Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy

Abstract

Considerable interest surrounds the use of immune-checkpoint inhibitors in patients with solid tumours following the demonstration of the impressive clinical efficacy of anti-programmed cell death protein 1 and anti-programmed cell death 1 ligand 1 antibodies in several tumour types. However, the emergence of unexpected tumour response patterns, such as pseudoprogression or hyperprogression, might complicate the management of patients receiving these agents. Analysis of circulating tumour DNA (ctDNA) has been shown to have prognostic value by enabling the detection of residual proliferating disease in the adjuvant setting and estimation of tumour burden in the metastatic setting, which are key stratification biomarkers for use of immune-checkpoint inhibition (ICI). Furthermore, examinations of ctDNA for genetic predictors of responsiveness to immunotherapy, such as mutations, tumour mutational load, and microsatellite instability provide a noninvasive surrogate for tumour biopsy sampling. Proof-of-concept reports have also demonstrated that quantitative changes in ctDNA levels early in the course of disease are a promising tool for the assessment of responsiveness to ICI that might complement standard imaging approaches. Other applications of this technology are also currently under investigation, such as early detection of resistance to immunotherapy and characterization of mechanisms of resistance. The aim of this Review is to summarize available data on the application of ctDNA in patients receiving immunotherapy and to discuss the most promising future directions.

Key points

  • Analysis of circulating tumour DNA (ctDNA) can enable the detection of residual disease, which corresponds to a minimal tumour burden, thus enabling use of immune-checkpoint inhibition (ICI) when it is most likely to be effective.

  • Analysis of ctDNA enables the noninvasive detection of mismatch repair deficiencies and assessment of tumour mutational burden, two predictive biomarkers of responsiveness to ICI.

  • Monitoring ctDNA levels in patients with metastatic cancer receiving ICI enables the efficacy of therapy to be determined early in the course of treatment and might avoid the prolonged administration of ineffective treatments.

  • Mutations that are likely to be predictive of either efficacy or resistance to ICI can be detected in ctDNA.

  • Further clinical studies are needed to comprehensively demonstrate the clinical utility of ctDNA as a biomarker of ICI in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analysis of ctDNA.
Fig. 2: Potential clinical applications of ctDNA in patients receiving immune-checkpoint inhibition.
Fig. 3: Assessment of tumour mutational burden in blood.
Fig. 4: Approaches for detecting microsatellite instability.

Similar content being viewed by others

References

  1. Sun, K. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc. Natl Acad. Sci. USA 112, E5503–E5512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    CAS  PubMed  Google Scholar 

  4. Douillard, J.-Y. et al. Gefitinib treatment in EGFR mutated caucasian NSCLC: circulating-free tumor DNA as a surrogate for determination of EGFR status. J. Thorac. Oncol. 9, 1345–1353 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alix-Panabières, C. & Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 6, 479–491 (2016).

    PubMed  Google Scholar 

  6. Cabel, L. et al. Circulating tumor cells and circulating tumor DNA: what surgical oncologists need to know? Eur. J. Surg. Oncol. 43, 949–962 (2017).

    CAS  PubMed  Google Scholar 

  7. Diaz, L. A. & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    CAS  PubMed  Google Scholar 

  13. Eggermont, A. M. M. et al. Prolonged survival in stage III melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Weber, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N. Engl. J. Med. 377, 1824–1835 (2017).

    CAS  PubMed  Google Scholar 

  15. Eggermont, A. M. M. et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N. Engl. J. Med. 378, 1789–1801 (2018).

    CAS  PubMed  Google Scholar 

  16. Boutros, C. et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 13, 473–486 (2016).

    CAS  PubMed  Google Scholar 

  17. Meng, Y. et al. The cost-effectiveness of nivolumab monotherapy for the treatment of advanced melanoma patients in England. Eur. J. Health Econ. https://doi.org/10.1007/s10198-018-0964-4 (2018).

    Article  PubMed  Google Scholar 

  18. Huang, A. C. et al. T cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Joseph, R. W. et al. Baseline tumor size is an independent prognostic factor for overall survival in patients with melanoma treated with pembrolizumab. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-17-2386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Diem, S. et al. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br. J. Cancer 114, 256–261 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mezquita, L. et al. Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. JAMA Oncol. 4, 351–357 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Dercle, L. et al. Rapid and objective CT scan prognostic scoring identifies metastatic patients with long-term clinical benefit on anti-PD-1/-L1 therapy. Eur. J. Cancer 65, 33–42 (2016).

    PubMed  Google Scholar 

  23. Tumeh, P. C. et al. Liver metastasis and treatment outcome with anti-PD-1 monoclonal antibody in patients with melanoma and NSCLC. Cancer Immunol. Res. 5, 417–424 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Murillas, I. et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci. Transl Med. 7, 302ra133 (2015).

    PubMed  Google Scholar 

  25. Olsson, E. et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol. Med. 7, 1034–1047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl Med. 8, 346ra92 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Cabel, L. et al. Prognostic impact of residual HPV ctDNA detection after chemoradiotherapy for anal canal carcinoma [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3565 (2018).

    Google Scholar 

  29. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl Med. 9, eaan2415 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Dawson, S.-J. et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N. Engl. J. Med. 368, 1199–1209 (2013).

    CAS  PubMed  Google Scholar 

  32. Pécuchet, N. et al. Base-position error rate analysis of next-generation sequencing applied to circulating tumor DNA in non-small cell lung cancer: a prospective study. PLOS Med. 13, e1002199 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Santiago-Walker, A. et al. Correlation of BRAF mutation status in circulating-free DNA and tumor and association with clinical outcome across four BRAFi and MEKi clinical trials. Clin. Cancer Res. 22, 567–574 (2016).

    CAS  PubMed  Google Scholar 

  34. Gray, E. S. et al. Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget 6, 42008–42018 (2015).

    PubMed  PubMed Central  Google Scholar 

  35. Cabel, L. et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann. Oncol. 28, 1996–2001 (2017).

    CAS  PubMed  Google Scholar 

  36. Lee, J. H. et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann. Oncol. 28, 1130–1136 (2017).

    CAS  PubMed  Google Scholar 

  37. Giroux Leprieur, E. et al. Circulating tumor DNA evaluated by next-generation sequencing is predictive of tumor response and prolonged clinical benefit with nivolumab in advanced non-small cell lung cancer. Oncoimmunology 7, e1424675 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Carbone, D. P. et al. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer. N. Engl. J. Med. 376, 2415–2426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Goodall, J. et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 7, 1006–1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Koeppel, F. et al. Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLOS One 12, e0188174 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Jovelet, C. et al. Circulating cell-free tumor DNA analysis of 50 genes by next-generation sequencing in the prospective MOSCATO trial. Clin. Cancer Res. 22, 2960–2968 (2016).

    CAS  PubMed  Google Scholar 

  48. De Mattos-Arruda, L. et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann. Oncol. 25, 1729–1735 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Davis, A. A. et al. Comparison of tumor mutational burden (TMB) across tumor tissue and circulating tumor DNA (ctDNA). J. Clin. Oncol. 35, e23028–e23028 (2017).

    Google Scholar 

  51. Yang, N. et al. The characteristics of ctDNA reveal the high complexity in matching the corresponding tumor tissues. BMC Cancer 18, 319 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. Fabrizio, D., Lieber, D., Lipson, D. & Otto, G. A blood-based next-generation sequencing assay to determine tumor mutational burden (bTMB) is associated with benefit to an anti-PD-L1 inhibitor, atezolizumab [abstract]. Cancer Res. 78 (Suppl.), 5706 (2018).

    Google Scholar 

  53. Davis, A. A. et al. Association of circulating tumor DNA (ctDNA) tumor mutational burden (TMB) with DNA repair mutations and response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer (NSCLC). J. Clin. Oncol. 35, 11537–11537 (2017).

    Google Scholar 

  54. Khagi, Y. et al. Hypermutated circulating tumor DNA: correlation with response to checkpoint inhibitor-based immunotherapy. Clin. Cancer Res. 23, 5729–5736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gandara, D. R., Kowanetz, M. & Shames, D. S. Blood-based biomarkers for cancer immunotherapy: Tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK) [abstract]. Ann. Oncol. 28 (Suppl. 5), 1295O (2017).

    Google Scholar 

  56. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  57. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

    CAS  PubMed  Google Scholar 

  58. Ryan, E., Sheahan, K., Creavin, B., Mohan, H. M. & Winter, D. C. The current value of determining the mismatch repair status of colorectal cancer: a rationale for routine testing. Crit. Rev. Oncol. Hematol. 116, 38–57 (2017).

    CAS  PubMed  Google Scholar 

  59. Buza, N., Ziai, J. & Hui, P. Mismatch repair deficiency testing in clinical practice. Expert Rev. Mol. Diagn. 16, 591–604 (2016).

    CAS  PubMed  Google Scholar 

  60. Stern, M.-H. et al. Detecting MSI phenotype in circulating blood DNA. Cancer Res. 78, 4599 (2018).

    Google Scholar 

  61. Ladas, I. et al. Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res. https://doi.org/10.1093/nar/gky251 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Srinivasan, P., Tran, C., Stadler, Z. & Berger, M. F. Detecting MSI in plasma: implications for early detection of lynch associated tumors. AACR 59, 3656 (2018).

    Google Scholar 

  63. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wolchok, J. D. et al. Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    CAS  PubMed  Google Scholar 

  66. Iwama, E. et al. Monitoring of somatic mutations in circulating cell-free DNA by digital PCR and next-generation sequencing during afatinib treatment in patients with lung adenocarcinoma positive for EGFR activating mutations. Ann. Oncol. 28, 136–141 (2017).

    CAS  PubMed  Google Scholar 

  67. Bidard, F.-C. et al. Circulating tumor DNA and circulating tumor cells as predictor of outcome in the PRODIGE14-ACCORD21-METHEP2 phase II trial. Ann. Oncol. 27, 456O (2016).

    Google Scholar 

  68. Thierry, A. R. et al. Circulating DNA demonstrates convergent evolution and common resistance mechanisms during treatment of colorectal cancer. Clin. Cancer Res. 23, 4578–4591 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lipson, E. J. et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J. Immunother. Cancer 2, 42 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Guibert, N. et al. Monitoring of KRAS-mutated ctDNA to discriminate pseudo-progression from true progression during anti-PD-1 treatment of lung adenocarcinoma. Oncotarget 8, 38056–38060 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Lee, J. H. et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 4, 717–721 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Weiss, G. J. et al. Tumor cell-free DNA copy number instability predicts therapeutic response to immunotherapy. Clin. Cancer Res. 23, 5074–5081 (2017).

    CAS  PubMed  Google Scholar 

  73. Goldberg, S. B. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin. Cancer Res. 24, 1872–1880 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kuziora, M. et al. Association of early reduction in circulating tumor DNA (ctDNA) with improved progression-free survival (PFS) and overall survival (OS) of patients (pts) with urothelial bladder cancer (UBC) treated with durvalumab (D). J. Clin. Oncol. 35, 11538–11538 (2017).

    Google Scholar 

  75. Kuziora, M. A., Higgs, B. W., Brohawn, P., Raja, R. & Ranade, K. Circulating tumor DNA (ctDNA) variant allele frequencies are reduced in responders to durvalumab and low baseline variant allele frequencies are associated with improved overall survival in NSCLC patients [abstract]. Cancer Res. 77, 582 (2017).

    Google Scholar 

  76. Iijima, Y. et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur. J. Cancer 86, 349–357 (2017).

    CAS  PubMed  Google Scholar 

  77. Dahiya, S. et al. Circulating tumor DNA assessment in patients with diffuse large B cell lymphoma following CAR-T therapy. J. Clin. Oncol. 35, 7552–7552 (2017).

    Google Scholar 

  78. Yu, S. C. Y. et al. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin. Chem. 59, 1228–1237 (2013).

    CAS  PubMed  Google Scholar 

  79. Kong, B. Y. et al. Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy. Pigment Cell. Melanoma Res. 29, 572–577 (2016).

    CAS  PubMed  Google Scholar 

  80. Diaz, L. A. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. George, S. et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197–204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Peng, W. et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6, 202–216 (2016).

    CAS  PubMed  Google Scholar 

  83. Strickland, K. C. et al. Association and prognostic significance of BRCA1/2-mutation status with neoantigen load, number of tumor-infiltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget 7, 13587–13598 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Van Allen, E. M. et al. Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation. Cancer Immunol. Res. 3, 855–863 (2015).

    PubMed  PubMed Central  Google Scholar 

  85. Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    CAS  PubMed  Google Scholar 

  86. Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Patel, S. J. et al. Identification of essential genes for cancer immunotherapy. Nature 548, 537–542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wyatt, A. W. et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer. J. Natl Cancer Inst. 109, 78–86 (2017).

    Google Scholar 

  90. Ratajska, M. et al. Detection of BRCA1/2mutations in circulating tumor DNA from patients with ovarian cancer. Oncotarget 8, 101325–101332 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Liao, W. et al. Noninvasive detection of tumor-associated mutations from circulating cell-free DNA in hepatocellular carcinoma patients by targeted deep sequencing. Oncotarget 7, 40481–40490 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Ramalingam, S. S. et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J. Clin. Oncol. 36, 841–849 (2018).

    PubMed  Google Scholar 

  93. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  94. Nathanson, T. et al. Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol. Res. 5, 84–91 (2017).

    CAS  PubMed  Google Scholar 

  95. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Anagnostou, V. et al. Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer. Cancer Discov. 7, 264–276 (2017).

    CAS  PubMed  Google Scholar 

  97. Ulz, P. et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat. Genet. 48, 1273–1278 (2016).

    CAS  PubMed  Google Scholar 

  98. Ivanov, M., Baranova, A., Butler, T., Spellman, P. & Mileyko, V. Non-random fragmentation patterns in circulating cell-free DNA reflect epigenetic regulation. BMC Genomics 16 (Suppl. 13), S1 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Maggi, E. C. et al. Development of a method to implement whole-genome bisulfite sequencing of cfDNA from cancer patients and a mouse tumor model. Front. Genet. 9, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Prat, A. et al. Immune-related gene expression profiling after PD-1 blockade in non-small cell lung carcinoma, head and neck squamous cell carcinoma, and melanoma. Cancer Res. 77, 3540–3550 (2017).

    CAS  PubMed  Google Scholar 

  101. Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 795–801 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Merker, J. D. et al. Circulating tumor DNA analysis in patients with cancer: american society of clinical oncology and college of american pathologists joint review. J. Clin. Oncol. 36, 1631–1641 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Valcarcel (Instutit Curie) for her comments on the manuscript. This work was supported by the Institut Curie SIRIC2 (grant INCa-DGOS-INSERM_12554).

Author information

Authors and Affiliations

Authors

Contributions

L.C., O.L., J.-Y.P., and F.-C.B. researched data for this article; all authors made a substantial contribution to discussions of content, writing the manuscript, and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to François-Clément Bidard.

Ethics declarations

Competing interests

C.P., M.-H.S., and F.-C.B. have ongoing patent applications relating to circulating tumour DNA analysis. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabel, L., Proudhon, C., Romano, E. et al. Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol 15, 639–650 (2018). https://doi.org/10.1038/s41571-018-0074-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-018-0074-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing