Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cancer–natural killer cell immunity cycle

Abstract

Immunotherapy with checkpoint blockade induces rapid and durable immune control of cancer in some patients and has driven a monumental shift in cancer treatment. Neoantigen-specific CD8+ T cells are at the forefront of current immunotherapy strategies, and the majority of drug discovery and clinical trials revolve around further harnessing these immune effectors. Yet the immune system contains a diverse range of antitumour effector cells, and these must function in a coordinated and synergistic manner to overcome the immune-evasion mechanisms used by tumours and achieve complete control with tumour eradication. A key antitumour effector is the natural killer (NK) cells, cytotoxic innate lymphocytes present at high frequency in the circulatory system and identified by their exquisite ability to spontaneously detect and lyse transformed or stressed cells. Emerging data show a role for intratumoural NK cells in driving immunotherapy response and, accordingly, there have been renewed efforts to further elucidate and target the pathways controlling NK cell antitumour function. In this Review, we discuss recent clinical evidence that NK cells are a key immune constituent in the protective antitumour immune response and highlight the major stages of the cancer–NK cell immunity cycle. We also perform a new analysis of publicly available transcriptomic data to provide an overview of the prognostic value of NK cell gene expression in 25 tumour types. Furthermore, we discuss how the role of NK cells evolves with tumour progression, presenting new opportunities to target NK cell function to enhance cancer immunotherapy response rates across a more diverse range of cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The tumour cell:natural killer cell interactome.
Fig. 2: Prognostic value of natural killer cells in cancer.
Fig. 3: The cancer–natural killer cell immunity cycle.
Fig. 4: Natural killer cell-mediated tumour immunoediting and escape.

Similar content being viewed by others

References

  1. Huntington, N. D., Vosshenrich, C. A. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 7, 703–714 (2007).

    CAS  PubMed  Google Scholar 

  2. Pfefferle, A. et al. Intra-lineage plasticity and functional reprogramming maintain natural killer cell repertoire diversity. Cell Rep. 29, 2284–2294 (2019).

    CAS  PubMed  Google Scholar 

  3. Freud, A. G. & Caligiuri, M. A. Human natural killer cell development. Immunol. Rev. 214, 56–72 (2006).

    CAS  PubMed  Google Scholar 

  4. Cursons, J. et al. A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol. Res. 7, 1162–1174 (2019). This paper presents an in-depth analysis of NK cell gene expression in metastatic melanoma, defining a robust NK cell gene signature that can be applied to cancer transcriptomic datasets.

    PubMed  Google Scholar 

  5. Lee, H. et al. Integrated molecular and immunophenotypic analysis of NK cells in anti-PD-1 treated metastatic melanoma patients. Oncoimmunology 8, e1537581 (2019).

    PubMed  Google Scholar 

  6. Li, B., Jiang, Y., Li, G., Fisher, G. A. Jr & Li, R. Natural killer cell and stroma abundance are independently prognostic and predict gastric cancer chemotherapy benefit. JCI Insight 5, 136570 (2020).

    PubMed  Google Scholar 

  7. Gil, M. & Kim, K. E. Interleukin-18 is a prognostic biomarker correlated with CD8+ T cell and natural killer cell infiltration in skin cutaneous melanoma. J. Clin. Med. 8 (2019).

  8. Souza-Fonseca-Guimaraes, F., Cursons, J. & Huntington, N. D. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 40, 142–158 (2019).

    CAS  PubMed  Google Scholar 

  9. Guillerey, C., Huntington, N. D. & Smyth, M. J. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17, 1025–1036 (2016).

    CAS  PubMed  Google Scholar 

  10. Huntington, N. D., Carpentier, S., Vivier, E. & Belz, G. T. Innate lymphoid cells: parallel checkpoints and coordinate interactions with T cells. Curr. Opin. Immunol. 38, 86–93 (2016).

    CAS  PubMed  Google Scholar 

  11. Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat. Rev. Immunol. 9, 568–580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sade-Feldman, M. et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat. Commun. 8, 1136 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Barry, K. C. et al. A natural killer–dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24, 1178–1191 (2018). This study analyses patients with melanoma following anti-PD1 therapy, highlighting a link between NK cell infiltration and optimal cDC1 functionality and response to therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    CAS  PubMed  Google Scholar 

  15. Long, E. O., Kim, H. S., Liu, D., Peterson, M. E. & Rajagopalan, S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu. Rev. Immunol. 31, 227–258 (2013).

    CAS  PubMed  Google Scholar 

  16. Fehniger, T. A. et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 26, 798–811 (2007).

    CAS  PubMed  Google Scholar 

  17. Srpan, K. et al. Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J. Cell Biol. 217, 3267–3283 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Prager, I. et al. NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing. J. Exp. Med. 216, 2113–2127 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bottcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037 (2018). This paper provides comprehensive evidence for the immune crosstalk between NK cells and cDC1s and the importance of this pathway in tumour immune cell infiltration and CD8 + T cell-mediated immune control.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pizzolato, G. et al. Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδ T lymphocytes. Proc. Natl Acad. Sci. USA 116, 11906–11915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Basile, M. S. et al. Immunobiology of uveal melanoma: state of the art and therapeutic targets. Front. Oncol. 9, 1145 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. June, C. H. & Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 379, 64–73 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chretien, A. S. et al. NKp46 expression on NK cells as a prognostic and predictive biomarker for response to allo-SCT in patients with AML. Oncoimmunology 6, e1307491 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Xu-Monette, Z. Y. et al. Immune profiling and quantitative analysis decipher the clinical role of immune-checkpoint expression in the tumor immune microenvironment of DLBCL. Cancer Immunol. Res. 7, 644–657 (2019).

    CAS  PubMed  Google Scholar 

  26. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01787474 (2013)

  27. Ciurea, S. O. et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 130, 1857–1868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Muntasell, A. et al. NK cell infiltrates and HLA class i expression in primary HER2+ breast cancer predict and uncouple pathological response and disease-free survival. Clin. Cancer Res. 25, 1535–1545 (2019).

    CAS  PubMed  Google Scholar 

  30. Ljunggren, H. G. & Karre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    CAS  PubMed  Google Scholar 

  31. Lindahl, T. & Barnes, D. E. Repair of endogenous DNA damage. Cold Spring Harb. Symp. Quant. Biol. 65, 127–133 (2000).

    CAS  PubMed  Google Scholar 

  32. Yokoyama, W. M. & Kim, S. How do natural killer cells find self to achieve tolerance? Immunity 24, 249–257 (2006).

    CAS  PubMed  Google Scholar 

  33. Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK Cells. Cancer Cell 32, 135–154 (2017).

    CAS  PubMed  Google Scholar 

  34. Sathe, P. et al. Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat. Commun. 5, 4539 (2014). This paper is the first description of a specific NK cell-deficient mouse strain and provides in vivo evidence that NK cells are essential for immunity to tumour metastases.

    CAS  PubMed  Google Scholar 

  35. Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31, 413–441 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    CAS  PubMed  Google Scholar 

  38. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    CAS  PubMed  Google Scholar 

  39. Venkataraman, G. M., Suciu, D., Groh, V., Boss, J. M. & Spies, T. Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related chain A and B ligands of NKG2D. J. Immunol. 178, 961–969 (2007).

    CAS  PubMed  Google Scholar 

  40. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2, 255–260 (2001).

    CAS  PubMed  Google Scholar 

  41. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferrari de Andrade, L. et al. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 359, 1537–1542 (2018). This study describes how shed MICA and MICB inhibit NK cell detection and lysis of tumour cells and provides evidence that this can be overcome with an antibody that prevents shedding.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    CAS  PubMed  Google Scholar 

  44. Deng, W. et al. Antitumor immunity. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science 348, 136–139 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Paczulla, A. M. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 572, 254–259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Goardon, N. et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152 (2011).

    CAS  PubMed  Google Scholar 

  47. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997).

    CAS  PubMed  Google Scholar 

  48. Molfetta, R., Zingoni, A., Santoni, A. & Paolini, R. Post-translational mechanisms regulating NK cell activating receptors and their ligands in cancer: potential targets for therapeutic intervention. Front. Immunol. 10, 2557 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pech, M. F. et al. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. eLife 8, e47362 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Saga, K. et al. NANOG helps cancer cells escape NK cell attack by downregulating ICAM1 during tumorigenesis. J. Exp. Clin. Cancer Res. 38, 416 (2019).

    PubMed  PubMed Central  Google Scholar 

  51. Urlaub, D., Hofer, K., Muller, M. L. & Watzl, C. LFA-1 activation in NK cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J. Immunol. 198, 1944–1951 (2017).

    CAS  PubMed  Google Scholar 

  52. Nedvetzki, S. et al. Reciprocal regulation of human natural killer cells and macrophages associated with distinct immune synapses. Blood 109, 3776–3785 (2007).

    CAS  PubMed  Google Scholar 

  53. Almeida, C. R. & Davis, D. M. Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J. Immunol. 177, 6904–6910 (2006).

    CAS  PubMed  Google Scholar 

  54. Brandt, C. S. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med. 206, 1495–1503 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Matta, J. et al. Induction of B7-H6, a ligand for the natural killer cell-activating receptor NKp30, in inflammatory conditions. Blood 122, 394–404 (2013).

    CAS  PubMed  Google Scholar 

  56. Fiegler, N. et al. Downregulation of the activating NKp30 ligand B7-H6 by HDAC inhibitors impairs tumor cell recognition by NK cells. Blood 122, 684–693 (2013).

    CAS  PubMed  Google Scholar 

  57. Schlecker, E. et al. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30. Cancer Res. 74, 3429–3440 (2014).

    CAS  PubMed  Google Scholar 

  58. Zhuang, X., Veltri, D. P. & Long, E. O. Genome-wide CRISPR screen reveals cancer cell resistance to NK cells induced by NK-derived IFNγ. Front. Immunol. 10, 2879 (2019).

    PubMed  PubMed Central  Google Scholar 

  59. Wu, M. R. et al. B7H6-specific bispecific T cell engagers lead to tumor elimination and host antitumor immunity. J. Immunol. 194, 5305–5311 (2015).

    CAS  PubMed  Google Scholar 

  60. Zhang, T., Wu, M. R. & Sentman, C. L. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J. Immunol. 189, 2290–2299 (2012).

    CAS  PubMed  Google Scholar 

  61. Zhuang, X. & Long, E. O. CD28 homolog is a strong activator of natural killer cells for lysis of B7H7+ tumor cells. Cancer Immunol. Res. 7, 939–951 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Sharpe, A. H. & Freeman, G. J. The B7–CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002).

    CAS  PubMed  Google Scholar 

  63. Zhu, Y. et al. B7-H5 costimulates human T cells via CD28H. Nat. Commun. 4, 2043 (2013).

    PubMed  Google Scholar 

  64. Zhao, R. et al. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc. Natl Acad. Sci. USA 110, 9879–9884 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cheng, H. et al. HHLA2, a new immune checkpoint member of the B7 family, is widely expressed in human lung cancer and associated with EGFR mutational status. Clin. Cancer Res. 23, 825–832 (2017).

    CAS  PubMed  Google Scholar 

  66. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Niehrs, A. et al. A subset of HLA-DP molecules serve as ligands for the natural cytotoxicity receptor NKp44. Nat. Immunol. 20, 1129–1137 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998). This paper identifies the NK cell lineage-defining, activating receptor NKp46. The restricted expression of its gene NCR1 has enabled the development of key tools to study NK cell biology in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kruse, P. H., Matta, J., Ugolini, S. & Vivier, E. Natural cytotoxicity receptors and their ligands. Immunol. Cell Biol. 92, 221–229 (2014).

    CAS  PubMed  Google Scholar 

  70. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Glasner, A. et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J. Immunol. 188, 2509–2515 (2012).

    CAS  PubMed  Google Scholar 

  72. Cagnano, E. et al. Expression of ligands to NKp46 in benign and malignant melanocytes. J. Invest. Dermatol. 128, 972–979 (2008).

    CAS  PubMed  Google Scholar 

  73. Tal, Y. et al. An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget 5, 10949–10958 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Gauthier, L. et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell 177, 1701–1713 (2019).

    CAS  PubMed  Google Scholar 

  75. Tangye, S. G., Phillips, J. H. & Lanier, L. L. The CD2-subset of the Ig superfamily of cell surface molecules: receptor–ligand pairs expressed by NK cells and other immune cells. Semin. Immunol. 12, 149–157 (2000).

    CAS  PubMed  Google Scholar 

  76. Siliciano, R. F., Pratt, J. C., Schmidt, R. E., Ritz, J. & Reinherz, E. L. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein. Nature 317, 428–430 (1985).

    CAS  PubMed  Google Scholar 

  77. Schmidt, R. E. et al. T11/CD2 activation of cloned human natural killer cells results in increased conjugate formation and exocytosis of cytolytic granules. J. Immunol. 140, 991–1002 (1988).

    CAS  PubMed  Google Scholar 

  78. Challa-Malladi, M. et al. Combined genetic inactivation of β2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tangye, S. G., Cherwinski, H., Lanier, L. L. & Phillips, J. H. 2B4-mediated activation of human natural killer cells. Mol. Immunol. 37, 493–501 (2000).

    CAS  PubMed  Google Scholar 

  80. Johnson, L. A., Vaidya, S. V., Goldfarb, R. H. & Mathew, P. A. 2B4(CD244)-mediated activation of NK cells reduces metastases of B16F10 melanoma in mice. Anticancer. Res. 23, 3651–3655 (2003).

    CAS  PubMed  Google Scholar 

  81. Messmer, B., Eissmann, P., Stark, S. & Watzl, C. CD48 stimulation by 2B4 (CD244)-expressing targets activates human NK cells. J. Immunol. 176, 4646–4650 (2006).

    CAS  PubMed  Google Scholar 

  82. Mathew, S. O., Rao, K. K., Kim, J. R., Bambard, N. D. & Mathew, P. A. Functional role of human NK cell receptor 2B4 (CD244) isoforms. Eur. J. Immunol. 39, 1632–1641 (2009).

    CAS  PubMed  Google Scholar 

  83. Kim, H. S., Das, A., Gross, C. C., Bryceson, Y. T. & Long, E. O. Synergistic signals for natural cytotoxicity are required to overcome inhibition by c-Cbl ubiquitin ligase. Immunity 32, 175–186 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shibuya, A. et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4, 573–581 (1996).

    CAS  PubMed  Google Scholar 

  85. Sanchez-Correa, B. et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers 11, 877 (2019).

    CAS  PubMed Central  Google Scholar 

  86. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kearney, C. J., Ramsbottom, K. M., Voskoboinik, I., Darcy, P. K. & Oliaro, J. Loss of DNAM-1 ligand expression by acute myeloid leukemia cells renders them resistant to NK cell killing. Oncoimmunology 5, e1196308 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Judge, S. J. et al. Minimal PD-1 expression in mouse and human NK cells under diverse conditions. J. Clin. Invest. 130, 3051–3068 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang, Q. et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19, 723–732 (2018). This study provides comprehensive preclinical data showing that blocking TIGIT from binding tumour ligands can greatly enhance antitumour responses in vivo, underlining the interest in clinical trial data currently being acquired using TIGIT antibodies.

    CAS  PubMed  Google Scholar 

  90. Fuchs, A., Cella, M., Giurisato, E., Shaw, A. S. & Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell–target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 172, 3994–3998 (2004).

    CAS  PubMed  Google Scholar 

  91. Holmes, V. M. et al. Interaction between nectin-1 and the human natural killer cell receptor CD96. PLoS One 14, e0212443 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15, 431–438 (2014).

    CAS  PubMed  Google Scholar 

  93. Mittal, D. et al. CD96 is an immune checkpoint that regulates CD8+ T-cell antitumor function. Cancer Immunol. Res. 7, 559–571 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Husain, B. et al. A platform for extracellular interactome discovery identifies novel functional binding partners for the immune receptors B7-H3/CD276 and PVR/CD155. Mol. Cell Proteom. 18, 2310–2323 (2019).

    Google Scholar 

  95. Romagne, F. et al. Preclinical characterization of 1-7F9, a novel human anti-KIR receptor therapeutic antibody that augments natural killer-mediated killing of tumor cells. Blood 114, 2667–2677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01687387 (2012).

  97. Delconte, R. B. et al. CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816–824 (2016). This paper discovers a potent negative regulator of IL-15 signalling, CIS in NK cells, whose gene when deleted results in dramatically improved tumour immunity in vivo.

    CAS  PubMed  Google Scholar 

  98. Putz, E. M. et al. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 6, e1267892 (2017).

    PubMed  PubMed Central  Google Scholar 

  99. Mlecnik, B. et al. Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl Med. 6, 228ra237 (2014).

    Google Scholar 

  100. Santana Carrero, R. M. et al. IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc. Natl Acad. Sci. USA 116, 599–608 (2019).

    CAS  PubMed  Google Scholar 

  101. Lopez-Botet, M., Llano, M., Navarro, F. & Bellon, T. NK cell recognition of non-classical HLA class I molecules. Semin. Immunol. 12, 109–119 (2000).

    CAS  PubMed  Google Scholar 

  102. Lanier, L. L., Corliss, B., Wu, J. & Phillips, J. H. Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity 8, 693–701 (1998).

    CAS  PubMed  Google Scholar 

  103. Hammer, Q. et al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol. 19, 453–463 (2018).

    CAS  PubMed  Google Scholar 

  104. Le Drean, E. et al. Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases. Eur. J. Immunol. 28, 264–276 (1998).

    PubMed  Google Scholar 

  105. Andre, P. et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175, 1731–1743 e1713 (2018). This paper presents preclinical and early clinical data on a potential therapeutic approach to improve CD8 + T cell and NK cell-mediated antitumour immunity by blocking the inhibitory receptor NKG2A from binding HLA-E on tumour cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Kamiya, T., Seow, S. V., Wong, D., Robinson, M. & Campana, D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest. 129, 2094–2106 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02643550 (2015)

  109. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02671435 (2016)

  110. O’Sullivan, T. et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 209, 1869–1882 (2012). This paper presents the first clear in vivo evidence that NK cells contribute to tumour immune editing by preferentially recognizing and eradicating NK cell-immunogenic tumour cells.

    PubMed  PubMed Central  Google Scholar 

  111. Gao, Y. et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat. Immunol. 18, 1004–1015 (2017). This paper presents the first in vivo description of the TME and TGFβ impacting tumour-resident NK cell phenotype and function.

    CAS  PubMed  Google Scholar 

  112. Rautela, J. et al. Therapeutic blockade of activin-A improves NK cell function and antitumor immunity. Sci. Signal. 12, eaat7527 (2019).

    PubMed  Google Scholar 

  113. Viel, S. et al. TGFβ inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9, ra19 (2016).

    PubMed  Google Scholar 

  114. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01246986 (2010)

  115. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02517398 (2015)

  116. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03631706 (2018)

  117. Young, A. et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment. Cancer Res. 78, 1003–1016 (2018).

    CAS  PubMed  Google Scholar 

  118. Young, A. et al. Targeting adenosine in BRAF-mutant melanoma reduces tumor growth and metastasis. Cancer Res. 77, 4684–4696 (2017).

    CAS  PubMed  Google Scholar 

  119. Zemek, R. M. et al. Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Sci. Transl Med. 11, eaav7816 (2019). This study presents preclinical solid tumour models revealing that tumours require a minimal number of NK cells at the time of treatment in order to respond to ICB.

    PubMed  Google Scholar 

  120. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019).

    CAS  PubMed  Google Scholar 

  121. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512 (2019). This paper presents the interesting finding that CXCR3 is not essential for CD8 + T cell migration into solid tumours yet is required for effective ICB response of tumour-resident CD8 + T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kargl, J. et al. Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4, e130850 (2019).

    PubMed Central  Google Scholar 

  124. Wu, L., Saxena, S. & Singh, R. K. Neutrophils in the tumor microenvironment. Adv. Exp. Med. Biol. 1224, 1–20 (2020).

    PubMed  PubMed Central  Google Scholar 

  125. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ponzetta, A. et al. Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell 178, 346–360 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wennerberg, E., Kremer, V., Childs, R. & Lundqvist, A. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol. Immunother. 64, 225–235 (2015).

    CAS  PubMed  Google Scholar 

  128. House, I. G. et al. Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin. Cancer Res. 26, 487–504 (2020). This well-executed study comprehensively demonstrates that macrophages, not tumour cells, produce chemokines required for CD8 + T cell-mediated ICB responses.

    PubMed  Google Scholar 

  129. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  130. Molgora, M. et al. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 551, 110–114 (2017). This paper identifies IL-18 as an important factor driving effective antitumour immunity and that ablation of a negative regulator of IL-18 signalling can enhance NK cell-mediated tumour immunity.

    PubMed  PubMed Central  Google Scholar 

  131. Louis, C. et al. NK cell-derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. J. Exp. Med. 217, e20191421 (2020). This paper is the first clear description of NK cells contributing to immune pathology in a preclinical model of arthritis by producing GM-CSF, and first describes a CSF2-reporter mouse strain and a CSF2 conditional allele mouse strain.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Schmidt, L. et al. Enhanced adaptive immune responses in lung adenocarcinoma through natural killer cell stimulation. Proc. Natl Acad. Sci. USA 116, 17460–17469 (2019). This extremely elegant study uses complex mouse models to show how tumour-resident NK cell function can be enhanced by tumour ligand binding and that NK cells are a key source of CCL5 that recruits CD8 + T cells to mediate tumour regression.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou, X. et al. The deubiquitinase Otub1 controls the activation of CD8+ T cells and NK cells by regulating IL-15-mediated priming. Nat. Immunol. 20, 879–889 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Spranger, S., Dai, D., Horton, B. & Gajewski, T. F. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31, 711–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sanchez-Paulete, A. R. et al. Intratumoral immunotherapy with XCL1 and sFlt3L encoded in recombinant semliki forest virus-derived vectors fosters dendritic cell-mediated T-cell cross-priming. Cancer Res. 78, 6643–6654 (2018).

    CAS  PubMed  Google Scholar 

  136. Benci, J. L. et al. Opposing functions of interferon coordinate adaptive and innate immune responses to cancer immune checkpoint blockade. Cell 178, 933–948 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001). This paper is an important description of the essential role of cytotoxic lymphocytes in tumour immunosurveillance through their production of IFNγ.

    CAS  PubMed  Google Scholar 

  138. Blank, C., Gajewski, T. F. & Mackensen, A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol. Immunother. 54, 307–314 (2005).

    CAS  PubMed  Google Scholar 

  139. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFNγ and IL-12. Immunity 49, 1148–1161 (2018). This paper presents an in-depth analysis of the relationship between DCs and CD8 + T cells and the importance of IFNγ and IL-12 produced by these cells in ICB responses in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cao, G. et al. Tumor therapeutics work as stress inducers to enhance tumor sensitivity to natural killer (NK) cell cytolysis by up-regulating NKp30 ligand B7-H6. J. Biol. Chem. 290, 29964–29973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ray-Coquard, I. et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381, 2416–2428 (2019).

    CAS  PubMed  Google Scholar 

  144. Konstantinopoulos, P. A. et al. Single-arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma. JAMA Oncol. 5, 1141–1149 (2019).

    PubMed Central  PubMed  Google Scholar 

  145. Pantelidou, C. et al. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. Cancer Discov. 9, 722–737 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Nicolai, C. J. et al. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol. 5, eaaz2738 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018). This fascinating report links some of the benefit of targeted therapies for cancers to the increasing tumour cell immunogenicity to endogenous NK cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Abruzzese, M. P. et al. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. J. Hematol. Oncol. 9, 134 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Mathew, N. R. et al. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat. Med. 24, 282–291 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Velardi, A., Ruggeri, L., Mancusi, A., Aversa, F. & Christiansen, F. T. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr. Opin. Immunol. 21, 525–530 (2009).

    CAS  PubMed  Google Scholar 

  151. Liu, J. et al. An integrated TCGA Pan-Cancer Clinical Data Resource to drive high-quality survival outcome analytics. Cell 173, 400–416 (2018). This paper is a key resource for the cancer immunology field, providing human genomic and transcriptomic patient data across most major cancer types.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Salmon, H., Remark, R., Gnjatic, S. & Merad, M. Host tissue determinants of tumour immunity. Nat. Rev. Cancer 19, 215–227 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS  PubMed  Google Scholar 

  154. Mazzaschi, G. et al. The circulating pool of functionally competent NK and CD8+ cells predicts the outcome of anti-PD1 treatment in advanced NSCLC. Lung Cancer 127, 153–163 (2019).

    PubMed  Google Scholar 

  155. Cesano, A. nCounter® Pancancer Immune Profiling Panel (NanoString Technologies, Inc., Seattle, WA). J. Immunother. Cancer 3, 42 (2015).

    PubMed  PubMed Central  Google Scholar 

  156. Sottile, R. et al. NK- and T-cell subsets in malignant mesothelioma patients: baseline pattern and changes in the context of anti-CTLA-4 therapy. Int. J. Cancer 145, 2238–2248 (2019).

    CAS  PubMed  Google Scholar 

  157. Ohs, I. et al. Restoration of natural killer cell antimetastatic activity by IL12 and checkpoint blockade. Cancer Res. 77, 7059–7071 (2017).

    CAS  PubMed  Google Scholar 

  158. Caudana, P. et al. IL2/anti-IL2 complex combined with CTLA-4, but not PD-1, blockade rescues antitumor NK cell function by regulatory T-cell modulation. Cancer Immunol. Res. 7, 443–457 (2019).

    CAS  PubMed  Google Scholar 

  159. Hsu, J. et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest. 128, 4654–4668 (2018).

    PubMed  PubMed Central  Google Scholar 

  160. Kokowski, K. et al. Radiochemotherapy combined with NK cell transfer followed by second-line PD-1 inhibition in a patient with NSCLC stage IIIb inducing long-term tumor control: a case study. Strahlenther. Onkol. 195, 352–361 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. Freeman, A. J. et al. Natural killer cells suppress T cell-associated tumor immune evasion. Cell Rep. 28, 2784–2794 (2019).

    CAS  PubMed  Google Scholar 

  162. Das, K. et al. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system. PLoS One 12, e0174077 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Delconte, R. B. et al. NK cell priming from endogenous homeostatic signals is modulated by CIS. Front. Immunol. 11, 75 (2020).

    PubMed  PubMed Central  Google Scholar 

  164. Rautela, J., Surgenor, E. & Huntington, N. D. Efficient genome editing of primary human natural killer cells by CRISPR RNP. BioRxiv https://doi.org/10.1101/406934 (2018).

    Article  Google Scholar 

  165. Alvarez, M. et al. Indirect impact of PD-1/PD-L1 blockade on a murine model of NK cell exhaustion. Front. Immunol. 11, 7 (2020).

    PubMed  PubMed Central  Google Scholar 

  166. Lin, M. et al. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J. Clin. Invest. 130, 2560–2569 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Laughney, A. M. et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat. Med. 26, 259–269 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Delconte, R. B. et al. The helix–loop–helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44, 103–115 (2016).

    CAS  PubMed  Google Scholar 

  170. Viant, C. et al. Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. J. Exp. Med. 214, 491–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Li, B. et al. Fibronectin 1 promotes melanoma proliferation and metastasis by inhibiting apoptosis and regulating EMT. Onco Targets Ther. 12, 3207–3221 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Glasner, A. et al. NKp46 receptor-mediated interferon-γ production by natural killer cells increases fibronectin 1 to alter tumor architecture and control metastasis. Immunity 48, 107–119 (2018).

    CAS  PubMed  Google Scholar 

  173. Fehniger, T. A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    CAS  PubMed  Google Scholar 

  174. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377, 2531–2544 (2017). This paper presents highly successful clinical trial data on CAR T cell therapy for B cell lymphomas.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    PubMed  PubMed Central  Google Scholar 

  176. Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Santomasso, B., Bachier, C., Westin, J., Rezvani, K. & Shpall, E. J. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am. Soc. Clin. Oncol. Educ. Book 39, 433–444 (2019).

    PubMed  Google Scholar 

  179. Shimasaki, N., Jain, A. & Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200–218 (2020).

    CAS  PubMed  Google Scholar 

  180. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19,185–199 (2020).

    CAS  PubMed  Google Scholar 

  181. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. https://doi.org/10.1038/s41587-020-0462-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020). This paper presents the first clinical trial data on a CAR NK cell therapy for B cell lymphoma, highlighting the encouraging safety profile of CAR NK cells even from allogeneic donors.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Rezvani, K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transpl. 54, 785–788 (2019).

    CAS  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03692637 (2019)

  185. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03056339 (2017)

  186. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03692767 (2019)

  187. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03940820 (2019)

  188. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03692663 (2018)

  189. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03415100 (2018)

  190. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02742727 (2019)

  191. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT03940833 (2016)

  192. Li, Y., Hermanson, D. L., Moriarity, B. S. & Kaufman, D. S. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.D.H., J.C. and J.R. all researched the data for the article and provided substantial contributions to discussions of the content. N.D.H and J.C. contributed equally to writing the article. N.D.H, J.C. and J.R. all reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Nicholas D. Huntington or Joseph Cursons.

Ethics declarations

Competing interests

N.D.H. and J.R. are founders and shareholders of oNKo-Innate Pty Ltd, and J.R. and J.C. are employees of oNKo-Innate Pty Ltd.

Additional information

Peer review information

Nature Reviews Cancer thanks A. Cerwenka, L. Lanier and K.-J. Malmberg for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Major histocompatibility complex class I

(MHC-I). Cell surface molecules widely expressed across most cells and tissues that play a role in presenting small portions of processed intracellular or internal proteins for immunosurveillance by CD8+ T cells. Classical MHC-I genes include human leukocyte antigen A (HLA-A), HLA-B and HLA-C. Non-classical MHC-I genes include HLA-E, HLA-F and HLA-G as well as the UL16 binding protein (ULBP) gene family and can interact with natural killer cells.

Cytotoxic granules

Intracellular or internal structures that package proteins (granzymes and perforin) and are secreted to kill another cell. These are important for the function of immune effector cells, such as natural killer cells and subsets of T cells.

Hazard ratio

(HR). A statistical metric quantifying the extent to which a variable (for example, the transcript abundance of a given gene) is associated with an increased (HR >1, log(HR) >0) or decreased (HR <1, log(HR) <0) hazard for the patient, relative to a baseline hazard.

Pearson’s correlation coefficient

(rP). A summary statistic that provides a measure of linear association between two variables; rP varies from –1 (perfect negative linear association) through 0 (no association) to 1 (perfect positive linear association).

Haploidentical

A term used to describe donor and recipient tissue samples (for example, a bone marrow stem cell transplant) where the human leukocyte antigen (HLA) genetic variants (‘haplotype’) are ‘half-matched’ (for example, from a parent or, in some cases, a sibling), reducing the risk of rejection or other immune side effects.

Human leukocyte antigen

(HLA). Clusters of genes encoding various components or subsets of the major histocompatibility complex (MHC), which are involved in immune cell recognition. These genetic regions tend to vary considerably between individuals (that is, there are numerous ‘polymorphisms’).

MHC class II

(MHC-II). Cell surface molecules with expression generally restricted to ‘antigen presenting cells’ (such as dendritic cells and macrophages). These cells take up extracellular particles through phagocytosis and can process and present antigen through MHC-II for activation of CD4+ helper T cell populations.

Ectonucleotidase

A class of enzyme that catalyses the conversion of nucleotides to nucleosides (for example, adenosine monophosphate (AMP) to adenosine). These enzymes are often expressed on the cell surface, where they modulate purinergic signalling.

Immunogenic cell death

Cellular death programmes that elicit immune activation. Examples relevant to cancer include necroptosis (induced by FAS–tumour necrosis factor (TNF) signalling) and endoplasmic reticulum stress-induced death (driven by drug treatment) leading to secretion of immunostimulatory damage-associated molecular patterns.

Cytokine release syndrome

(CRS). An adverse event where systemic cytokine signalling triggers further immune activation and cytokine release through positive feedback, often leading to organ failure without therapeutic intervention.

Graft versus host disease

(GvHD). A common complication of allogeneic bone marrow transplantation in which functional immune cells in the transplanted marrow recognize the recipient as foreign and mount an immunological attack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huntington, N.D., Cursons, J. & Rautela, J. The cancer–natural killer cell immunity cycle. Nat Rev Cancer 20, 437–454 (2020). https://doi.org/10.1038/s41568-020-0272-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0272-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer