs in acute leukemia. Cell 2014; 158: 593–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G et al. Long noncoding RNAs with enhancer-like function in human cells. Cell 2010; 143: 46–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458: 223–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Core LJ, Waterfall JJ, Lis JT . Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 2008; 322: 1845–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neil H, Malabat C, d'Aubenton-Carafa Y, Xu Z, Steinmetz LM, Jacquier A . Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature 2009; 457: 1038–1042.

    Article  CAS  PubMed  Google Scholar 

  14. Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK et al. RNA exosome depletion reveals transcription upstream of active human promoters. Science 2008; 322: 1851–1854.

    Article  CAS  PubMed  Google Scholar 

  15. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA et al. Divergent transcription from active promoters. Science 2008; 322: 1849–1851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA, Guenther MG et al. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc Natl Acad Sci USA 2013; 110: 2876–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flynn RA, Almada AE, Zamudio JR, Sharp PA . Antisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome. Proc Natl Acad Sci USA 2011; 108: 10460–10465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA . Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 2013; 499: 360–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ntini E, Jarvelin AI, Bornholdt J, Chen Y, Boyd M, Jorgensen M et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat Struct Mol Biol 2013; 20: 923–928.

    Article  CAS  PubMed  Google Scholar 

  20. Ozsolak F, Song JS, Liu XS, Fisher DE . High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 2007; 25: 244–248.

    Article  CAS  PubMed  Google Scholar 

  21. Wu X, Sharp PA . Divergent transcription: a driving force for new gene origination? Cell 2013; 155: 990–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhee HS, Pugh BF . Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012; 483: 295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marquardt S, Escalante-Chong R, Pho N, Wang J, Churchman LS, Springer M et al. A chromatin-based mechanism for limiting divergent noncoding transcription. Cell 2014; 157: 1712–1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M et al. An atlas of active enhancers across human cell types and tissues. Nature 2014; 507: 455–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang L, Wang P, Ding Q, Wang Z . Transcriptional directionality of the human insulin-degrading enzyme promoter. Mol Cell Biochem 2013; 382: 237–242.

    Article  CAS  PubMed  Google Scholar 

  26. Uesaka M, Nishimura O, Go Y, Nakashima K, Agata K, Imamura T . Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 2014; 15: 35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Polson A, Reisman D . The bidirectional p53-Wrap53beta promoter is controlled by common cis- and trans-regulatory elements. Gene 2014; 538: 138–149.

    Article  CAS  PubMed  Google Scholar 

  28. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011; 43: 621–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 2013; 24: 206–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2010; 2: 63ra94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chao MP, Majeti R, Weissman IL . Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 2012; 12: 58–67.

    Article  CAS  Google Scholar 

  32. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54–61.

    Article  CAS  PubMed  Google Scholar 

  33. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012; 22: 1760–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adachi N, Lieber MR . Bidirectional gene organization: a common architectural feature of the human genome. Cell 2002; 109: 807–809.

    Article  CAS  PubMed  Google Scholar 

  35. Manning AL, Dyson NJ . pRB a tumor suppressor with a stabilizing presence. Trends Cell Biol 2011; 21: 433–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoesel B, Schmid JA . The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 2013; 12: 86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luo J . Glycogen synthase kinase 3beta (GSK3beta) in tumorigenesis and cancer chemotherapy. Cancer Lett 2009; 273: 194–200.

    Article  CAS  PubMed  Google Scholar 

  38. Fruman DA, Rommel C . PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 2014; 13: 140–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang MQ, Koehly LM, Elnitski LL . Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes. PLoS Comput Biol 2007; 3: e72.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sakai T, Ohtani N, McGee TL, Robbins PD, Dryja TP . Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature 1991; 353: 83–86.

    Article  CAS  PubMed  Google Scholar 

  41. Shiio Y, Yamamoto T, Yamaguchi N . Negative regulation of Rb expression by the p53 gene product. Proc Natl Acad Sci USA 1992; 89: 5206–5210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shan B, Chang CY, Jones D, Lee WH . The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol Cell Biol 1994; 14: 299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savoysky E, Mizuno T, Sowa Y, Watanabe H, Sawada J, Nomura H et al. The retinoblastoma binding factor 1 (RBF-1) site in RB gene promoter binds preferentially E4TF1, a member of the Ets transcription factors family. Oncogene 1994; 9: 1839–1846.

    CAS  PubMed  Google Scholar 

  44. Gill RM, Hamel PA, Zhe J, Zacksenhaus E, Gallie BL, Phillips RA . Characterization of the human RB1 promoter and of elements involved in transcriptional regulation. Cell Growth Differ 1994; 5: 467–474.

    CAS  PubMed  Google Scholar 

  45. Sowa Y, Shiio Y, Fujita T, Matsumoto T, Okuyama Y, Kato D et al. Retinoblastoma binding factor 1 site in the core promoter region of the human RB gene is activated by hGABP/E4TF1. Cancer Res 1997; 57: 3145–3148.

    CAS  PubMed  Google Scholar 

  46. Hamel PA, Gill RM, Phillips RA, Gallie BL . Transcriptional repression of the E2-containing promoters EIIaE, c-myc, and RB1 by the product of the RB1 gene. Mol Cell Biol 1992; 12: 3431–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lenhard B, Sandelin A, Carninci P . Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nat Rev Genet 2012; 13: 233–245.

    Article  CAS  PubMed  Google Scholar 

  48. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005; 123: 321–334.

    Article  CAS  PubMed  Google Scholar 

  49. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32: 232–246.

    Article  CAS  PubMed  Google Scholar 

  50. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012; 491: 454–457.

    Article  CAS  PubMed  Google Scholar 

  51. Wakano C, Byun JS, Di LJ, Gardner K . The dual lives of bidirectional promoters. Biochim Biophys Acta 2012; 1819: 688–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M . Calreticulin a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 2009; 417: 651–666.

    Article  CAS  PubMed  Google Scholar 

  53. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 2005; 15: 1034–1050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnol 2010; 28: 511–515.

    Article  CAS  Google Scholar 

  57. Bhatt DM, Pandya-Jones A, Tong AJ, Barozzi I, Lissner MM, Natoli G et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 2012; 150: 279–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of GK and OK are suppported by the Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). Work in the laboratory of UAØ is supported by the German Ministry of education and research through the Alexander von Humboldt Foundation Sofja Kovalevskaja Award.

Author Contributions

A-SM conceived the experiments, performed all experiments except those in Figure 6 and interpreted the data. XH and SR performed the experiments in Figure 6. EN and AM performed bioinformatic analysis. GK and OK conceived the experiments in Figure 6, supervised research and interpreted data. UAØ conceived the experiments, supervised research and interpreted data. A-SM, GK, OK and UAØ wrote the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U A Ørom.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musahl, AS., Huang, X., Rusakiewicz, S. et al. A long non-coding RNA links calreticulin-mediated immunogenic cell removal to RB1 transcription. Oncogene 34, 5046–5054 (2015). https://doi.org/10.1038/onc.2014.424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.424

This article is cited by

Search

Quick links