Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

An analysis of genetic heterogeneity in untreated cancers

Abstract

Genetic intratumoural heterogeneity is a natural consequence of imperfect DNA replication. Any two randomly selected cells, whether normal or cancerous, are therefore genetically different. Here, we review the different forms of genetic heterogeneity in cancer and re-analyse the extent of genetic heterogeneity within seven types of untreated epithelial cancers, with particular regard to its clinical relevance. We find that the homogeneity of predicted functional mutations in driver genes is the rule rather than the exception. In primary tumours with multiple samples, 97% of driver-gene mutations in 38 patients were homogeneous. Moreover, among metastases from the same primary tumour, 100% of the driver mutations in 17 patients were homogeneous. With a single biopsy of a primary tumour in 14 patients, the likelihood of missing a functional driver-gene mutation that was present in all metastases was 2.6%. Furthermore, all functional driver-gene mutations detected in these 14 primary tumours were present among all their metastases. Finally, we found that individual metastatic lesions responded concordantly to targeted therapies in 91% of 44 patients. These analyses indicate that the cells within the primary tumours that gave rise to metastases are genetically homogeneous with respect to functional driver-gene mutations, and we suggest that future efforts to develop combination therapies have the potential to be curative.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clonal sweeps give rise to driver-gene mutation homogeneity.
Fig. 2: Three forms of heterogeneity can exist within a single patient.
Fig. 3: The majority of primary tumours are surgically resectable at the time of diagnosis.
Fig. 4: Intratumoural heterogeneity in untreated primary tumours and among metastases.
Fig. 5: Subclonal driver-gene mutations did not lead to worse patient outcomes in patients with non-small-cell lung carcinomas.
Fig. 6: Lesions of individual patients respond similarly to targeted therapy.

Similar content being viewed by others

References

  1. Heppner, G. H. Tumor heterogeneity. Cancer Res. 44, 2259–2265 (1984).

    CAS  PubMed  Google Scholar 

  2. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Rosenthal, R., McGranahan, N., Herrero, J. & Swanton, C. Deciphering genetic intratumor heterogeneity and its impact on cancer evolution. Annu. Rev. Cancer Biol. 1, 223–240 (2017).

    Article  Google Scholar 

  5. Jones, S. et al. Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl Acad. Sci. USA 105, 4283–4288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Diaz, L. A. Jr et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bozic, I. & Nowak, M. A. Resisting resistance. Annu. Rev. Cancer Biol. 1, 203–221 (2017).

  11. McGranahan, N. et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci. Transl. Med. 7, 283ra54 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sottoriva, A., Barnes, C. P. & Graham, T. A. Catch my drift? Making sense of genomic intra-tumour heterogeneity. Biochim. Biophys. Acta Rev. Cancer 1867, 95–100 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med. 10, 25 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tokheim, C. & Karchin, R. Enhanced context reveals the scope of somatic missense mutations driving human cancers. Cell Syst. 9, 1–15 (2019).

    Article  Google Scholar 

  16. Vogelstein, B. & Kinzler, K. W. The path to cancer-three strikes and you’re out. N. Engl. J. Med. 373, 1895–1898 (2015).

    Article  PubMed  Google Scholar 

  17. Tomasetti, C., Marchionni, L., Nowak, M. A., Parmigiani, G. & Vogelstein, B. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc. Natl Acad. Sci. USA 112, 118–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Hruban, R. H., Goggins, M., Parsons, J. & Kern, S. E. Progression model for pancreatic cancer. Clin. Cancer Res. 6, 2969–2972 (2000).

    CAS  PubMed  Google Scholar 

  19. Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Makohon-Moore, A. P. et al. Precancerous neoplastic cells can move through the pancreatic ductal system. Nature 561, 201–205 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saito, T. et al. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat. Commun. 9, 2884 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bozic, I., Gerold, J. M. & Nowak, M. A. Quantifying clonal and subclonal passenger mutations in cancer evolution. PLoS Comput. Biol. 12, e1004731 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. Genet. 49, 1015–1024 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wodarz, D. & Komarova, N. L. Dynamics of Cancer: Mathematical Foundations of Oncology (World Scientific Publishing, 2014).

  27. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Amikura, K., Kobari, M. & Matsuno, S. The time of occurrence of liver metastasis in carcinoma of the pancreas. Int. J. Pancreatol. 17, 139–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Cannataro, V. L., Gaffney, S. G. & Townsend, J. P. Effect sizes of somatic mutations in cancer. J. Natl Cancer Inst. 110, 1171–1177 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  33. Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reiter, J. G., Bozic, I., Allen, B., Chatterjee, K. & Nowak, M. A. The effect of one additional driver mutation on tumor progression. Evol. Appl. 6, 34–45 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Reiter, J. G., Bozic, I., Chatterjee, K. & Nowak, M. A. TTP: Tool for Tumor Progression in Computer Aided Verification: 25th International Conference, CAV 2013 (eds Sharygina, N. & Veith, H.) 101–106 (Springer, 2013).

  36. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Sanchez-Vega, F. et al. Oncogenic signaling pathways in the cancer genome atlas. Cell 173, 321–337 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Priestley, P. et al. Pan-cancer whole genome analyses of metastatic solid tumors. Preprint at bioRxiv https://doi.org/10.1101/415133 (2019).

  40. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Preprint at bioRxiv https://doi.org/10.1101/161562 (2018).

  41. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Kurman, R. J. & Shih, I.-M. The origin and pathogenesis of epithelial ovarian cancer—a proposed unifying theory. Am. J. Surg. Pathol. 34, 433–443 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Murphy, S. J. et al. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. Gastroenterology 145, 1098–1109 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Reiter, J. G. & Iacobuzio-Donahue, C. A. Pancreatic carcinogenesis—several small steps or one giant leap? Nat. Rev. Gastroenterol. Hepatol. 14, 7–8 (2017).

    Article  CAS  Google Scholar 

  45. Teixeira, V. H. et al. Deciphering the genomic, epigenomic, and transcriptomic landscapes of pre-invasive lung cancer lesions. Nat. Med. 25, 517–525 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bielski, C. M. et al. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50, 1189–1195 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolhaqueiro, A. C. F. et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat. Genet. 51, 824–834 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jung, S.-H. et al. Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung. Proc. Natl Acad. Sci. USA 113, 10672–10677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Curtius, K., Wright, N. A. & Graham, T. A. Evolution of premalignant disease. Cold Spring Harb. Perspect. Med. 7, a026542 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Kuboki, Y. et al. Single-cell sequencing defines genetic heterogeneity in pancreatic cancer precursor lesions. J. Pathol. 247, 347–356 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Winters, I. P., Murray, C. W. & Winslow, M. M. Towards quantitative and multiplexed in vivo functional cancer genomics. Nat. Rev. Genet. 19, 741–755 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Sondka, Z. et al. The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bae, T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550–555 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Durrett, R., Foo, J., Leder, K., Mayberry, J. & Michor, F. Intratumor heterogeneity in evolutionary models of tumor progression. Genetics 188, 461–477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Almendro, V. et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6, 514–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Makohon-Moore, A. P. et al. Limited heterogeneity of known driver gene mutations among the metastases of individual pancreatic cancer patients. Nat. Genet. 49, 358–366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rosenbloom, D. I. S., Camara, P. G., Chu, T. & Rabadan, R. Evolutionary scalpels for dissecting tumor ecosystems. Biochim. Biophys. Acta 1867, 69–83 (2017).

    CAS  Google Scholar 

  67. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Lemery, S., Keegan, P. & Pazdur, R. First FDA approval agnostic of cancer site-when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).

    Article  PubMed  Google Scholar 

  69. Drilon, A. et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 378, 731–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Makohon-Moore, A. & Iacobuzio-Donahue, C. A. Pancreatic cancer biology and genetics from an evolutionary perspective. Nat. Rev. Cancer 16, 553–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    Article  PubMed  Google Scholar 

  72. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intra-tumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Lacroix, M. et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95, 190–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Francis, J. M. et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 4, 956–971 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bashashati, A. et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J. Pathol. 231, 21–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yates, L. R. et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, T.-M. et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 4461–4472 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. McPherson, A. et al. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48, 758–767 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256–259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Reiter, J. G. et al. Reconstructing metastatic seeding patterns of human cancers. Nat. Commun. 8, 14114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shi, W. et al. Reliability of whole-exome sequencing for assessing intratumor genetic heterogeneity. Cell Rep. 25, 1446–1457 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zare, F., Dow, M., Monteleone, N., Hosny, A. & Nabavi, S. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data. BMC Bioinformatics 18, 286 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Salari, R. et al. Inference of tumor phylogenies with improved somatic mutation discovery. J. Comput. Biol. 20, 933–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, A. W. et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173, 1755–1769 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Ryser, M. D., Min, B.-H., Siegmund, K. D. & Shibata, D. Spatial mutation patterns as markers of early colorectal tumor cell mobility. Proc. Natl Acad. Sci. USA 115, 5774–5779 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pectasides, E. et al. Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. Cancer Discov. 8, 37–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. LiFD (Likely Functional Driver). https://github.com/johannesreiter/LiFD (2019).

  91. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 1, 1–16 (2017).

    Google Scholar 

  92. Chang, M. T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Forbes, S. et al. COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr. Protoc. Hum. Genet. 91, 1–37 (2016).

    Google Scholar 

  94. Masica, D. L. et al. CRAVAT 4: cancer-related analysis of variants toolkit. Cancer Res. 77, e35–e38 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shihab, H. A., Gough, J., Cooper, D. N., Day, I. N. M. & Gaunt, T. R. Predicting the functional consequences of cancer-associated amino acid substitutions. Bioinformatics 29, 1504–1510 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mao, Y. et al. CanDrA: cancer-specific driver missense mutation annotation with optimized features. PLoS ONE 8, e77945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Løes, I. M. et al. Impact of KRAS, BRAF, PIK3CA, TP53 status and intraindividual mutation heterogeneity on outcome after liver resection for colorectal cancer metastases. Int. J. Cancer 139, 647–656 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Smith, J. C. & Sheltzer, J. M. Systematic identification of mutations and copy number alterations associated with cancer patient prognosis. eLife 7, e39217 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schwarz, R. F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12, e1001789 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Gokulan, R. C., Garcia-Buitrago, M. T. & Zaika, A. I. From genetics to signaling pathways: molecular pathogenesis of esophageal adenocarcinoma. Biochim. Biophys. Acta Rev. Cancer 1872, 37–48 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  102. Naxerova, K. & Jain, R. K. Using tumour phylogenetics to identify the roots of metastasis in humans. Nat. Rev. Clin. Oncol. 12, 258–272 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Gibson, W. J. et al. The genomic landscape and evolution of endometrial carcinoma progression and abdominopelvic metastasis. Nat. Genet. 48, 848–855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brown, D. et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 8, 14944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hong, M. K. H. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6, 6605 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Tokheim, C. J., Papadopoulos, N., Kinzler, K. W., Vogelstein, B. & Karchin, R. Evaluating the evaluation of cancer driver genes. Proc. Natl Acad. Sci. USA 113, 14330–14335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Turajlic, S. & Swanton, C. Metastasis as an evolutionary process. Science 352, 169–175 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhao, Z.-M. et al. Early and multiple origins of metastatic lineages within primary tumors. Proc. Natl Acad. Sci. USA 113, 2140–2145 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hunter, K. W., Amin, R., Deasy, S., Ha, N.-H. & Wakefield, L. Genetic insights into the morass of metastatic heterogeneity. Nat. Rev. Cancer 18, 211–223 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sharma, S. V., Bell, D. W., Settleman, J. & Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 7, 169–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Juric, D. et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kα inhibitor. Nature 518, 240–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Khan, K. H. et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov. 8, 1270–1285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Goyal, L. et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov. 7, 252–263 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Vakiani, E. et al. Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J. Clin. Oncol. 30, 2956–2962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brannon, A. R. et al. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 15, 454 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Yatabe, Y., Matsuo, K. & Mitsudomi, T. Heterogeneous distribution of EGFR mutations is extremely rare in lung adenocarcinoma. J. Clin. Oncol. 29, 2972–2977 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Colombino, M. et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J. Clin. Oncol. 30, 2522–2529 (2012).

    Article  PubMed  Google Scholar 

  122. Boursault, L. et al. Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing. PLoS ONE 8, e70826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ribas, A. et al. Combination of vemurafenib and cobimetinib in patients with advanced BRAFV600-mutated melanoma: a phase 1b study. Lancet Oncol. 15, 954–965 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Algazi, A. P. et al. SWOG S1221: a phase 1 dose escalation study co-targeting MAPK-dependent and MAPK-independent BRAF inhibitor resistance in BRAF mutant advanced solid tumors with dabrafenib, trametinib, and GSK2141795 (ClinicalTrials.gov NCT01902173). J. Clin. Oncol. 35, 2578 (2017).

    Article  Google Scholar 

  125. Kurzrock, R. et al. The VEGF receptor tyrosine kinase inhibitor pazopanib in combination with the MEK inhibitor trametinib in advanced solid tumors and differentiated thyroid cancers. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1881 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jain, R. K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pommier, A. et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 360, eaao4908 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Turajlic, S. et al. Tracking cancer evolution reveals constrained routes to metastases: TRACERx renal. Cell 173, 581–594.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schwartz, R. & Schäffer, A. A. The evolution of tumour phylogenetics: principles and practice. Nat. Rev. Genet. 18, 213–229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Beerenwinkel, N., Schwarz, R. F., Gerstung, M. & Markowetz, F. Cancer evolution: mathematical models and computational inference. Syst. Biol. 64, e1–e25 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Santarius, T., Shipley, J., Brewer, D., Stratton, M. R. & Cooper, C. S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer 10, 59–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. Xue, W. et al. A cluster of cooperating tumor-suppressor gene candidates in chromosomal deletions. Proc. Natl Acad. Sci. USA 109, 8212–8217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Solimini, N. L. et al. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337, 104–109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Knouse, K. A., Davoli, T., Elledge, S. J. & Amon, A. Aneuploidy in cancer: Seq-ing answers to old questions. Annu. Rev. Cancer Biol. 1, 335–354 (2017).

    Article  Google Scholar 

  139. Rheinbay, E. et al. Recurrent and functional regulatory mutations in breast cancer. Nature 547, 55–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Rheinbay, E. et al. Discovery and characterization of coding and non-coding driver mutations in more than 2,500 whole cancer genomes. Preprint at bioRxiv https://doi.org/10.1101/237313 (2017).

  141. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. El-Kebir, M., Satas, G. & Raphael, B. J. Inferring parsimonious migration histories for metastatic cancers. Nat. Genet. 50, 718–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Heyde, A., Reiter, J. G., Naxerova, K. & Nowak, M. A. Consecutive seeding and transfer of genetic diversity in metastasis. Proc. Natl Acad. Sci. USA 116, 14129–14137 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all authors of the original publications for enabling this re-analysis by sharing their sequencing data — in particular, A. Bass, D. Brown, C. Sotiriou, C. Curtis, W. Gibson, E. Hoivik, M. Cmero, C. Hovens, T.-M. Kim, S.-H. Lee, M. Ryser, S. Shah, D. Shibata, M. Stachler, R. Sun and A. Zhang. This study was supported by the US National Institutes of Health grants R00 CA229991 (J.G.R.), CA179991 (C.A.I.-D.), F31 CA180682 (A.P.M.-M.), T32 CA160001-06 (A.P.M.-M.) and CA43460 (B.V.), as well as by the Lustgarten Foundation for Pancreatic Cancer Research, The Sol Goldman Pancreatic Cancer Research Center, the Virginia and D. K. Ludwig Fund for Cancer Research, an Erwin Schrödinger fellowship (J.G.R.; Austrian Science Fund FWF J-3996), a Landry Cancer Biology fellowship (J.M.G.) and the Office of Naval Research grant N00014-16-1-2914.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this article. J.G.R., M.B., J.M.G., A.P.M.-M., C.A.I.-D., N.S.A., K.W.K., M.A.N. and B.V. substantially contributed to discussion of the content. J.G.R., M.B., N.S.A., M.A.N. and B.V. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Johannes G. Reiter, Martin A. Nowak or Bert Vogelstein.

Ethics declarations

Competing interests

K.W.K. and B.V. are founders of Personal Genome Diagnostics and Thrive, as well as advisers to Sysmex, Eisai, CAGE and Neophore. B.V. is also an adviser to Nexus. These companies and others have licensed technologies related to the work described in this paper from Johns Hopkins University. Some of these licences are associated with equity or royalty payments to K.W.K. and B.V. The terms of these arrangements are being managed by Johns Hopkins University in accordance with its conflict-of-interest policies. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Cancer thanks T. Davoli, M. Gerstung and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Glossary

Subclonal

Mutations present in only a subset of the tumour’s cells. They are sometimes described as ‘branched’ because they occur on a branch of the tree when the evolutionary trajectory of the tumour is assessed.

Clonal

Mutations present in virtually all cells of the tumour. They are also called ‘truncal’ because they are in the trunk of the tumour evolutionary tree.

Clonal sweep

A mechanism through which a subpopulation sweeps through a tumour and drives all other competing subpopulations to extinction.

Simpson index

An index denoting the probability that two randomly chosen cancer cells would belong to the same subclone.

Shannon index

An index describing the uncertainty of predicting the subclone of a randomly chosen cancer cell.

Jaccard similarity coefficient

A measure defined as the ratio of the number of shared mutations to all mutations in two samples.

Selective bottlenecks

The scenario in which a decrease of the tumour size (for example, due to therapy) leads to a decrease in genetic diversity and an increase in the prevalence of some subclones in the tumour.

Response evaluation criteria in solid tumours

(RECIST). A standardized measure of solid tumour response to a therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiter, J.G., Baretti, M., Gerold, J.M. et al. An analysis of genetic heterogeneity in untreated cancers. Nat Rev Cancer 19, 639–650 (2019). https://doi.org/10.1038/s41568-019-0185-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-019-0185-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer