Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The tumor microenvironment in esophageal cancer

Abstract

Esophageal cancer is a deadly disease, ranking sixth among all cancers in mortality. Despite incremental advances in diagnostics and therapeutics, esophageal cancer still carries a poor prognosis, and thus, there remains a need to elucidate the molecular mechanisms underlying this disease. There is accumulating evidence that a comprehensive understanding of the molecular composition of esophageal cancer requires attention to not only tumor cells but also the tumor microenvironment (TME), which contains diverse cell populations, signaling factors and structural molecules that interact with tumor cells and support all stages of tumorigenesis. In esophageal cancer, environmental exposures can trigger chronic inflammation, which leads to constitutive activation of pro-inflammatory signaling pathways that promote survival and proliferation. Antitumor immunity is attenuated by cell populations such as myeloid-derived suppressor cells and regulatory T cells, as well as immune checkpoints like programmed death-1. Other immune cells such as tumor-associated macrophages can have other pro-tumorigenic functions, including the induction of angiogenesis and tumor cell invasion. Cancer-associated fibroblasts secrete growth factors and alter the extracellular matrix to create a tumor niche and enhance tumor cell migration and metastasis. Further study of how these TME components relate to the different stages of tumor progression in each esophageal cancer subtype will lead to development of novel and specific TME-targeting therapeutic strategies, which offer considerable potential especially in the setting of combination therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Pennathur A, Gibson MK, Jobe BA, Luketich JD . Oesophageal carcinoma. Lancet 2013; 381: 400–412.

    PubMed  Google Scholar 

  2. Rustgi AK, El-Serag HB . Esophageal carcinoma. N Engl J Med 2014; 371: 2499–2509.

    PubMed  Google Scholar 

  3. Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C, Barón AE et al. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2005; 131: 111–119.

    CAS  PubMed  Google Scholar 

  4. Hollstein MC, Metcalf RA, Welsh JA, Montesano R, Harris CC . Frequent mutation of the p53 gene in human esophageal cancer. Proc Natl Acad Sci USA 1990; 87: 9958–9961.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chung Y, Lam AKY, Luk JM, Law S, Chan K-W, Lee P-Y et al. Altered E-cadherin expression and p120 catenin localization in esophageal squamous cell carcinoma. Ann Surg Oncol 2007; 14: 3260–3267.

    PubMed  Google Scholar 

  6. Song Y, Li L, Ou Y, Gao Z, Li E, Li X et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 2014; 509: 91–95.

    CAS  PubMed  Google Scholar 

  7. Stachler MD, Taylor-Weiner A, Peng S, McKenna A, Agoston AT, Odze RD et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat Genet 2015; 47: 1047–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Whiteside TL . The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27: 5904–5912.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gillison EW, De Castro VA, Nyhus LM, Kusakari K, Bombeck CT . The significance of bile in reflux esophagitis. Surg Gynecol Obstet 1972; 134: 419–424.

    CAS  PubMed  Google Scholar 

  11. Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG, Hagen JA . Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 1995; 222: 525–531 discussion 531–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H et al. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut 2007; 56: 763–771.

    CAS  PubMed  Google Scholar 

  13. Song S, Guha S, Liu K, Buttar NS, Bresalier RS . COX-2 induction by unconjugated bile acids involves reactive oxygen species-mediated signalling pathways in Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 2007; 56: 1512–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang DH, Clemons NJ, Miyashita T, Dupuy AJ, Zhang W, Szczepny A et al. Aberrant epithelial-mesenchymal Hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology 2010; 138: 1810–1822.

    CAS  PubMed  Google Scholar 

  15. Quante M, Bhagat G, Abrams JA, Marache F, Good P, Lee MD et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of barrett-like metaplasia. Cancer Cell 2012; 21: 36–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Poulsen HE, Prieme H, Loft S . Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 1998; 7: 9–16.

    CAS  PubMed  Google Scholar 

  17. Farhadi A, Fields J, Banan A, Keshavarzian A . Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett’s esophagus, and the latter's progression toward esophageal cancer? Am J Gastroenterol 2002; 97: 22–26.

    CAS  PubMed  Google Scholar 

  18. Klaunig JE, Kamendulis LM, Hocevar BA . Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010; 38: 96–109.

    CAS  PubMed  Google Scholar 

  19. Sihvo EIT, Salminen JT, Rantanen TK, Rämö OJ, Ahotupa M, Färkkilä M et al. Oxidative stress has a role in malignant transformation in Barrett’s oesophagus. Int J Cancer 2002; 102: 551–555.

    CAS  PubMed  Google Scholar 

  20. Lee JS, Oh TY, Ahn BO, Cho H, Kim WB, Kim YB et al. Involvement of oxidative stress in experimentally induced reflux esophagitis and Barrett’s esophagus: clue for the chemoprevention of esophageal carcinoma by antioxidants. Mutat Res Mol Mech Mutagen 2001; 480-481: 189–200.

    CAS  Google Scholar 

  21. Martin RCG, Liu Q, Wo JM, Ray MB, Li Y . Chemoprevention of carcinogenic progression to esophageal adenocarcinoma by the manganese superoxide dismutase supplementation. Clin Cancer Res 2007; 13: 5176–5182.

    CAS  PubMed  Google Scholar 

  22. Bianchini F, Kaaks R, Vainio H . Overweight, obesity, and cancer risk. Lancet Oncol 2002; 3: 565–574.

    PubMed  Google Scholar 

  23. Park HS, Park JY, Yu R . Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Pract 2005; 69: 29–35.

    CAS  PubMed  Google Scholar 

  24. Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, McConkey C et al. Tumour necrosis factor-alpha in Barrett’s oesophagus: a potential novel mechanism of action. Oncogene 2002; 21: 6071–6081.

    CAS  PubMed  Google Scholar 

  25. Oka M, Iizuka N, Yamamoto K, Gondo T, Abe T, Hazama S et al. The influence of interleukin-6 on the growth of human esophageal cancer cell lines. J Interferon Cytokine Res 1996; 16: 1001–1006.

    CAS  PubMed  Google Scholar 

  26. Kant P, Hull MA . Excess body weight and obesity—the link with gastrointestinal and hepatobiliary cancer. Nat Rev Gastroenterol Hepatol 2011; 8: 224–238.

    CAS  PubMed  Google Scholar 

  27. Duggan C, Onstad L, Hardikar S, Blount PL, Reid BJ, Vaughan TL . Association between markers of obesity and progression from Barrett’s esophagus to esophageal adenocarcinoma. Clin Gastroenterol Hepatol 2013; 11: 934–943.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Howard JM, Beddy P, Ennis D, Keogan M, Pidgeon GP, Reynolds J V . Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br J Surg 2010; 97: 1020–1027.

    CAS  PubMed  Google Scholar 

  29. Ogunwobi O, Mutungi G, Beales ILP . Leptin stimulates proliferation and inhibits apoptosis in Barrett’s esophageal adenocarcinoma cells by cyclooxygenase-2-dependent, prostaglandin-E2-mediated transactivation of the epidermal growth factor receptor and c-Jun NH2-terminal kinase activation. Endocrinology 2006; 147: 4505–4516.

    CAS  PubMed  Google Scholar 

  30. Rubenstein JH, Kao JY, Madanick RD, Zhang M, Wang M, Spacek MB et al. Association of adiponectin multimers with Barrett’s oesophagus. Gut 2009; 58: 1583–1589.

    CAS  PubMed  Google Scholar 

  31. Wei X, Wang F, Zhang D, Qiu M, Ren C, Jin Y et al. A novel inflammation-based prognostic score in esophageal squamous cell carcinoma: the C-reactive protein/albumin ratio. BMC Cancer 2015; 15: 350.

    PubMed  PubMed Central  Google Scholar 

  32. Radojicic J, Zaravinos A, Spandidos DA . HPV, KRAS mutations, alcohol consumption and tobacco smoking effects on esophageal squamous-cell carcinoma carcinogenesis. Int J Biol Markers 2012; 27: 1–12.

    CAS  PubMed  Google Scholar 

  33. Kubo N, Morita M, Nakashima Y, Kitao H, Egashira A, Saeki H et al. Oxidative DNA damage in human esophageal cancer: clinicopathological analysis of 8-hydroxydeoxyguanosine and its repair enzyme. Dis Esophagus 2014; 27: 285–293.

    CAS  PubMed  Google Scholar 

  34. Shivappa N, Zucchetto A, Serraino D, Rossi M, La Vecchia C, Hébert JR . Dietary inflammatory index and risk of esophageal squamous cell cancer in a case-control study from Italy. Cancer Causes Control 2015; 105: 9250–9255.

    Google Scholar 

  35. Taccioli C, Chen H, Jiang Y, Liu XP, Huang K, Smalley KJ et al. Dietary zinc deficiency fuels esophageal cancer development by inducing a distinct inflammatory signature. Oncogene 2012; 31: 4550–4558.

    CAS  PubMed  Google Scholar 

  36. Goldman L, Schafer AI Goldman-Cecil Medicine: Expert Consult - Online. Elsevier Health Sciences, 2015 https://books.google.com/books?id=40Z9CAAAQBAJ&pgis=1 (accessed 4 August 2015).

  37. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z . Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009; 137: 588–597.

    PubMed  Google Scholar 

  38. Walker MM, Talley NJ . Review article: bacteria and pathogenesis of disease in the upper gastrointestinal tract—beyond the era of Helicobacter pylori. Aliment Pharmacol Ther 2014; 39: 767–779.

    CAS  PubMed  Google Scholar 

  39. Yang L, Francois F, Pei Z . Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res 2012; 18: 2138–2144.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Macfarlane S, Furrie E, Macfarlane GT, Dillon JF . Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis 2007; 45: 29–38.

    PubMed  Google Scholar 

  41. Rubenstein JH, Inadomi JM, Scheiman J, Schoenfeld P, Appelman H, Zhang M et al. Association between Helicobacter pylori and Barrett’s esophagus, erosive esophagitis, and gastroesophageal reflux symptoms. Clin Gastroenterol Hepatol 2014; 12: 239–245.

    PubMed  Google Scholar 

  42. Abdel-Latif MMM, Duggan S, Reynolds JV, Kelleher D . Inflammation and esophageal carcinogenesis. Curr Opin Pharmacol 2009; 9: 396–404.

    CAS  PubMed  Google Scholar 

  43. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    CAS  PubMed  Google Scholar 

  44. Groblewska M, Mroczko B, Sosnowska D, Szmitkowski M . Interleukin 6 and C-reactive protein in esophageal cancer. Clin Chim Acta 2012; 413: 1583–1590.

    CAS  PubMed  Google Scholar 

  45. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hodge DR, Hurt EM, Farrar WL . The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 2005; 41: 2502–2512.

    CAS  PubMed  Google Scholar 

  47. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10: 48–54.

    PubMed  Google Scholar 

  48. Dvorakova K . Increased expression and secretion of interleukin-6 in patients with Barrett’s esophagus. Clin Cancer Res 2004; 10: 2020–2028.

    CAS  PubMed  Google Scholar 

  49. Dvorak K, Dvorak B . Role of interleukin-6 in Barrett’s esophagus pathogenesis. World J Gastroenterol 2013; 19: 2307–2312.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang HY, Zhang Q, Zhang X, Yu C, Huo X, Cheng E et al. Cancer-related inflammation and Barrett’s carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett's cells. Am J Physiol Gastrointest Liver Physiol 2011; 300: G454–G460.

    CAS  PubMed  Google Scholar 

  51. Dvorak K, Chavarria M, Payne CM, Ramsey L, Crowley-Weber C, Dvorakova B et al. Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to Barrett’s esophagus. Clin Cancer Res 2007; 13: 5305–5313.

    CAS  PubMed  Google Scholar 

  52. Łukaszewicz-Zając M, Mroczko B, Kozłowski M, Nikliński J, Laudański J, Szmitkowski M . Higher importance of interleukin 6 than classic tumor markers (carcinoembryonic antigen and squamous cell cancer antigen) in the diagnosis of esophageal cancer patients. Dis Esophagus 2012; 25: 242–249.

    PubMed  Google Scholar 

  53. Hardikar S, Onstad L, Song X, Wilson AM, Montine TJ, Kratz M et al. Inflammation and oxidative stress markers and esophageal adenocarcinoma incidence in a Barrett’s esophagus cohort. Cancer Epidemiol Biomarkers Prev 2014; 23: 2393–2403.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Eder K, Baffy N, Falus A, Fulop AK . The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 2009; 58: 727–736.

    CAS  PubMed  Google Scholar 

  55. Leu C-M, Wong F-H, Chang C, Huang S-F, Hu C . Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene 2003; 22: 7809–7818.

    CAS  PubMed  Google Scholar 

  56. Yan S, Zhou C, Zhang W, Zhang G, Zhao X, Yang S et al. Beta-catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett 2008; 271: 85–97.

    CAS  PubMed  Google Scholar 

  57. Makuuchi Y, Honda K, Osaka Y, Kato K, Kojima T, Daiko H et al. Soluble interleukin-6 receptor is a serum biomarker for the response of esophageal carcinoma to neoadjuvant chemoradiotherapy. Cancer Sci 2013; 104: 1045–1051.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yoneda M, Fujiwara H, Furutani A, Ikai A, Tada H, Shiozaki A et al. Prognostic impact of tumor IL-6 expression after preoperative chemoradiotherapy in patients with advanced esophageal squamous cell carcinoma. Anticancer Res 2013; 33: 2699–2705.

    CAS  PubMed  Google Scholar 

  59. Chen M-F, Chen P-T, Lu MS, Lin PY, Chen W-C, Lee K-D . IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer 2013; 12: 26.

    PubMed  PubMed Central  Google Scholar 

  60. Chen M-F, Kuan F-C, Yen T-C, Lu M-S, Lin P-Y, Chung Y-H et al. IL-6-stimulated CD11b+CD14+HLA-DR − myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget 2014; 5: 8716–8728.

    PubMed  PubMed Central  Google Scholar 

  61. Li H, Xiao W, Ma J, Zhang Y, Li R, Ye J et al. Dual high expression of STAT3 and cyclinD1 is associated with poor prognosis after curative resection of esophageal squamous cell carcinoma. Int J Clin Exp Pathol 2014; 7: 7989–7998.

    PubMed  PubMed Central  Google Scholar 

  62. Karakasheva TA, Waldron TJ, Eruslanov E, Lee J-S, O’Brien S, Hicks PD et al. CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer. Cancer Res 2015; 75: 4074–4085.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Suchi K, Fujiwara H, Okamura S, Okamura H, Umehara S, Todo M et al. Overexpression of interleukin-6 suppresses cisplatin-induced cytotoxicity in esophageal squamous cell carcinoma cells. Anticancer Res 2011; 31: 67–75.

    CAS  PubMed  Google Scholar 

  64. Zhang Q, Zhang C, He J, Guo Q, Hu D, Yang X et al. STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol 2015; 36: 2135–2142.

    CAS  PubMed  Google Scholar 

  65. Yu C, Zhang Q, Zhang HY, Zhang X, Huo X, Cheng E et al. Targeting the intrinsic inflammatory pathway: honokiol exerts proapoptotic effects through STAT3 inhibition in transformed Barrett’s cells. Am J Physiol Gastrointest Liver Physiol 2012; 303: G561–G569.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Q, Zhang C, He J, Guo Q, Hu D, Yang X et al. STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol 2014; 36: 2135–2142.

    PubMed  Google Scholar 

  67. Baeuerle PA, Henkel T . Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12: 141–179.

    CAS  PubMed  Google Scholar 

  68. Karin M, Cao Y, Greten FR, Li Z-W . NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002; 2: 301–310.

    CAS  PubMed  Google Scholar 

  69. Izzo JG, Correa AM, Wu T-T, Malhotra U, Chao CKS, Luthra R et al. Pretherapy nuclear factor-kappaB status, chemoradiation resistance, and metastatic progression in esophageal carcinoma. Mol Cancer Ther 2006; 5: 2844–2850.

    CAS  PubMed  Google Scholar 

  70. Abdel-Latif MMM, O’Riordan J, Windle HJ, Carton E, Ravi N, Kelleher D et al. NF-kappaB activation in esophageal adenocarcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant chemoradiotherapy. Ann Surg 2004; 239: 491–500.

    PubMed  PubMed Central  Google Scholar 

  71. Jenkins GJS, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN et al. The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 2004; 25: 317–323.

    CAS  PubMed  Google Scholar 

  72. Malhotra U, Hittelman WN, Wu TT, Luthra R, Swisher S, Luthra M et al. Association of activated NF-kB, altered cyclin D1 and poor outcome in esophageal adenocarcinoma. Cancer Res 2005; 65: 548.

    Google Scholar 

  73. O’Riordan JM, Abdel-latif MM, Ravi N, McNamara D, Byrne PJ, McDonald GSA et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol 2005; 100: 1257–1264.

    PubMed  Google Scholar 

  74. Izzo JG, Malhotra U, Wu T-T, Luthra R, Correa AM, Swisher SG et al. Clinical biology of esophageal adenocarcinoma after surgery is influenced by nuclear factor-kappaB expression. Cancer Epidemiol Biomarkers Prev 2007; 16: 1200–1205.

    CAS  PubMed  Google Scholar 

  75. Stairs DB, Bayne LJ, Rhoades B, Vega ME, Waldron TJ, Kalabis J et al. Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell 2011; 19: 470–483.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li B, Cheung PY, Wang X, Tsao SW, Ling MT, Wong YC et al. Id-1 activation of PI3K/Akt/NF??B signaling pathway and its significance in promoting survival of esophageal cancer cells. Carcinogenesis 2007; 28: 2313–2320.

    CAS  PubMed  Google Scholar 

  77. Lin C, Song L, Gong H, Liu A, Lin X, Wu J et al. Nkx2-8 downregulation promotes angiogenesis and activates NF-κB in esophageal cancer. Cancer Res 2013; 73: 3638–3648.

    CAS  PubMed  Google Scholar 

  78. Hatata T, Higaki K, Tatebe S, Shomori K, Ikeguchi M . Immunohistochemical study of nuclear factor-κB expression in esophageal squamous cell carcinoma: prognostic significance and sensitivity to treatment with 5-FU. Dis Esophagus 2012; 25: 716–722.

    CAS  PubMed  Google Scholar 

  79. Waugh DJJ, Wilson C . The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735–6741.

    CAS  PubMed  Google Scholar 

  80. Chen L, Fan J, Chen H, Meng Z, Chen Z, Wang P et al. The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 2014; 4: 5911.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Apte RN, Dotan S, Elkabets M, White MR, Reich E, Carmi Y et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev 2006; 25: 387–408.

    CAS  PubMed  Google Scholar 

  82. Li Y, Wang L, Pappan L, Galliher-Beckley A, Shi J . IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer 2012; 11: 87.

    PubMed  PubMed Central  Google Scholar 

  83. Oh DS, DeMeester SR, Vallbohmer D, Mori R, Kuramochi H, Hagen JA et al. Reduction of interleukin 8 gene expression in reflux esophagitis and Barrett’s esophagus with antireflux surgery. Arch Surg 2007; 142: 554–559 discussion 559–560.

    CAS  PubMed  Google Scholar 

  84. Fitzgerald RC, Abdalla S, Onwuegbusi BA, Sirieix P, Saeed IT, Burnham WR et al. Inflammatory gradient in Barrett’s oesophagus: implications for disease complications. Gut 2002; 51: 316–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ogura M, Takeuchi H, Kawakubo H, Nishi T, Fukuda K, Nakamura R et al. Clinical significance of CXCL-8/CXCR-2 network in esophageal squamous cell carcinoma. Surgery 2013; 154: 512–520.

    PubMed  Google Scholar 

  86. Nguyen DM, Chen GA, Reddy R, Tsai W, Schrump WD, Cole G et al. Potentiation of paclitaxel cytotoxicity in lung and esophageal cancer cells by pharmacologic inhibition of the phosphoinositide 3-kinase/protein kinase B (Akt)-mediated signaling pathway. J Thorac Cardiovasc Surg 2004; 127: 365–375.

    CAS  PubMed  Google Scholar 

  87. Tian F, Zang W-D, Hou W-H, Liu H-T, Xue L-X . Nuclear factor-kB signaling pathway constitutively activated in esophageal squamous cell carcinoma cell lines and inhibition of growth of cells by small interfering RNA. Acta Biochim Biophys Sin (Shanghai) 2006; 38: 318–326.

    CAS  Google Scholar 

  88. Rafiee P, Nelson VM, Manley S, Wellner M, Floer M, Binion DG et al. Effect of curcumin on acidic pH-induced expression of IL-6 and IL-8 in human esophageal epithelial cells (HET-1A): role of PKC, MAPKs, and NF-kappaB. Am J Physiol Gastrointest Liver Physiol 2009; 296: G388–G398.

    CAS  PubMed  Google Scholar 

  89. Oshima H, Oshima M . The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 2012; 47: 97–106.

    CAS  PubMed  Google Scholar 

  90. Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G . Cyclooxygenase 2 expression in Barrett’s esophagus and adenocarcinoma: ex vivo induction by bile salts and acid exposure. Gastroenterology 2000; 118: 487–496.

    CAS  PubMed  Google Scholar 

  91. Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE . Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am J Gastroenterol 2001; 96: 990–996.

    CAS  PubMed  Google Scholar 

  92. Zhi H, Wang L, Zhang J, Zhou C, Ding F, Luo A et al. Significance of COX-2 expression in human esophageal squamous cell carcinoma. Carcinogenesis 2006; 27: 1214–1221.

    CAS  PubMed  Google Scholar 

  93. Akutsu Y, Hanari N, Yusup G, Komatsu-Akimoto A, Ikeda N, Mori M et al. COX2 expression predicts resistance to chemoradiotherapy in esophageal squamous cell carcinoma. Ann Surg Oncol 2011; 18: 2946–2951.

    PubMed  Google Scholar 

  94. Souza RF, Shewmake K, Beer DG, Cryer B, Spechler SJ . Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells. Cancer Res 2000; 60: 5767–5772.

    CAS  PubMed  Google Scholar 

  95. Buttar NS, Wang KK, Leontovich O, Westcott JY, Pacifico RJ, Anderson MA et al. Chemoprevention of esophageal adenocarcinoma by COX-2 inhibitors in an animal model of Barrett’s esophagus. Gastroenterology 2002; 122: 1101–1112.

    CAS  PubMed  Google Scholar 

  96. Bardou M, Barkun A, Ghosn J, Hudson M, Rahme E . Effect of chronic intake of NSAIDs and cyclooxygenase 2—selective inhibitors on esophageal cancer incidence. Clin Gastroenterol Hepatol 2004; 2: 880–887.

    CAS  PubMed  Google Scholar 

  97. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gong J, Xie J, Bedolla R, Rivas P, Chakravarthy D, Freeman JW et al. Combined targeting of STAT3/NF-κB/COX-2/EP4 for effective management of pancreatic cancer. Clin Cancer Res 2014; 20: 1259–1273.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK . Myeloid derived suppressor cells: targets for therapy. Oncoimmunology 2013; 2: e24117.

    PubMed  PubMed Central  Google Scholar 

  100. Ostrand-Rosenberg S, Sinha P . Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499–4506.

    CAS  PubMed  Google Scholar 

  101. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G et al. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol 2012; 188: 5365–5376.

    CAS  PubMed  Google Scholar 

  103. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 2002; 168: 689–695.

    CAS  PubMed  Google Scholar 

  104. Liu C, Yu S, Kappes J, Wang J, Grizzle WE, Zinn KR et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 2007; 109: 4336–4342.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S . Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 2010; 70: 68–77.

    CAS  PubMed  Google Scholar 

  106. Serafini P, Mgebroff S, Noonan K, Borrello I . Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 2008; 68: 5439–5449.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Quail DF, Joyce JA . Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19: 1423–1437.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW . Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 2011; 60: 1419–1430.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 2015; 373: 1207–1219.

    CAS  PubMed  Google Scholar 

  110. Ha T-Y . The role of regulatory T cells in cancer. Immune Netw 2009; 9: 209–235.

    PubMed  PubMed Central  Google Scholar 

  111. von Boehmer H, Daniel C . Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 2013; 12: 51–63.

    CAS  PubMed  Google Scholar 

  112. Ichihara F, Kono K, Takahashi A, Kawaida H, Sugai H, Fujii H . Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 2003; 9: 4404–4408.

    PubMed  Google Scholar 

  113. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 2006; 55: 1064–1071.

    CAS  PubMed  Google Scholar 

  114. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    CAS  PubMed  Google Scholar 

  115. Nabeki B, Ishigami S, Uchikado Y, Sasaki K, Kita Y, Okumura H et al. Interleukin-32 expression and Treg infiltration in esophageal squamous cell carcinoma. Anticancer Res 2015; 35: 2941–2947.

    CAS  PubMed  Google Scholar 

  116. Xia M, Zhao MQ, Wu K, Lin XY, Liu Y, Qin YJ . Investigations on the clinical significance of FOXP3 protein expression in cervical oesophageal cancer and the number of FOXP3+ tumour-infiltrating lymphocytes. J Int Med Res 2013; 41: 1002–1008.

    CAS  PubMed  Google Scholar 

  117. Osaki T, Saito H, Fukumoto Y, Yamada Y, Fukuda K, Tatebe S et al. Inverse correlation between NKG2D expression on CD8+ T cells and the frequency of CD4+CD25+ regulatory T cells in patients with esophageal cancer. Dis Esophagus 2009; 22: 49–54.

    CAS  PubMed  Google Scholar 

  118. Xu T, Duan Q, Wang G, Hu B . CD4+CD25high regulatory T cell numbers and FOXP3 mRNA expression in patients with advanced esophageal cancer before and after chemotherapy. Cell Biochem Biophys 2011; 61: 389–392.

    CAS  PubMed  Google Scholar 

  119. Vacchelli E, Semeraro M, Enot DP, Chaba K, Poirier Colame V, Dartigues P et al. Negative prognostic impact of regulatory T cell infiltration in surgically resected esophageal cancer post-radiochemotherapy. Oncotarget 2015; 6: 20840–20850.

    PubMed  PubMed Central  Google Scholar 

  120. Bailey SR, Nelson MH, Himes RA, Li Z, Mehrotra S, Paulos CM . Th17 cells in cancer: the ultimate identity crisis. Front Immunol 2014; 5: 276.

    PubMed  PubMed Central  Google Scholar 

  121. Zou W, Restifo NP . TH17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 2010; 10: 248–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 2012; 36: 362–373.

    CAS  PubMed  Google Scholar 

  123. Gomez-Rodriguez J, Wohlfert EA, Handon R, Meylan F, Wu JZ, Anderson SM et al. Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. J Exp Med 2014; 211: 529–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chen D, Hu Q, Mao C, Jiao Z, Wang S, Yu L et al. Increased IL-17-producing CD4(+) T cells in patients with esophageal cancer. Cell Immunol 2012; 272: 166–174.

    CAS  PubMed  Google Scholar 

  125. Jiao ZJ, Gao JJ, Hua SH, Chen DY, Wang WH, Wang H et al. Correlation between circulating myeloid-derived suppressor cells and Th17 cells in esophageal cancer. World J Gastroenterol 2012; 18: 5454–5461.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Derks S, Nason KS, Liao X, Stachler MD, Liu KX, Liu JB et al. Epithelial PD-L2 expression marks Barrett’s esophagus and esophageal adenocarcinoma. Cancer Immunol Res 2015; 3: 1123–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192: 1027–1034.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ostrand-Rosenberg S, Horn LA, Haile ST . The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J Immunol 2014; 193: 3835–3841.

    CAS  PubMed  Google Scholar 

  129. Ohigashi Y, Sho M, Yamada Y, Tsurui Y, Hamada K, Ikeda N et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 2005; 11: 2947–2953.

    CAS  PubMed  Google Scholar 

  130. Chen L, Deng H, Lu M, Xu B, Wang Q, Jiang J et al. B7-H1 expression associates with tumor invasion and predicts patient’s survival in human esophageal cancer. Int J Clin Exp Pathol 2014; 7: 6015–6023.

    PubMed  PubMed Central  Google Scholar 

  131. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2443–2454.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Biswas SK, Mantovani A . Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010; 11: 889–896.

    CAS  PubMed  Google Scholar 

  133. Colegio OR, Chu N-Q, Szabo AL, Chu T, Rhebergen AM, Jairam V et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014; 513: 559–563.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Condeelis J, Pollard JW . Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006; 124: 263–266.

    CAS  PubMed  Google Scholar 

  135. Miyashita T, Tajima H, Shah FA, Oshima M, Makino I, Nakagawara H et al. Impact of inflammation-metaplasia-adenocarcinoma sequence and inflammatory microenvironment in esophageal carcinogenesis using surgical rat models. Ann Surg Oncol 2014; 21: 2012–2019.

    PubMed  Google Scholar 

  136. Gao J, Wu Y, Su Z, Amoah Barnie P, Jiao Z, Bie Q et al. Infiltration of alternatively activated macrophages in cancer tissue is associated with MDSC and Th2 polarization in patients with esophageal cancer. PLoS One 2014; 9: e104453.

    PubMed  PubMed Central  Google Scholar 

  137. Koide N, Nishio A, Sato T, Sugiyama A, Miyagawa S . Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus. Am J Gastroenterol 2004; 99: 1667–1674.

    CAS  PubMed  Google Scholar 

  138. Shigeoka M, Urakawa N, Nakamura T, Nishio M, Watajima T, Kuroda D et al. Tumor associated macrophage expressing CD204 is associated with tumor aggressiveness of esophageal squamous cell carcinoma. Cancer Sci 2013; 104: 1112–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    CAS  PubMed  Google Scholar 

  140. Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME et al. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2012; 2: 1100–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tanaka K, Miyata H, Sugimura K, Fukuda S, Kanemura T, Yamashita K et al. miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis 2015; 36: 894–903.

    CAS  PubMed  Google Scholar 

  142. Okawa T, Michaylira CZ, Kalabis J, Stairs DB, Nakagawa H, Andl CD et al. The functional interplay between EGFR overexpression, hTERT activation, and p53 mutation in esophageal epithelial cells with activation of stromal fibroblasts induces tumor development, invasion, and differentiation. Genes Dev 2007; 21: 2788–2803.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Grugan KD, Miller CG, Yao Y, Michaylira CZ, Ohashi S, Klein-Szanto AJ et al. Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion. Proc Natl Acad Sci USA 2010; 107: 11026–11031.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Noma K, Smalley KSM, Lioni M, Naomoto Y, Tanaka N, El-Deiry W et al. The essential role of fibroblasts in esophageal squamous cell carcinoma-induced angiogenesis. Gastroenterology 2008; 134: 1981–1993.

    PubMed  Google Scholar 

  145. Zhang C, Fu L, Fu J, Hu L, Yang H, Rong TH et al. Fibroblast growth factor receptor 2-positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clin Cancer Res 2009; 15: 4017–4027.

    CAS  PubMed  Google Scholar 

  146. Ha SY, Yeo S-Y, Xuan Y, Kim S-H . The prognostic significance of cancer-associated fibroblasts in esophageal squamous cell carcinoma. PLoS One 2014; 9: e99955.

    PubMed  PubMed Central  Google Scholar 

  147. Chen Y, Li X, Yang H, Xia Y, Guo L, Wu X et al. Expression of basic fibroblast growth factor, CD31, and α-smooth muscle actin and esophageal cancer recurrence after definitive chemoradiation. Tumour Biol 2014; 35: 7275–7282.

    CAS  PubMed  Google Scholar 

  148. Bao C-H, Wang X-T, Ma W, Wang N-N, Un Nesa E, Wang J-B et al. Irradiated fibroblasts promote epithelial-mesenchymal transition and HDGF expression of esophageal squamous cell carcinoma. Biochem Biophys Res Commun 2015; 458: 441–447.

    CAS  PubMed  Google Scholar 

  149. Hayden AL, Derouet MF, Noble F, Primrose JN, Blaydes JP, Thomas G et al. OC-121 fibroblast activation in the tumour microenvironment promotes tumour cell invasion and resistance to chemotherapy in oesophageal adenocarcinoma. Gut 2012; 61: A52–A53.

    Google Scholar 

  150. Underwood TJ, Hayden AL, Derouet M, Garcia E, Noble F, White MJ et al. Cancer-associated fibroblasts predict poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol 2015; 235: 466–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Bierie B, Moses HL . Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 2006; 6: 506–520.

    CAS  PubMed  Google Scholar 

  152. Pickup M, Novitskiy S, Moses HL . The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer 2013; 13: 788–799.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lebman DA, Edmiston JS, Chung TD, Snyder SR . Heterogeneity in the transforming growth factor beta response of esophageal cancer cells. Int J Oncol 2002; 20: 1241–1246.

    CAS  PubMed  Google Scholar 

  154. Onwuegbusi BA, Aitchison A, Chin S-F, Kranjac T, Mills I, Huang Y et al. Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut 2006; 55: 764–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fukuchi M, Masuda N, Miyazaki T, Nakajima M, Osawa H, Kato H et al. Decreased Smad4 expression in the transforming growth factor-beta signaling pathway during progression of esophageal squamous cell carcinoma. Cancer 2002; 95: 737–743.

    CAS  PubMed  Google Scholar 

  156. Wu L, Herman JG, Brock M V, Wu K, Mao G, Yan W et al. Silencing DACH1 promotes esophageal cancer growth by inhibiting TGF-β signaling. PLoS One 2014; 9: e95509.

    PubMed  PubMed Central  Google Scholar 

  157. Hou J, Liao L-D, Xie Y-M, Zeng F-M, Ji X, Chen B et al. DACT2 is a candidate tumor suppressor and prognostic marker in esophageal squamous cell carcinoma. Cancer Prev Res (Phila) 2013; 6: 791–800.

    CAS  Google Scholar 

  158. Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T et al. Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer 2003; 104: 161–166.

    CAS  PubMed  Google Scholar 

  159. Song S, Maru DM, Ajani JA, Chan C-H, Honjo S, Lin H-K et al. Loss of TGF-β adaptor β2SP activates notch signaling and SOX9 expression in esophageal adenocarcinoma. Cancer Res 2013; 73: 2159–2169.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. von Rahden BHA, Stein HJ, Feith M, Pühringer F, Theisen J, Siewert JR et al. Overexpression of TGF-beta1 in esophageal (Barrett’s) adenocarcinoma is associated with advanced stage of disease and poor prognosis. Mol Carcinog 2006; 45: 786–794.

    CAS  PubMed  Google Scholar 

  161. Kim AH, Lebman DA, Dietz CM, Snyder SR, Eley KW, Chung TD . Transforming growth factor-β is an endogenous radioresistance factor in the esophageal adenocarcinoma cell line OE-33. Int J Oncol 2003; 23: 1593–1599.

    CAS  PubMed  Google Scholar 

  162. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    CAS  PubMed  Google Scholar 

  163. Dreikhausen L, Blank S, Sisic L, Heger U, Weichert W, Jäger D et al. Association of angiogenic factors with prognosis in esophageal cancer. BMC Cancer 2015; 15: 121.

    PubMed  PubMed Central  Google Scholar 

  164. Ren Y, Cao B, Law S, Xie Y, Lee PY, Cheung L et al. Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: a prognostic marker of human esophageal squamous cell carcinomas. Clin Cancer Res 2005; 11: 6190–6197.

    CAS  PubMed  Google Scholar 

  165. Takada N, Yano Y, Matsuda T, Otani S, Osugi H, Higashino M et al. Expression of immunoreactive human hepatocyte growth factor in human esophageal squamous cell carcinomas. Cancer Lett 1995; 97: 145–148.

    CAS  PubMed  Google Scholar 

  166. Tuynman JB, Lagarde SM, Ten Kate FJW, Richel DJ, van Lanschot JJB . Met expression is an independent prognostic risk factor in patients with oesophageal adenocarcinoma. Br J Cancer 2008; 98: 1102–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Patel ZS, Grugan KD, Rustgi AK, Cucinotta FA, Huff JL . Ionizing radiation enhances esophageal epithelial cell migration and invasion through a paracrine mechanism involving stromal-derived hepatocyte growth factor. Radiat Res 2012; 177: 200–208.

    CAS  PubMed  Google Scholar 

  168. Xu Z, Wang S, Wu M, Zeng W, Wang X, Dong Z . TGFβ1 and HGF protein secretion by esophageal squamous epithelial cells and stromal fibroblasts in oesophageal carcinogenesis. Oncol Lett 2013; 6: 401–406.

    PubMed  PubMed Central  Google Scholar 

  169. Anderson MR, Harrison R, Atherfold PA, Campbell MJ, Darnton SJ, Obszynska J et al. Met receptor signaling: a key effector in esophageal adenocarcinoma. Clin Cancer Res 2006; 12: 5936–5943.

    CAS  PubMed  Google Scholar 

  170. Kitadai Y, Onogawa S, Kuwai T, Matsumura S, Hamada H, Ito M et al. Angiogenic switch occurs during the precancerous stage of human esophageal squamous cell carcinoma. Oncol Rep 2004; 11: 315–319.

    CAS  PubMed  Google Scholar 

  171. Couvelard A, Paraf F, Gratio V, Scoazec JY, Hénin D, Degott C et al. Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol 2000; 192: 14–18.

    CAS  PubMed  Google Scholar 

  172. Goel HL, Mercurio AM . VEGF targets the tumour cell. Nat Rev Cancer 2013; 13: 871–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ito T-K, Ishii G, Chiba H, Ochiai A . The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells. Oncogene 2007; 26: 7194–7203.

    CAS  PubMed  Google Scholar 

  174. Ekman S, Bergqvist M, Heldin C-H, Lennartsson J . Activation of growth factor receptors in esophageal cancer—implications for therapy. Oncologist 2007; 12: 1165–1177.

    CAS  PubMed  Google Scholar 

  175. Möbius C, Freire J, Becker I, Feith M, Brücher BLDM, Hennig M et al. VEGF-C expression in squamous cell carcinoma and adenocarcinoma of the esophagus. World J Surg 2007; 31: 1768–1772 discussion 1773–1774.

    PubMed  Google Scholar 

  176. Chen M, Cai E, Huang J, Yu P, Li K . Prognostic value of vascular endothelial growth factor expression in patients with esophageal cancer: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2012; 21: 1126–1134.

    CAS  PubMed  Google Scholar 

  177. Xu W, Yang G, Zhou L, Xie Y, Zhang L . Prognostic value of VEGF expression in primary esophageal squamous cell carcinoma. Chinese J Cancer Res 2004; 16: 85–89.

    Google Scholar 

  178. Zhang H, Zhang L, Chen K, Gao D, He F, Zhang Y . Expression of vascular endothelial growth factor C and its clinical significance in human esophageal squamous cell carcinoma. Cancer Biol Med 2007; 4: 83–88.

    CAS  Google Scholar 

  179. Lord RVN, Park JM, Wickramasinghe K, DeMeester SR, Oberg S, Salonga D et al. Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus. J Thorac Cardiovasc Surg 2003; 125: 246–253.

    PubMed  Google Scholar 

  180. Prins MJD, Verhage RJJ, ten Kate FJW, van Hillegersberg R . Cyclooxygenase isoenzyme-2 and vascular endothelial growth factor are associated with poor prognosis in esophageal adenocarcinoma. J Gastrointest Surg 2012; 16: 956–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 2010; 29: 709–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Kaifi JT, Yekebas EF, Schurr P, Obonyo D, Wachowiak R, Busch P et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 2005; 97: 1840–1847.

    CAS  PubMed  Google Scholar 

  183. Tachezy M, Zander H, Gebauer F, von Loga K, Pantel K, Izbicki JR et al. CXCR7 expression in esophageal cancer. J Transl Med 2013; 11: 238.

    PubMed  PubMed Central  Google Scholar 

  184. Sasaki K, Natsugoe S, Ishigami S, Matsumoto M, Okumura H, Setoyama T et al. Expression of CXCL12 and its receptor CXCR4 in esophageal squamous cell carcinoma. Oncol Rep 2009; 21: 65–71.

    PubMed  Google Scholar 

  185. Wang D-F, Lou N, Zeng C-G, Zhang X, Chen F-J . Expression of CXCL12/CXCR4 and its correlation to prognosis in esophageal squamous cell carcinoma. Ai Zheng 2009; 28: 154–158.

    CAS  PubMed  Google Scholar 

  186. Gros SJ, Graeff H, Drenckhan A, Kurschat N, Blessmann M, Rawnaq T et al. CXCR4/SDF-1α-mediated chemotaxis in an in vivo model of metastatic esophageal carcinoma. In Vivo 2012; 26: 711–718.

    CAS  PubMed  Google Scholar 

  187. Wang T, Mi Y, Pian L, Gao P, Xu H, Zheng Y et al. RNAi targeting CXCR4 inhibits proliferation and invasion of esophageal carcinoma cells. Diagn Pathol 2013; 8: 104.

    PubMed  PubMed Central  Google Scholar 

  188. Bonnans C, Chou J, Werb Z . Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15: 786–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Cox TR, Erler JT . Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech 2011; 4: 165–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kessenbrock K, Plaks V, Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 2010; 141: 52–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Fong SFT, Dietzsch E, Fong KSK, Hollosi P, Asuncion L, He Q et al. Lysyl oxidase-like 2 expression is increased in colon and esophageal tumors and associated with less differentiated colon tumors. Genes Chromosomes Cancer 2007; 46: 644–655.

    CAS  PubMed  Google Scholar 

  192. Zhang Y, Wang Q, Ma A, Li Y, Li R, Wang Y . Functional expression of TLR9 in esophageal cancer. Oncol Rep 2014; 31: 2298–2304.

    CAS  PubMed  Google Scholar 

  193. Gu Z-D, Li J-Y, Li M, Gu J, Shi X-T, Ke Y et al. Matrix metalloproteinases expression correlates with survival in patients with esophageal squamous cell carcinoma. Am J Gastroenterol 2005; 100: 1835–1843.

    CAS  PubMed  Google Scholar 

  194. Salmela MT, Karjalainen-Lindsberg ML, Puolakkainen P, Saarialho-Kere U . Upregulation and differential expression of matrilysin (MMP-7) and metalloelastase (MMP-12) and their inhibitors TIMP-1 and TIMP-3 in Barrett’s oesophageal adenocarcinoma. Br J Cancer 2001; 85: 383–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Grimm M, Lazariotou M, Kircher S, Stuermer L, Reiber C, Höfelmayr A et al. MMP-1 is a (pre-)invasive factor in Barrett-associated esophageal adenocarcinomas and is associated with positive lymph node status. J Transl Med 2010; 8: 99.

    PubMed  PubMed Central  Google Scholar 

  196. Carpenter RL, Lo H-W . STAT3 target genes relevant to human cancers. Cancers (Basel) 2014; 6: 897–925.

    CAS  Google Scholar 

  197. Wong GS, Lee J-S, Park Y-Y, Klein-Szanto A J, Waldron TJ, Cukierman E et al. Periostin cooperates with mutant p53 to mediate invasion through the induction of STAT1 signaling in the esophageal tumor microenvironment. Oncogenesis 2013; 2: e59.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang J, Zhi H, Zhou C, Ding F, Luo A, Zhang X et al. Up-regulation of fibronectin in oesophageal squamous cell carcinoma is associated with activation of the Erk pathway. J Pathol 2005; 207: 402–409.

    CAS  PubMed  Google Scholar 

  199. Thelin MA, Svensson KJ, Shi X, Bagher M, Axelsson J, Isinger-Ekstrand A et al. Dermatan sulfate is involved in the tumorigenic properties of esophagus squamous cell carcinoma. Cancer Res 2012; 72: 1943–1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Wang C, Tammi M, Guo H, Tammi R . Hyaluronan distribution in the normal epithelium of esophagus, stomach, and colon and their cancers. Am J Pathol 1996; 148: 1861–1869.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Twarock S, Freudenberger T, Poscher E, Dai G, Jannasch K, Dullin C et al. Inhibition of oesophageal squamous cell carcinoma progression by in vivo targeting of hyaluronan synthesis. Mol Cancer 2011; 10: 30.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Huang J-X, Zhao K, Lin M, Wang Q, Xiao W, Lin M-S et al. HER2 gene amplification in esophageal squamous cell carcinoma is less than in gastroesophageal junction and gastric adenocarcinoma. Oncol Lett 2013; 6: 13–18.

    PubMed  PubMed Central  Google Scholar 

  203. Bertos NR, Park M . Breast cancer - one term, many entities? J Clin Invest 2011; 121: 3789–3796.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Coussens LM, Zitvogel L, Palucka AK . Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science 2013; 339: 286–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cai X, Yin Y, Li N, Zhu D, Zhang J, Zhang C-Y et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J Mol Cell Biol 2012; 4: 341–343.

    CAS  PubMed  Google Scholar 

  206. Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K et al. Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med 2015; 7: 301ra130.

    PubMed  PubMed Central  Google Scholar 

  207. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499: 97–101.

    CAS  PubMed  Google Scholar 

  208. Zhao C-M, Hayakawa Y, Kodama Y, Muthupalani S, Westphalen CB, Andersen GT et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2014; 6: 250ra115.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Rustgi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, E., Karakasheva, T., Hicks, P. et al. The tumor microenvironment in esophageal cancer. Oncogene 35, 5337–5349 (2016). https://doi.org/10.1038/onc.2016.34

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.34

This article is cited by

Search

Quick links