Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: a potential therapeutic target

Abstract

Although activation of the STAT3 pathway has been associated with tumor progression in a wide variety of cancer types (including ovarian cancer), the precise mechanism of invasion and metastasis due to STAT3 are not fully delineated in ovarian cancer. We found that pSTAT3 Tyr705 is constitutively activated in patient ascites and ascites-derived ovarian cancer cells (ADOCCs), and the range of STAT3 expression could be very high to low. In vivo transplantation of ADOCCs with high pSTAT3 expression into the ovarian bursa of mice resulted in a large primary tumor and widespread peritoneal metastases. In contrast, ADOCCs with low STAT3 expression or ADOCCs with STAT3 expression knockdown, led to reduced tumor growth and an absence of metastases in vivo. Cytokines derived from the ADOCC culture medium activate the interleukin (IL)-6/STAT pathway in the STAT3 knockout (KO) cells, compensating for the absence of inherent STAT3 in the cells. Treatment with HO-3867 (a novel STAT3 inhibitor at 100 p.p.m. in an orthotopic murine model) significantly suppressed ovarian tumor growth, angiogenesis and metastasis by targeting STAT3 and its downstream proteins. HO-3867 was found to have cytotoxic effects in ex vivo cultures of freshly collected human ovarian cancers, including those resistant to platinum-based chemotherapy. Our results show that STAT3 is necessary for ovarian tumor progression/metastasis and highlight the potential for targeting STAT3 by HO-3867 as a therapeutic strategy for ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  PubMed  Google Scholar 

  2. Coleman RL, Monk BJ, Sood AK, Herzog TJ . Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol 2013; 10: 211–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lengyel E . Ovarian cancer development and metastasis. Am J Pathol 2010; 177: 1053–1064.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Naora H, Montell DJ . Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat Rev Cancer 2005; 5: 355–366.

    Article  CAS  PubMed  Google Scholar 

  5. Pradeep S, Kim SW, Wu SY, Nishimura M, Chaluvally-Raghavan P, Miyake T et al. Hematogenous metastasis of ovarian cancer: rethinking mode of spread. Cancer Cell 2014; 26: 77–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed N, Stenvers KL . Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 2013; 3: 256.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kipps E, Tan DS, Kaye SB . Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 2013; 13: 273–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Latifi A, Luwor RB, Bilandzic M, Nazaretian S, Stenvers K, Pyman J et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: molecular phenotype of chemoresistant ovarian tumors. PloS One 2012; 7: e46858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Selvendiran K, Bratasz A, Kuppusamy ML, Tazi MF, Rivera BK, Kuppusamy P . Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3. Int J Cancer 2009; 125: 2198–2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pradeep S, Huang J, Mora EM, Nick AM, Cho MS, Wu SY et al. Erythropoietin stimulates tumor growth via EphB4. Cancer Cell 2015; 28: 610–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Selvendiran K, Tong L, Bratasz A, Kuppusamy ML, Ahmed S, Ravi Y et al. Anticancer efficacy of a difluorodiarylidenyl piperidone (HO-3867) in human ovarian cancer cells and tumor xenografts. Mol Cancer Ther 2010; 9: 1169–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selvendiran K, Ahmed S, Dayton A, Ravi Y, Kuppusamy ML, Bratasz A et al. HO-3867, a synthetic compound, inhibits the migration and invasion of ovarian carcinoma cells through downregulation of fatty acid synthase and focal adhesion kinase. Mol Cancer Res 2010; 8: 1188–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tierney BJ, McCann GA, Naidu S, Rath KS, Saini U, Wanner R et al. Aberrantly activated pSTAT3-Ser727 in human endometrial cancer is suppressed by HO-3867, a novel STAT3 inhibitor. Gynecol Oncol 2014; 135: 133–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rath KS, Naidu SK, Lata P, Bid HK, Rivera BK, McCann GA et al. HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res 2014; 74: 2316–2327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kalai T, Kuppusamy ML, Balog M, Selvendiran K, Rivera BK, Kuppusamy P et al. Synthesis of N-substituted 3,5-bis(arylidene)-4-piperidones with high antitumor and antioxidant activity. J Med Chem 2011; 54: 5414–5421.

    Article  CAS  PubMed  Google Scholar 

  16. Tierney BJ, McCann GA, Cohn DE, Eisenhauer E, Sudhakar M, Kuppusamy P et al. HO-3867, a STAT3 inhibitor induces apoptosis by inactivation of STAT3 activity in BRCA1-mutated ovarian cancer cells. Cancer Biol Ther 2012; 13: 766–775.

    Article  CAS  PubMed  Google Scholar 

  17. Kim D, Lee IH, Kim S, Choi M, Kim H, Ahn S et al. A specific STAT3-binding peptide exerts antiproliferative effects and antitumor activity by inhibiting STAT3 phosphorylation and signaling. Cancer Res 2014; 74: 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  18. Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 2013; 73: 5288–5298.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang X, Yue P, Page BD, Li T, Zhao W, Namanja AT et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc Natl Acad Sci USA 2012; 109: 9623–9628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 2013; 73: 3007–3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T et al. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer Res 2006; 66: 4826–4834.

    Article  CAS  PubMed  Google Scholar 

  22. Huang F, Tong X, Fu L, Zhang R . Knockdown of STAT3 by shRNA inhibits the growth of CAOV3 ovarian cancer cell line in vitro and in vivo. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 519–525.

    Article  CAS  Google Scholar 

  23. Dayton A, Selvendiran K, Kuppusamy ML, Rivera BK, Meduru S, Kalai T et al. Cellular uptake, retention and bioabsorption of HO-3867, a fluorinated curcumin analog with potential antitumor properties. Cancer Biol Ther 2010; 10: 1027–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goff B . Measuring ovarian cancer care: why are we still failing? Gynecol Oncol 2015; 136: 1–2.

    Article  PubMed  Google Scholar 

  25. Matte I, Lane D, Bachvarov D, Rancourt C, Piche A . Role of malignant ascites on human mesothelial cells and their gene expression profiles. BMC Cancer 2014; 14: 288.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Seo JM, Park S, Kim JH . Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J Biol Chem 2012; 287: 13840–13849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gritsina G, Xiao F, O'Brien SW, Gabbasov R, Maglaty MA, Xu RH et al. Targeted blockade of JAK/STAT3 signaling inhibits ovarian carcinoma growth. Mol Cancer Ther 2015; 14: 1035–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005; 11: 623–629.

    Article  CAS  PubMed  Google Scholar 

  29. Pedranzini L, Leitch A, Bromberg J . Stat3 is required for the development of skin cancer. J Clin Invest 2004; 114: 619–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee MY, Joung YH, Lim EJ, Park JH, Ye SK, Park T et al. Phosphorylation and activation of STAT proteins by hypoxia in breast cancer cells. Breast 2006; 15: 187–195.

    Article  CAS  PubMed  Google Scholar 

  31. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    Article  CAS  PubMed  Google Scholar 

  32. Putoczki T, Ernst M . More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J Leukoc Biol 2010; 88: 1109–1117.

    Article  CAS  PubMed  Google Scholar 

  33. Ernst M, Najdovska M, Grail D, Lundgren-May T, Buchert M, Tye H et al. STAT3 and STAT1 mediate IL-11-dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice. J Clin Invest 2008; 118: 1727–1738.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee H, Deng J, Kujawski M, Yang C, Liu Y, Herrmann A et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 2010; 16: 1421–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCann GA, Naidu S, Rath KS, Bid HK, Tierney BJ, Suarez A et al. Targeting constitutively-activated STAT3 in hypoxic ovarian cancer, using a novel STAT3 inhibitor. Oncoscience 2014; 1: 216–228.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Darnell JE . Validating Stat3 in cancer therapy. Nat Med 2005; 11: 595–596.

    Article  CAS  PubMed  Google Scholar 

  37. Venkatesh S, Lipper RA . Role of the development scientist in compound lead selection and optimization. J Pharm Sci 2000; 89: 145–154.

    Article  CAS  PubMed  Google Scholar 

  38. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 2007; 104: 7391–7396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen W, Liang W, Wu J, Kowolik CM, Buettner R, Scuto A et al. Targeting JAK1/STAT3 signaling suppresses tumor progression and metastasis in a peritoneal model of human ovarian cancer. Mol Cancer Ther 2014; 13: 3037–3048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 2005; 11: 1314–1321.

    CAS  PubMed  Google Scholar 

  41. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB . Bioavailability of curcumin: problems and promises. Mol Pharm 2007; 4: 807–818.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng X, Rasque P, Vatter S, Merz KH, Eisenbrand G . Synthesis and cytotoxicity of novel indirubin-5-carboxamides. Bioorg Med Chem 2010; 18: 4509–4515.

    Article  CAS  PubMed  Google Scholar 

  43. Hsu HS, Huang PI, Chang YL, Tzao C, Chen YW, Shih HC et al. Cucurbitacin I inhibits tumorigenic ability and enhances radiochemosensitivity in nonsmall cell lung cancer-derived CD133-positive cells. Cancer 2011; 117: 2970–2985.

    Article  CAS  PubMed  Google Scholar 

  44. Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM Jr. et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Mol Cancer 2010; 9: 165.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Greten FR, Karin M . Peering into the aftermath: JAKi rips STAT3 in cancer. Nat Med 2010; 16: 1085–1087.

    Article  CAS  PubMed  Google Scholar 

  46. Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci USA 2010; 107: 8352–8356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bolyard C, Yoo JY, Wang PY, Saini U, Rath KS, Cripe TP et al. Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 2014; 20: 6479–6494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K et al. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 2014; 20: 3787–3798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pirnia F, Frese S, Gloor B, Hotz MA, Luethi A, Gugger M et al. Ex vivo assessment of chemotherapy-induced apoptosis and associated molecular changes in patient tumor samples. Anticancer Res 2006; 26: 1765–1772.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr John Hays for his willingness to pre-review this manuscript and provide valuable comments and suggestions. We also thank Dr Vinay Puduvalli and his lab members (including Jihong Xu) for providing access to their vibrating microtome. We extend additional thanks to Dr Mitch Phelps and Dr Yonghua Ling of the Pharmacoanalytical Shared Resource (PhASR), for LC–MS analysis of drug bio-absorption and metabolism. The authors are also thankful to the undergraduate students Ross Wanner, Riley Maria, Roman Zingarelli and Jack Fowler for the cell culture and basic assay help. This work was funded by Ovarian Cancer Research Fund (OCRF), NCI RO1-CA176078 grant and Drug Development Institute pilot grant (KS and DEC), and OSU CCC Internal grant to DEC.

Author contributions

KS and DEC designed all experiments. US and SN performed the majority of the in vivo efficacy experiment assays and analyzed the data collected. SN, US and AAS performed all the in vivo tumor, histopathology and imaging work. SN, US and ACE performed the primary ex vivo assays. JJW, ACE and KB assisted in collecting ascites from human subjects. HKB, CB and BK helped to conduct the kinase, angiogenesis and luciferase assays. PK were responsible for the synthesis of the DAP compounds as well as the chemical characterization and analyses. US, JJW, KS and DEC wrote, edited and proofread the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D E Cohn or K Selvendiran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, U., Naidu, S., ElNaggar, A. et al. Elevated STAT3 expression in ovarian cancer ascites promotes invasion and metastasis: a potential therapeutic target. Oncogene 36, 168–181 (2017). https://doi.org/10.1038/onc.2016.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.197

This article is cited by

Search

Quick links