Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A timeline of tumour-associated macrophage biology

Abstract

Tumour progression is modulated by the local microenvironment. This environment is populated by many immune cells, of which macrophages are among the most abundant. Clinical correlative data and a plethora of preclinical studies in mouse models of cancers have shown that tumour-associated macrophages (TAMs) play a cancer-promoting role. Within the primary tumour, TAMs promote tumour cell invasion and intravasation and tumour stem cell viability and induce angiogenesis. At the metastatic site, metastasis-associated macrophages promote extravasation, tumour cell survival and persistent growth, as well as maintain tumour cell dormancy in some contexts. In both the primary and metastatic sites, TAMs are suppressive to the activities of cytotoxic T and natural killer cells that have the potential to eradicate tumours. Such activities suggest that TAMs will be a major target for therapeutic intervention. In this Perspective article, we chronologically explore the evolution of our understanding of TAM biology put into the context of major enabling advances in macrophage biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A timeline of macrophage-related research that has paved the way for understanding the tumour microenvironment.
Fig. 2: Discoveries relating to tumour-associated macrophage and metastasis-associated macrophage pro-tumoural functions in breast cancer.
Fig. 3: Cellular interactions of tumour-associated macrophages in the tumour microenvironment.
Fig. 4: Tumour-associated macrophage targeting drugs entering the clinic.

Similar content being viewed by others

References

  1. Metchnikoff, E. Ueber den Kampf der Zellen gegen Erysipelkokken, ein Beitrag zur Phagocytenlehre. Arch. Pathol. Anat. [Virchow’s Arch.] 107, 207–249 (1887).

    Google Scholar 

  2. Metchnikoff, E. Lectures on the Comparative Pathology of Inflammation: Delivered at the Pasteur Institute in 1891 (Kegan Paul, Trench, Trübner & Co., Ltd, 1893).

  3. Stehelin, D., Varmus, H. E., Bishop, J. M. & Vogt, P. K. DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260, 170–173 (1976).

    Article  CAS  PubMed  Google Scholar 

  4. Lipsick, J. A history of cancer research: tumor suppressor genes. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a035907 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Bissell, M. J. & Hines, W. C. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  9. Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140, 1049–1056 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dolberg, D. S. & Bissell, M. J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309, 552–556 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35, 588–602.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gentles, A. J. et al. Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/djv211 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Virchow, R. Die Krankhaften Geschwülste Vol. 1, 57–71 (Verlag von August Hirschwald,1863).

  17. Underwood, J. C. Lymphoreticular infiltration in human tumours: prognostic and biological implications: a review. Br. J. Cancer 30, 538–548 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Balkwill, F. R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Tauber, A. I. Metchnikoff and the phagocytosis theory. Nat. Rev. Mol. Cell Biol. 4, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Pollard, J. W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai, Y., Smedsrod, B., Elvevold, K. & Wake, K. Uptake of lithium carmine by sinusoidal endothelial and Kupffer cells of the rat liver: new insights into the classical vital staining and the reticulo-endothelial system. Cell Tissue Res. 292, 395–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. van Furth, R. et al. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46, 845–852 (1972).

    PubMed  PubMed Central  Google Scholar 

  24. Moore, M. A. & Metcalf, D. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18, 279–296 (1970).

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi, K. & Naito, M. Development, differentiation, and proliferation of macrophages in the rat yolk sac. Tissue Cell 25, 351–362 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi, K., Yamamura, F. & Naito, M. Differentiation, maturation, and proliferation of macrophages in the mouse yolk sac: a light-microscopic, enzyme-cytochemical, immunohistochemical, and ultrastructural study. J. Leukoc. Biol. 45, 87–96 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Herbomel, P., Thisse, B. & Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, C. Z. W. & Ginhoux, F. Biology of resident tissue macrophages. Development https://doi.org/10.1242/dev.200270 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bradley, T. R. & Metcalf, D. The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44, 287–299 (1966).

    Article  CAS  PubMed  Google Scholar 

  33. Bradley, T. R., Stanley, E. R. & Sumner, M. A. Factors from mouse tissues stimulating colony growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 49, 595–603 (1971).

    Article  CAS  PubMed  Google Scholar 

  34. Stanley, E. R. & Heard, P. M. Factors regulating macrophage production and growth conditioned by mouse L cells. J. Biol. Chem. 252, 4305–4312 (1977).

    Article  CAS  PubMed  Google Scholar 

  35. Kawasaki, E. S. et al. Molecular cloning of a complementary DNA encoding human marcophage-specific colony-stimulating factor (CSF-1). Science 230, 291–296 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Chitu, V. & Stanley, E. R. Colony-stimulating factor-1 in immunity and inflammation. Curr. Opin. Immunol. 18, 39–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Metcalf, D. The colony-stimulating factors and cancer. Nat. Rev. Cancer 10, 425–434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gearing, D. P., King, J. A., Gough, N. M. & Nicola, N. A. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor. EMBO J. 8, 3667–3676 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sherr, C. J. et al. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41, 665–676 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Wiktor-Jedrzejczak, W. et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl Acad. Sci. USA 87, 4828–4832 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cecchini, M. G. et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development 120, 1357–1372 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Pollard, J. W. & Stanley, E. R. Pleiotropic roles for CSF-1 in development defined by the mouse mutation osteopetrotic (op). Adv. Dev. Biochem. 4, 153–193 (1996).

    Article  CAS  Google Scholar 

  43. Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, H. et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science 320, 807–811 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dai, X. et al. Targeted disruption of the mouse CSF-1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primititive progenitor cell frequencies and reproductive defects. Blood 99, 111–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Stanley, E. et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl Acad. Sci. USA 91, 5592–5596 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hibbs, M. L. et al. Mice lacking three myeloid colony-stimulating factors (G-CSF, GM-CSF, and M-CSF) still produce macrophages and granulocytes and mount an inflammatory response in a sterile model of peritonitis. J. Immunol. 178, 6435–6443 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Tushinski, R. J. et al. Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28, 71–81 (1982).

    Article  CAS  PubMed  Google Scholar 

  49. Webb, S. E., Pollard, J. W. & Jones, G. E. Direct observation and quantification of macrophage chemoattraction to the growth factor CSF-1. J. Cell Sci. 109, 793–803 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Chitu, V. et al. The PCH family member MAYP/PSTPIP2 directly regulates F-actin bundling and enhances filopodia formation and motility in macrophages. Mol. Biol. Cell 16, 2947–2959 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mackaness, G. B. The immunological basis of acquired cellular resistance. J. Exp. Med. 120, 105–120 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Hamilton, J. A. & Achuthan, A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 34, 81–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Dalton, D. K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    Article  CAS  PubMed  Google Scholar 

  56. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rollins, B. J. Chemokines. Blood 90, 909–928 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Bottazzi, B. et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science 220, 210–212 (1983).

    Article  CAS  PubMed  Google Scholar 

  62. Bottazzi, B., Walter, S., Govoni, D., Colotta, F. & Mantovani, A. Monocyte chemotactic cytokine gene transfer modulates macrophage infiltration, growth, and susceptibility to IL-2 therapy of a murine melanoma. J. Immunol. 148, 1280–1285 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Fidler, I. J. & Schroit, A. J. Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim. Biophys. Acta 948, 151–173 (1988).

    CAS  PubMed  Google Scholar 

  64. Mantovani, A., Ming, W. J., Balotta, C., Abdeljalil, B. & Bottazzi, B. Origin and regulation of tumor-associated macrophages: the role of tumor-derived chemotactic factor. Biochim. Biophys. Acta 865, 59–67 (1986).

    CAS  PubMed  Google Scholar 

  65. Mantovani, A., Caprioli, V., Gritti, P. & Spreafico, F. Human mature macrophages mediate antibody-dependent cellular cytotoxicity on tumour cells. Transplantation 24, 291–293 (1977).

    Article  CAS  PubMed  Google Scholar 

  66. Rollins, B. J., Morrison, E. D. & Stiles, C. D. Cloning and expression of JE, a gene inducible by platelet-derived growth factor and whose product has cytokine-like properties. Proc. Natl Acad. Sci. USA 85, 3738–3742 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsushima, K., Larsen, C. G., DuBois, G. C. & Oppenheim, J. J. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J. Exp. Med. 169, 1485–1490 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–27 (1970).

    Article  CAS  PubMed  Google Scholar 

  69. Prehn, R. T. The immune reaction as a stimulator of tumor growth. Science 176, 170–171 (1972).

    Article  CAS  PubMed  Google Scholar 

  70. Barnd, D. L., Lan, M. S., Metzgar, R. S. & Finn, O. J. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc. Natl Acad. Sci. USA 86, 7159–7163 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mantovani, A. Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity. Int. J. Cancer 22, 741–46 (1978).

    Article  CAS  PubMed  Google Scholar 

  72. Evans, R. Macrophage requirement for growth of a murine fibrosarcoma. Br. J. Cancer 37, 1086–1089 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kadhim, S. A. & Rees, R. C. Enhancement of tumor growth in mice: evidence for the involvement of host macrophages. Cell. Immunol. 87, 259–269 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Hibbs, J. B. Jr, Vavrin, Z. & Taintor, R. R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 138, 550–565 (1987).

    Article  CAS  PubMed  Google Scholar 

  75. Hibbs, J. B. Jr, Taintor, R. R., Vavrin, Z. & Rachlin, E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun. 157, 87–94 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Palmer, R. M. & Moncada, S. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem. Biophys. Res. Commun. 158, 348–352 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Lifsted, T. et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int. J. Cancer 77, 640–644 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    Article  CAS  PubMed  Google Scholar 

  79. Mills, C. D., Shearer, J., Evans, R. & Caldwell, M. D. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J. Immunol. 149, 2709–2714 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Mills, C. D. Molecular basis of ‘suppressor’ macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. 146, 2719–2723 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J. & Hill, A. M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Mills, C. D. Anatomy of a discovery: M1 and M2 macrophages. Front. Immunol. 6, 212 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sica, A. et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumor-associated macrophages. J. Immunol. 164, 762–767 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Saccani, A. et al. p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66, 11432–11440 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Mantovani, A., Biswas, S. K., Galdiero, M. R., Sica, A. & Locati, M. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229, 176–185 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Kacinski, B. M. et al. High level expression of fms proto-oncogene mRNA is observed in clinically aggressive human endometrial adenocarcinomas. Int. J. Radiat. Oncol. Biol. Phys. 15, 823–829 (1988).

    Article  CAS  PubMed  Google Scholar 

  89. Kacinski, B. M. et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am. J. Pathol. 137, 135–147 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chambers, S. K., Kacinski, B. M., Ivins, C. M. & Carcangiu, M. L. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin. Cancer Res. 3, 999–1007 (1997).

    CAS  PubMed  Google Scholar 

  91. Kluger, H. M. et al. Macrophage colony-stimulating factor-1 receptor expression is associated with poor outcome in breast cancer by large cohort tissue microarray analysis. Clin. Cancer Res 10, 173–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Scholl, S. M. et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J. Natl Cancer Inst. 86, 120–126 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Tang, R. et al. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumor cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J. Cell. Biochem. 50, 350–356 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, H. O. et al. The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin. Cancer Res. 1, 313–325 (1995).

    CAS  PubMed  Google Scholar 

  95. Smith, H. O. et al. The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma. Mol. Oncol. 7, 41–54 (2013).

    Article  PubMed  Google Scholar 

  96. Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000).

    CAS  PubMed  Google Scholar 

  97. Saji, H. et al. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92, 1085–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Negus, R. P., Stamp, G. W., Hadley, J. & Balkwill, F. R. Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol. 150, 1723–1734 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. O’Connor, T. & Heikenwalder, M. CCL2 in the tumor microenvironment. Adv. Exp. Med. Biol. 1302, 1–14 (2021).

    Article  PubMed  Google Scholar 

  100. Leek, R. D. et al. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56, 4625–4629 (1996).

    CAS  PubMed  Google Scholar 

  101. Visscher, D. W., Tabaczka, P., Long, D. & Crissman, J. D. Clinicopathologic analysis of macrophage infiltrates in breast carcinoma. Pathol. Res. Pract. 191, 1133–1139 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Yang, M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 78, 5492–5503 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. O’Sullivan, C., Lewis, C. E., Harris, A. L. & McGee, J. O. Secretion of epidermal growth factor by macrophges associated with breast carcinoma. Lancet 342, 872–873 (1993).

    Google Scholar 

  104. Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L. & Lewis, C. E. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J. Pathol. 192, 150–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Lewis, C. E., Leek, R., Harris, A. & McGee, J. O. Cytokine regulation in breast cancer: the role of tumor-assosciated macrophages. J. Leukoc. Biol. 57, 747–751 (1995).

    Article  CAS  PubMed  Google Scholar 

  106. Leek, R. D. & Harris, A. L. Tumor-associated macrophages in breast cancer. J. Mammary Gland. Biol. Neoplasia 7, 177–189 (2002).

    Article  PubMed  Google Scholar 

  107. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol. Today 13, 265–270 (1993).

    Article  Google Scholar 

  108. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, Q. W. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7, e50946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yu, M. et al. Prognostic value of tumor-associated macrophages in pancreatic cancer: a meta-analysis. Cancer Manag. Res. 11, 4041–4058 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Dave, S. S. et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 351, 2159–2169 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Beck, A. H. et al. The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin. Cancer Res. 15, 778–787 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farinha, P. et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 106, 2169–2174 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Steidl, C., Farinha, P. & Gascoyne, R. D. Macrophages predict treatment outcome in Hodgkin’s lymphoma. Haematologica 96, 186–189 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  116. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gangoso, E. et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell 184, 2454–2470.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, C. et al. Cancer co-opts differentiation of B-cell precursors into macrophage-like cells. Nat. Commun. 13, 5376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pollard, J. W. & Hennighausen, L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc. Natl Acad. Sci. USA 91, 9312–9316 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lang, R. A. & Bishop, J. M. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74, 453–462 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Dvorak, H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  122. Scholl, S. M., Crocker, P., Tang, R., Pouillart, P. & Pollard, J. W. Is colony stimulating factor-1 a key mediator in breast cancer invasion and metastasis? Mol. Carcinog. 7, 207–211 (1993).

    Article  PubMed  Google Scholar 

  123. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pyonteck, S. M. et al. Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene https://doi.org/10.1038/onc.2011.337 (2011).

    Article  PubMed  Google Scholar 

  125. Strachan, D. C. et al. CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 T cells. Oncoimmunology 2, e26968 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ryder, M. et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS ONE 8, e54302 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Patsialou, A. et al. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 69, 9498–9506 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. DeNardo, D. G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Goswami, S. et al. Identification of invasion specific splice variants of the cytoskeletal protein Mena present in mammary tumor cells during invasion in vivo. Clin. Exp. Metastasis 26, 153–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Rohan, T. E. et al. Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. J. Natl Cancer Inst. https://doi.org/10.1093/jnci/dju136 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sangaletti, S. et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res. 68, 9050–9059 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R. & Sorg, C. Macrophages and angiogenesis. J. Leukoc. Biol. 55, 410–422 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Leek, R. D. et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190, 430–436 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. De Palma, M., Venneri, M. A., Roca, C. & Naldini, L. Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat. Med. 9, 789–795 (2003).

    Article  PubMed  Google Scholar 

  142. De Palma, M. & Naldini, L. Tie2-expressing monocytes (TEMs): novel targets and vehicles of anticancer therapy? Biochim. Biophys. Acta 1796, 5–10 (2009).

    PubMed  Google Scholar 

  143. De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211–226 (2005).

    Article  PubMed  Google Scholar 

  144. Jakab, M., Rostalski, T., Lee, K. H., Mogler, C. & Augustin, H. G. Tie2 receptor in tumor-infiltrating macrophages is dispensable for tumor angiogenesis and tumor relapse after chemotherapy. Cancer Res. 82, 1353–1364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    Article  CAS  PubMed  Google Scholar 

  146. Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Yeo, E. J. et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74, 2962–2973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Leek, R. D., Harris, A. L. & Lewis, C. E. Cytokine networks in solid human tumors: regulation of angiogenesis. J. Leukoc. Biol. 56, 423–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fan, Q. M. et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352, 160–168 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Sharma, V. P. et al. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat. Commun. 12, 7300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pollard, J. W. Tumor educated macrophages promote tumor progression and metastasis. Nat. Rev. Cancer 4, 71–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Plaks, V. et al. Adaptive immune regulation of mammary postnatal organogenesis. Dev. Cell 34, 493–504 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Laviron, M. et al. Tumor-associated macrophage heterogeneity is driven by tissue territories in breast cancer. Cell Rep. 39, 110865 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Zhu, Y. et al. Tissue resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47, 323–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6Chigh monocytes. Cancer Res 70, 5728–5739 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Franklin, R. A. et al. The cellular and molecular origin of tumor-associated macrophages. Science https://doi.org/10.1126/science.1252510 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Arwert, E. N. et al. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23, 1239–1248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lin, E. Y. et al. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol. Oncol. 1, 288–302 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Qian, B. et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS ONE 4, e6562 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Lu, X. & Kang, Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J. Biol. Chem. 284, 29087–29096 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, Q., Zhang, X. H. & Massague, J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20, 538–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kitamura, T. et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kitamura, T. et al. Monocytes differentiate to immune suppressive precursors of metastasis-associated macrophages in mouse models of metastatic breast cancer. Front. Immunol. 8, 2004 (2017).

    Article  PubMed  Google Scholar 

  169. Qian, B. Z. et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J. Exp. Med. 212, 1433–1448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Borriello, L. et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat. Commun. 13, 626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kaplan, R. N., Psaila, B. & Lyden, D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev. 25, 521–529 (2006).

    Article  PubMed  Google Scholar 

  172. Gil-Bernabe, A. M. et al. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119, 3164–3175 (2012).

    Article  CAS  PubMed  Google Scholar 

  173. Ma, R. Y. et al. Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. J. Exp. Med. https://doi.org/10.1084/jem.20191820 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Loyher, P. L. et al. Macrophages of distinct origins contribute to tumor development in the lung. J. Exp. Med. 215, 2536–2553 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595, 578–584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jacome-Galarza, C. E. et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568, 541–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yin, J. J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kakonen, S. M. & Mundy, G. R. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97, 834–839 (2003).

    Article  PubMed  Google Scholar 

  179. Biswas, S. et al. Anti-transforming growth factor β antibody treatment rescues bone loss and prevents breast cancer metastasis to bone. PLoS ONE 6, e27090 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Güç, E. & Pollard, J. W. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity 54, 885–902 (2021).

    Article  PubMed  Google Scholar 

  181. Hoyer, F. F. et al. Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity 51, 899–914.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Arts, R. J. et al. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab. 24, 807–819 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Maru, Y. Premetastasis. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a036897 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Rodriguez-Tirado, C. et al. Interleukin 4 controls the pro-tumoral role of macrophages in mammary cancer pulmonary metastasis in mice. Cancers https://doi.org/10.3390/cancers14174336 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lopez-Yrigoyen, M., Cassetta, L. & Pollard, J. W. Macrophage targeting in cancer. Ann. N. Y. Acad. Sci. 1499, 18–41 (2021).

    Article  PubMed  Google Scholar 

  187. Gordon, S. R. et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495–499 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dhupkar, P., Gordon, N., Stewart, J. & Kleinerman, E. S. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 7, 2654–2664 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Jing, W. et al. Breast cancer cells promote CD169+ macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. Int. Immunopharmacol. 78, 106012 (2020).

    Article  CAS  PubMed  Google Scholar 

  190. Kryczek, I. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 203, 871–881 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ruffell, B. & Coussens, L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell 27, 462–472 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Coffelt, S. B., Wellenstein, M. D. & de Visser, K. E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16, 431–446 (2016).

    Article  CAS  PubMed  Google Scholar 

  193. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mantovani, A., Marchesi, F., Jaillon, S., Garlanda, C. & Allavena, P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell. Mol. Immunol. 18, 566–578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Bonavita, E. et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160, 700–714 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood ‘resident’ monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114, 901–914 (2009).

    Article  CAS  PubMed  Google Scholar 

  201. Ojalvo, L. S., King, W., Cox, D. & Pollard, J. W. High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors. Am. J. Pathol. 174, 1048–1064 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S. & Pollard, J. W. Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J. Immunol. 184, 702–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res 75, 3479–3491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kitamura, T. et al. Mammary tumor cells with high metastatic potential are hypersensitive to macrophage-derived HGF. Cancer Immunol. Res. 7, 2052–2064 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zheng, W. et al. Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Res. 6, 52 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Pombo Antunes, A. R. et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat. Neurosci. 24, 595–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  207. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity 54, 1883–1900.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

    Article  CAS  PubMed  Google Scholar 

  209. Ma, R. Y., Black, A. & Qian, B. Z. Macrophage diversity in cancer revisited in the era of single-cell omics. Trends Immunol. 43, 546–563 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Biswas, S. K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-κB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Bainbridge, M. N. et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics 7, 246 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  213. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wigerblad, G. et al. Single-cell analysis reveals the range of transcriptional states of circulating human neutrophils. J. Immunol. 209, 772–782 (2022).

    Article  CAS  PubMed  Google Scholar 

  216. Ramos, N. R. et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022).

    Article  Google Scholar 

  217. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 55, 527–541.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  218. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333–342 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Andersson, A. et al. Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions. Nat. Commun. 12, 6012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M. Spatially resolved transcriptomics reveals the architecture of the tumor–microenvironment interface. Nat. Commun. 12, 6278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kitamura, T., Qian, B. Z. & Pollard, J. W. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15, 73–86 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Xiao, M. et al. Tumor-associated macrophages: critical players in drug resistance of breast cancer. Front. Immunol. 12, 799428 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 25, 2465–2479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Shiao, S. L. et al. TH2-polarized CD4+ T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol. Res. 3, 518–525 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74, 5057–5069 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kaneda, M. M. et al. PI3Kγ is a molecular switch that controls immune suppression. Nature 539, 437–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Guerriero, J. L. et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature 543, 428–432 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Pfirschke, C. et al. Macrophage-targeted therapy unlocks antitumoral cross-talk between IFNγ-secreting lymphocytes and IL12-producing dendritic cells. Cancer Immunol. Res. 10, 40–55 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Gubin, M. M. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 175, 1014–1030.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kashyap, A. S. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl Acad. Sci. USA 117, 541–551 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Li, D. K. & Wang, W. Characteristics and clinical trial results of agonistic anti-CD40 antibodies in the treatment of malignancies. Oncol. Lett. 20, 176 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Mills, C. D. & Ley, K. M1 and M2 macrophages: the chicken and the egg of immunity. J. Innate Immun. 6, 716–726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhai, L. et al. Immunosuppressive IDO in cancer: mechanisms of action, animal models, and targeting strategies. Front. Immunol. 11, 1185 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Tang, K., Wu, Y. H., Song, Y. & Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol. 14, 68 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Mitchell, T. C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: phase I results from a multicenter, open-label phase I/II trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. 36, 3223–3230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Luke, J. J. et al. BMS-986205, an indoleamine 2,3-dioxygenase 1 inhibitor (IDO1i), in combination with nivolumab (nivo): updated safety across all tumor cohorts and efficacy in advanced bladder cancer (advBC). J. Clin. Oncol. 37, 358–358 (2019).

    Article  Google Scholar 

  238. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/s41571-022-00620-6 (2022).

    Article  PubMed  Google Scholar 

  239. Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. & Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. https://doi.org/10.1038/nrclinonc.2016.217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Hoves, S. et al. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J. Exp. Med. 215, 859–876 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cassetta, L. & Pollard, J. W. Targeting macrophages: therapeutic approaches in cancer. Nat. Rev. Drug. Discov. 17, 887–904 (2018).

    Article  CAS  PubMed  Google Scholar 

  242. Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 10, 2759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sandhu, S. K. et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother. Pharmacol. 71, 1041–1050 (2013).

    Article  CAS  PubMed  Google Scholar 

  244. Southwest Oncology Group. S0916, MLN1202 in treating patients with bone metastases. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01015560 (2018).

  245. Argyle, D. & Kitamura, T. Targeting macrophage-recruiting chemokines as a novel therapeutic strategy to prevent the progression of solid tumors. Front. Immunol. 9, 2629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Ries, C. H. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25, 846–859 (2014).

    Article  CAS  PubMed  Google Scholar 

  247. Cassier, P. A. et al. CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study. Lancet Oncol. 16, 949–956 (2015).

    Article  CAS  PubMed  Google Scholar 

  248. Tap, W. D. et al. Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N. Engl. J. Med. 373, 428–437 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Daiichi Sankyo, Inc. Phase 3 study of pexidartinib for pigmented villonodular synovitis (PVNS) or giant cell tumor of the tendon sheath (GCT-TS) (ENLIVEN). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02371369 (2022).

  250. Germano, G. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 23, 249–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  251. Barone, A. et al. FDA approval summary: trabectedin for unresectable or metastatic liposarcoma or leiomyosarcoma following an anthracycline-containing regimen. Clin. Cancer Res. 23, 7448–7453 (2017).

    Article  CAS  PubMed  Google Scholar 

  252. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Jiang, Z., Sun, H., Yu, J., Tian, W. & Song, Y. Targeting CD47 for cancer immunotherapy. J. Hematol. Oncol. 14, 180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr. A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  256. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  257. Coley, W. B. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc. R. Soc. Med. 3, 1–48 (1910).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Dudek, A. Z. et al. First in human phase I trial of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin. Cancer Res. 13, 7119–7125 (2007).

    Article  CAS  PubMed  Google Scholar 

  259. Link, B. K. et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother. 29, 558–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  260. Morales, A. & Eidinger, D. Bacillus Calmette–Guerin in the treatment of adenocarcinoma of the kidney. J. Urol. 115, 377–380 (1976).

    Article  CAS  PubMed  Google Scholar 

  261. Pahlavanneshan, S., Sayadmanesh, A., Ebrahimiyan, H. & Basiri, M. Toll-like receptor-based strategies for cancer immunotherapy. J. Immunol. Res. 2021, 9912188 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Ribas, A. et al. Overcoming PD-1 blockade resistance with CpG-A Toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 11, 2998–3007 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Carisma Therapeutics Inc. CAR-macrophages for the treatment of HER2 overexpressing solid tumors. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04660929 (2022).

  265. Hanno, P. M., Buehler, J. & Wein, A. J. Use of amitriptyline in the treatment of interstitial cystitis. J. Urol. 141, 846–848 (1989).

    Article  CAS  PubMed  Google Scholar 

  266. Lamm, D. L. et al. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J. Urol. 124, 38–42 (1980).

    Article  CAS  PubMed  Google Scholar 

  267. Stewart, T. A., Pattengale, P. K. & Leder, P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38, 627–637 (1984).

    Article  CAS  PubMed  Google Scholar 

  268. Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomovirus middle T oncogenes: a transgenic mouse mode of a metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  270. McFadden, D. G. et al. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma. Proc. Natl Acad. Sci. USA 113, E6409–E6417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ponz-Sarvise, M., Tuveson, D. A. & Yu, K. H. Mouse models of pancreatic ductal adenocarcinoma. Hematol. Oncol. Clin. North. Am. 29, 609–617 (2015).

    Article  PubMed  Google Scholar 

  272. Boissonnas, A. & Combadiere, C. Modulating the tumor-associated macrophage landscape. Nat. Immunol. 23, 481–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  273. Austyn, J. M. & Gordon, S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur. J. Immunol. 11, 805–815 (1981).

    Article  CAS  PubMed  Google Scholar 

  274. Hume, D. A., Halpin, D., Charlton, H. M. & Gordon, S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc. Natl Acad. Sci. USA 81, 4174–4177 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lee, S.-H., Starkey, P. M. & Gordon, S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunocytochemical studies with monoclonal antibody F4/80. J. Exp. Med 161, 475–489 (1988).

    Article  Google Scholar 

  276. Huang, Y. K. et al. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat. Commun. 10, 3928 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Fernandez, A., Thompson, E. J., Pollard, J. W., Kitamura, T. & Vendrell, M. A fluorescent activatable AND-gate chemokine CCL2 enables in vivo detection of metastasis-associated macrophages. Angew. Chem. Int. Ed. Engl. 58, 16894–16898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Himes, S. R. et al. A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression. J. Leukoc. Biol. 70, 812–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  279. Sasmono, R. T. et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101, 1155–1163 (2003).

    Article  CAS  PubMed  Google Scholar 

  280. Ovchinnikov, D. A. et al. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J. Leukoc. Biol. 83, 430–433 (2008).

    Article  CAS  PubMed  Google Scholar 

  281. Grabert, K. et al. A transgenic line that reports CSF1R protein expression provides a definitive marker for the mouse mononuclear phagocyte system. J. Immunol. 205, 3154–3166 (2020).

    Article  CAS  PubMed  Google Scholar 

  282. Entenberg, D. et al. Imaging tumor cell movement in vivo. Curr. Protoc. Cell Biol. https://doi.org/10.1002/0471143030.cb1907s58 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Entenberg, D. et al. Subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital https://doi.org/10.1080/21659087.2015.1086613 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Geissmann, F., Jung, S. & Littman, D. R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  285. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Qiao, S., Qian, Y., Xu, G., Luo, Q. & Zhang, Z. Long-term characterization of activated microglia/macrophages facilitating the development of experimental brain metastasis through intravital microscopic imaging. J. Neuroinflamm. 16, 4 (2019).

    Article  Google Scholar 

  287. Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  288. Deng, L. et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am. J. Pathol. 176, 952–967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Burnett, S. H. et al. Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukoc. Biol. 75, 612–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  290. Li, J., Chen, K., Zhu, L. & Pollard, J. W. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis 44, 328–335 (2006).

    Article  CAS  PubMed  Google Scholar 

  291. Kitamura, T., Doughty-Shenton, D., Pollard, J. W. & Carragher, N. O. Real time detection of in vitro tumor cell apoptosis induced by CD8+ T cells to study immune suppressive functions of tumor-infiltrating myeloid cells. J. Vis. Exp. https://doi.org/10.3791/58841 (2019).

    Article  PubMed  Google Scholar 

  292. Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8, 265–277 (1999).

    Article  CAS  PubMed  Google Scholar 

  293. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    Article  CAS  PubMed  Google Scholar 

  294. Liu, Z. et al. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178, 1509–1525 (2019).

    Article  CAS  PubMed  Google Scholar 

  295. Hume, D. A. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity. J. Leukoc. Biol. 89, 525–538 (2011).

    Article  CAS  PubMed  Google Scholar 

  296. Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  297. Shukla, C. J. et al. Laser-capture microdissection in prostate cancer research: establishment and validation of a powerful tool for the assessment of tumour-stroma interactions. BJU Int 101, 765–774 (2008).

    Article  PubMed  Google Scholar 

  298. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  299. Cassetta, L. et al. Isolation of mouse and human tumor-associated macrophages. Adv. Exp. Med. Biol. 899, 211–229 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Tsujikawa, T. et al. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 19, 203–217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Lewis, C. E. & Pollard, J. W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605–612 (2006).

    Article  CAS  PubMed  Google Scholar 

  302. Matusiak, M. et al. A spatial map of human macrophage niches links tissue location with function. Preprint at bioRxiv https://doi.org/10.1101/2022.08.18.504434 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank The Wellcome Trust 101067/Z/13/Z (J.W.P.), MRC Centre grant MR/N022556/1 (J.W.P.) and CRUK programme grant C17950/A26783 (J.W.P.). The authors also thank C. Ries for her valuable insights on TAM targeting strategies.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jeffrey W. Pollard.

Ethics declarations

Competing interests

J.W.P. is a cofounder and shareholder in and on the board of Macomics, an immuno-oncology company. L.C. is a founder, shareholder and is VP Immunology for Macomics.

Peer review

Peer review information

Nature Reviews Cancer thanks Leila Akkari, Daniela Quail, Subhra Biswas and Romana Vidergar for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Genomic Data Commons Data Portal: https://portal.gdc.cancer.gov/

Glossary

Adaptive immune responses

The immune response mediated by recognition of non-self by lymphocytes, leading to an antigen-specific immune response and the generation of memory cells that fight against future infections.

CD40

(Cluster of differentiation 40). This member of the tumour necrosis factor receptor family is a costimulatory protein found on antigen-presenting cells and is required for their activation.

Chemokines

Small chemotactic signalling proteins secreted by cells to induce migration of stromal and cancerous cells to facilitate homeostasis and tissue repair.

Complement activation

A part of the immune system that enhances (complements) the ability of antibodies and phagocytic cells to clear microorganisms and damaged cells from an organism, promote inflammation and attack the cell membrane of the pathogen.

Dendritic cells

Phagocytic mononuclear cells with finger-like projections that are specialized in migration and antigen presentation.

Humoral immunity

Adaptive immunity that is mediated by B cell-derived antibodies and macromolecules, including complement proteins, and certain antimicrobial peptides, located in extracellular fluids.

Innate immune system

The first response of the body to foreign substrates; it is not antigen recognition-driven, requires sensing of pattern molecules (either damage-associated or pathogen-associated) and can modulate the cells of the second immunity strategy (adaptive immunity).

Lymphoreticular infiltration

The presence of bone marrow progenitors, blood monocytes, tissue macrophages, lymphocytes, plasma cells, polymorphonuclear leukocytes and mast cells in the tumour.

M1 macrophages

Generally referred to as ‘activated’ macrophages, M1 are responsive to interferon-γ and lipopolysaccharide, and often considered antitumoural.

M2 macrophages

Generally known as ‘alternatively activated’ macrophages, M2 responds to IL-4 and IL-10 and typically regarded as pro-tumoural.

Monocytes

Bone marrow-derived progenitors of macrophages and a subset of dendritic cells, found in the circulation, and classified by their differentiation (classical, intermediate and non-classical).

Mononuclear phagocytes

(MNPs). Phagocytic cells belonging to the immune system and derived from the bone marrow, mostly monocytes and macrophages.

Mouse mammary tumour virus-polyoma middle tumour-antigen

(MMTV-PyMT). Mouse model of mammary cancer caused by expression of the PyMT oncoprotein in a mammary epithelial-restricted fashion; this model is autochthonous, progressive and metastatic.

Myeloid

Bone-marrow-derived cells from myeloblasts include basophils, eosinophils, neutrophils and macrophages.

Tenosynovial giant cell tumour

Non-malignant tumours in humans that often develop in the synovium caused by an activating gene translocation in the colony-stimulating factor 1 gene (CSF1) that results in excessive CSF1 production and thus infiltration of macrophages.

TH1

On the basis of extremes of immune responses, TH1 response is characterized by the production of interferon-γ, IL-2 and IL-12 and the ability to respond to bacterial and viral pathogens. TH1 responses generally confer cancer resistance.

TH2

TH2 responses characterized by production of IL-4, IL-5 and IL-10, and their role in tissue repair. TH2 responses generally confer cancer susceptibility.

Tumour microenvironment

(TME). The non-cancerous portion surrounding the tumour consisting of fibroblast, endothelial and immune cells as well as extracellular matrix and blood vessels (also referred to as ‘stroma’).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassetta, L., Pollard, J.W. A timeline of tumour-associated macrophage biology. Nat Rev Cancer 23, 238–257 (2023). https://doi.org/10.1038/s41568-022-00547-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-022-00547-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer