Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma

Abstract

Little is known about the mutational landscape of advanced hepatocellular carcinoma (HCC), and predictive biomarkers of response to systemic therapies are lacking. We aimed to describe the mutational landscape of advanced HCC and to identify predictors of primary resistance to systemic therapies using circulating tumor DNA (ctDNA). We prospectively enrolled 121 patients between October 2015 and January 2019. We performed targeted ultra-deep sequencing of 25 genes and Digital Droplet PCR of TERT promoter, including sequential samples throughout treatment. Primary endpoint was progression-free survival (PFS) stratified by mutation profiles in ctDNA. Secondary endpoints were overall survival and objective response rate. The most frequent mutations in ctDNA of advanced HCC were TERT promoter (51%), TP53 (32%), CTNNB1 (17%), PTEN (8%), AXIN1, ARID2, KMT2D, and TSC2 (each 6%). TP53 and CTNNB1 mutations were mutually exclusive. Patients with mutations in the PI3K/MTOR pathway had significantly shorter PFS than those without these mutations after tyrosine kinase inhibitors (2.1 vs 3.7 months, p < 0.001), but not after immune checkpoint inhibition (CPI). WNT pathway mutations were not associated with PFS, overall survival, or objective response after CPI. Serial profiling of ctDNA in a subset correlated with treatment response. Mutation profiling of ctDNA in advanced HCC shows similar mutation frequencies for known HCC drivers compared to early stages and identifies predictive biomarkers of response to systemic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ctDNA mutation profiling in advanced HCC.
Fig. 2: ctDNA mutation profiles and response to TKI.
Fig. 3: ctDNA mutation profiles and response to CPI.
Fig. 4: Molecular monitoring using ctDNA.

Similar content being viewed by others

Data availability

Raw data for the sequencing analysis included in this article will be made available upon publication via Sequence Read Archive of the NCBI (accession number PRJNA626404).

References

  1. IARC data. 2018. https://gco.iarc.fr/today/home.

  2. CDC liver cancer report. 2018. https://www.cdc.gov/nchs/products/databriefs/db314.htm.

  3. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450–62.

    Article  CAS  PubMed  Google Scholar 

  4. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  5. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    Article  CAS  PubMed  Google Scholar 

  6. Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66.

    Article  CAS  PubMed  Google Scholar 

  7. Abou-Alfa GK, Meyer T, Cheng A-L, El-Khoueiry AB, Rimassa L, Ryoo B-Y, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu AX, Kang Y-K, Yen C-J, Finn RS, Galle PR, Llovet JM, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:282–96.

    Article  CAS  PubMed  Google Scholar 

  9. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–52.

    Article  PubMed  Google Scholar 

  11. Yau T, Park JW, Finn RS, Cheng AL, Mathurin P, Edeline J, et al. LBA38_PR CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol. 2019;30:mdz394–029.

    Google Scholar 

  12. Finn RS, Ryoo B-Y, Merle P, Kudo M, Bouattour M, Lim HY, et al. Pembrolizumab As second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38:193–202.

    Article  CAS  PubMed  Google Scholar 

  13. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  CAS  PubMed  Google Scholar 

  14. Ally A, Balasundaram M, Carlsen R, Chuah E, Clarke A, Dhalla N, et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169:1327–.e23.

    Article  CAS  Google Scholar 

  15. Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Rebouissou S, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46:1267–73.

    Article  CAS  PubMed  Google Scholar 

  17. Harding JJ, Nandakumar S, Armenia J, Khalil DN, Albano M, Ly M, et al. Prospective genotyping of hepatocellular carcinoma: clinical implications of next generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res. 2019;25:2116–26.

    Article  CAS  PubMed  Google Scholar 

  18. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236.

  19. Marrero JA, Kulik LM, Sirlin CB, Zhu AX, Finn RS, Abecassis MM, et al. Diagnosis, staging, and management of hepatocellular carcinoma: 2018 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2018;68:723–50.

    Article  PubMed  Google Scholar 

  20. Labgaa I, Villanueva A. Liquid biopsy in liver cancer. Disco Med. 2015;19:263–73.

    Google Scholar 

  21. Labgaa I, Villacorta-Martin C, D'Avola D, Craig AJ, von Felden J, Martins-Filho SN, et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene. 2018;37:3740–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang A, Zhao X, Yang X-R, Li F-Q, Zhou X-L, Wu K, et al. Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma. J Hepatol. 2017;67:293–301.

    Article  CAS  PubMed  Google Scholar 

  23. Ng CKY, Di Costanzo GG, Tosti N, Paradiso V, Coto-Llerena M, Roscigno G, et al. Genetic profiling using plasma-derived cell-free DNA in therapy-naïve hepatocellular carcinoma patients: a pilot study. Ann Oncol 2018;29:1286–91.

    Article  CAS  PubMed  Google Scholar 

  24. Howell J, Atkinson SR, Pinato DJ, Knapp S, Ward C, Minisini R, et al. Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma. Eur J Cancer. 2019;116:56–66.

    Article  CAS  PubMed  Google Scholar 

  25. Mansukhani S, Barber LJ, Kleftogiannis D, Moorcraft SY, Davidson M, Woolston A, et al. Ultra-sensitive mutation detection and genome-wide DNA copy number reconstruction by error-corrected circulating tumor DNA sequencing. Clin Chem. 2018;64:1626–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. von Felden J, Garcia-Lezana T, Schulze K, Losic B, Villanueva A. Liquid biopsy in the clinical management of hepatocellular carcinoma. Gut. 2020;69:2025–34.

    Article  CAS  PubMed  Google Scholar 

  27. Jiang P, Chan KCA, Lo YMD. Liver-derived cell-free nucleic acids in plasma: biology and applications in liquid biopsies. J Hepatol. 2019;71:409–21.

    Article  CAS  PubMed  Google Scholar 

  28. Sia D, Jiao Y, Martinez-Quetglas I, Kuchuk O, Villacorta-Martin C, Castro de Moura M, et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology. 2017;153:812–26.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu M, Lu T, Jia Y, Luo X, Gopal P, Li L, et al. Somatic mutations increase hepatic clonal fitness and regeneration in chronic liver disease. Cell. 2019;177:608–21.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature. 2019;574:538–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nault J-C, Ningarhari M, Rebouissou S, Zucman-Rossi J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat Rev Gastroenterol Hepatol. 2019;16:544–58.

    Article  PubMed  Google Scholar 

  34. Llovet JM, Montal R, Villanueva A. Randomized trials and endpoints in advanced HCC: role of PFS as a surrogate of survival. J Hepatol. 2019;70:1262–77.

    Article  PubMed  Google Scholar 

  35. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    Article  CAS  PubMed  Google Scholar 

  36. OncoKB. http://oncokb.org/actionableGenes. Accessed 18 July 2019.

  37. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020;17:139–52.

    Article  PubMed  Google Scholar 

  38. Rothwell DG, Ayub M, Cook N, Thistlethwaite F, Carter L, Dean E, et al. Utility of ctDNA to support patient selection for early phase clinical trials: the TARGET study. Nat Med. 2019;25:738–43.

    Article  CAS  PubMed  Google Scholar 

  39. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.

    Article  CAS  PubMed  Google Scholar 

  40. Goodall J, Mateo J, Yuan W, Mossop H, Porta N, Miranda S, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017;7:1006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nault J-C, Martin Y, Caruso S, Hirsch TZ, Bayard Q, Calderaro J, et al. Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma. Hepatology. 2020;71:164–82.

    Article  CAS  PubMed  Google Scholar 

  42. von Felden J. New systemic agents for hepatocellular carcinoma: an update 2020. Curr Opin Gastroenterol. 2020;36:177–83.

    Article  Google Scholar 

  43. Xia H, Ooi LLPJ, Hui KM. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology. 2013;58:629–41.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Wang Q, Liu J, Cao H. Inhibition of the PI3K/Akt signaling pathway reverses sorafenib-derived chemo-resistance in hepatocellular carcinoma. Oncol Lett. 2018;15:9377–84.

    PubMed  PubMed Central  Google Scholar 

  45. Luke JJ, Bao R, Sweis RF, Spranger S, Gajewski TF. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res. 2019;25:3074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruiz de Galarreta M, Bresnahan E, Molina-Sanchez P, Lindblad KE, Maier B, Sia D, et al. β-catenin activation promotes immune escape and resistance to anti-PD-1 therapy in hepatocellular carcinoma. Cancer Discov. 2019;9:1124–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the ISMMS Cancer Center Biorepository for providing some of the samples, as well as the office of Scientific Computing for providing computational resources and staff expertise.

Funding

JvF is supported by the German Research Foundation (FE1746/1-1). AJC is supported by the National Cancer Institute Ruth L. Kirschstein NRSA Institutional Research Training Grant (CA078207). IL is supported by a grant from the Swiss National Science Foundation, from Foundation Roberto & Gianna Gonella and Foundation SICPA. PKH is supported by the German Research Foundation (HA8754/1–1). DD is supported by the Grant for Studies Broadening from the Spanish Association for the Study of the Liver (Asociación Española para el Estudio del Hígado, AEEH) and the Cancer Research Grant from Nuovo Soldati Foundation. JML is supported by the European Commission (EC)/Horizon 2020 Program (HEPCAR, Ref. 667273-2), U.S. Department of Defense (CA150272P3), an Accelerator Award (CRUCK, AECC, AIRC) (HUNTER, Ref. C9380/A26813), National Cancer Institute, Tisch Cancer Institute (P30-CA196521), Samuel Waxman Cancer Research Foundation, Spanish National Health Institute (SAF2016-76390) and the Generalitat de Catalunya/AGAUR (SGR-1358). AV is supported by the U.S. Department of Defense (CA150272P3).

Author information

Authors and Affiliations

Authors

Contributions

Study design: JvF, JML, AV. Patient enrollment/sample collection: JvF, AJC, TGL, IL, PKH, DDA, AA, DD, AB, MWS, PT, MS, AV. Experiments/analysis/data collection: JvF, AJC, TGL, IL, PKH, MTM, DS, JML, AV. Drafting of the manuscript: JvF, AV. All authors gave intellectual input to the manuscript and have approved its final version.

Corresponding author

Correspondence to Augusto Villanueva.

Ethics declarations

Conflict of interest

AA reports financial activities for consulting from Gilead, Genfit, Sterotherapeutics, and Connect, for consulting and speaking from Intercept, for advisory board membership from SanyalBio, all outside the submitted work. DD reports grants and personal fees from Gilead, grants and personal fees from Abbvie, grants and personal fees from Intercept, outside the submitted work. MWS reports advisory board fees from Bayer, Eisai, Exelixis, all outside the submitted work; JML reports grants and personal fees from Bayer Pharmaceuticals, Eisai Inc., Bristol Myers Squibb, Boehringer-Ingelheim, and Ipsen, personal fees from Merck, Celsion, Eli Lilly, Roche, Genentech, Glycotest, Nucleix, Can-Fite Biopharma, Exelixis, and Astrazeneca, all outside the submitted work. AV reports personal fees from NGM Pharmaceuticals, Gilead, Nucleix, Fuji Wako, Guidepoint, Exact Sciences, all outside the submitted work. All remaining authors have nothing to declare in regard to this manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Felden, J., Craig, A.J., Garcia-Lezana, T. et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene 40, 140–151 (2021). https://doi.org/10.1038/s41388-020-01519-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01519-1

This article is cited by

Search

Quick links