Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update

Abstract

Cancer stem cells (CSCs) have important roles in tumour development, relapse and metastasis; the intrinsic self-renewal characteristics and tumorigenic properties of these cells provide them with unique capabilities to resist diverse forms of anticancer therapy, seed recurrent tumours, and disseminate to and colonize distant tissues. The findings of several studies indicate that CSCs originate from non-malignant stem or progenitor cells. Accordingly, inhibition of developmental signalling pathways that are crucial for stem and progenitor cell homeostasis and function, such as the Notch, WNT, Hedgehog and Hippo signalling cascades, continues to be pursued across multiple cancer types as a strategy for targeting the CSCs hypothesized to drive cancer progression — with some success in certain malignancies. In addition, with the renaissance of anticancer immunotherapy, a better understanding of the interplay between CSCs and the tumour immune microenvironment might be the key to unlocking a new era of oncological treatments associated with a reduced propensity for the development of resistance and with enhanced antimetastatic activity, thus ultimately resulting in improved patient outcomes. Herein, we provide an update on the progress to date in the clinical development of therapeutics targeting the Notch, WNT, Hedgehog and Hippo pathways. We also discuss the interactions between CSCs and the immune system, including the potential immunological effects of agents targeting CSC-associated developmental signalling pathways, and provide an overview of the emerging approaches to CSC-targeted immunotherapy.

Key points

  • The results of laboratory-based research have demonstrated the fundamental roles of cancer stem cells (CSCs) in mediating the resistance of cancers to therapy, tumour recurrence and metastasis.

  • CSCs harbour important alterations affecting developmental signalling pathways that control cell renewal and differentiation, including the Notch, WNT and Hedgehog pathways.

  • Crosstalk with the WNT pathways has led to the molecular characterization of abnormalities in the core components of the Hippo pathway in multiple malignancies; transcriptional co-activation or co-repression by the Hippo pathway effectors YAP1 and TAZ serves as an important regulatory hub for multiple pathways and has potential context-dependent oncogene or tumour suppressor activity.

  • Multiple clinical trials using single agents and combination therapies have been performed to study the safety and efficacy of targeting CSCs via the inhibition of these development pathways.

  • Various interactions of CSCs with the tumour immune microenvironment result in evasion of CSC detection by the immune system and are therefore key candidates for novel approaches to immunotherapy.

  • Further improvements in targeting CSCs as a specific population are fundamental to improving the efficacy of new anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The canonical Notch signalling pathway and related pharmacological inhibitors that are under development in oncology.
Fig. 2: The canonical and non-canonical WNT signalling pathway and related pharmacological inhibitors that are under investigation in oncology.
Fig. 3: The canonical Hedgehog signalling pathway and related pharmacological inhibitors that are under development as anticancer treatments.
Fig. 4: The Hippo signalling pathway and associated therapeutic targets.
Fig. 5: Novel immune-based approaches to targeting CSCs.

Similar content being viewed by others

References

  1. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    CAS  Google Scholar 

  2. Vermeulen, L., Sprick, M. R., Kemper, K., Stassi, G. & Medema, J. P. Cancer stem cells — old concepts, new insights. Cell Death Differ. 15, 947–958 (2008).

    CAS  PubMed  Google Scholar 

  3. Espinoza, I. & Miele, L. Deadly crosstalk: notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 341, 41–45 (2013).

    CAS  PubMed  Google Scholar 

  4. Pattabiraman, D. R. & Weinberg, R. A. Tackling the cancer stem cells — what challenges do they pose? Nat. Rev. Drug Discov. 13, 497–512 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e14 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012).

    CAS  PubMed  Google Scholar 

  7. Ishizawa, K. et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7, 279–282 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sachs, N. & Clevers, H. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24, 68–73 (2014).

    CAS  PubMed  Google Scholar 

  9. Schulenburg, A. et al. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J. Hematol. Oncol. 8, 16 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Zhou, B. B. et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 8, 806–823 (2009).

    CAS  PubMed  Google Scholar 

  11. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  12. Li, X. et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl Cancer Inst. 100, 672–679 (2008).

    CAS  PubMed  Google Scholar 

  13. Plaks, V., Kong, N. & Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16, 225–238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wiechert, A. et al. Cisplatin induces stemness in ovarian cancer. Oncotarget 7, 30511–30522 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Saygin, C., Matei, D., Majeti, R., Reizes, O. & Lathia, J. D. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24, 25–40 (2019).

    CAS  PubMed  Google Scholar 

  16. Nishio, M., Otsubo, K., Maehama, T., Mimori, K. & Suzuki, A. Capturing the mammalian Hippo: elucidating its role in cancer. Cancer Sci. 104, 1271–1277 (2013).

    CAS  PubMed  Google Scholar 

  17. Pelullo, M. et al. Wnt, Notch, and TGF-β pathways impinge on Hedgehog signaling complexity: an open window on cancer. Front. Genet. 10, 711 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Korkaya, H., Paulson, A., Iovino, F. & Wicha, M. S. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27, 6120–6130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai, M. et al. CDK4 regulates cancer stemness and is a novel therapeutic target for triple-negative breast cancer. Sci. Rep. 6, 35383 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Venkatesh, V. et al. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 5, 5 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Gomez-del Arco, P. et al. Alternative promoter usage at the Notch1 locus supports ligand-independent signaling in T cell development and leukemogenesis. Immunity 33, 685–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Andersson, E. R., Sandberg, R. & Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development 138, 3593–3612 (2011).

    CAS  PubMed  Google Scholar 

  23. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    CAS  PubMed  Google Scholar 

  25. Qiao, L. & Wong, B. C. Role of Notch signaling in colorectal cancer. Carcinogenesis 30, 1979–1986 (2009).

    CAS  PubMed  Google Scholar 

  26. Kannan, S. et al. Notch activation inhibits AML growth and survival: a potential therapeutic approach. J. Exp. Med. 210, 321–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pandya, K. et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br. J. Cancer 105, 796–806 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Samon, J. B. et al. Preclinical analysis of the γ-secretase inhibitor PF-03084014 in combination with glucocorticoids in T-cell acute lymphoblastic leukemia. Mol. Cancer Ther. 11, 1565–1575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei, P. et al. Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol. Cancer Ther. 9, 1618–1628 (2010).

    CAS  PubMed  Google Scholar 

  30. Sosa Iglesias, V. et al. Synergistic effects of NOTCH/γ-secretase inhibition and standard of care treatment modalities in non-small cell lung cancer cells. Front. Oncol. 8, 460 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Morgan, K. M. et al. Gamma secretase inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Mol. Cancer Ther. 16, 2759–2769 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Messersmith, W. A. et al. A phase I, dose-finding study in patients with advanced solid malignancies of the oral γ-secretase inhibitor PF-03084014. Clin. Cancer Res. 21, 60–67 (2015).

    CAS  PubMed  Google Scholar 

  33. Kummar, S. et al. Clinical activity of the γ-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J. Clin. Oncol. 35, 1561–1569 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Papayannidis, C. et al. A phase 1 study of the novel γ-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer J. 5, e350 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zweidler-McKay, P. A. et al. The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase 1 trial. Blood 124, 968 (2014).

    Google Scholar 

  36. Cook, N. et al. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer 118, 793–801 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kappes, D. J., He, X. & He, X. CD4-CD8 lineage commitment: an inside view. Nat. Immunol. 6, 761–766 (2005).

    CAS  PubMed  Google Scholar 

  38. Yun, J. et al. Crosstalk between PKCα and Notch-4 in endocrine-resistant breast cancer cells. Oncogenesis 2, e60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuhnert, F., Kirshner, J. R. & Thurston, G. Dll4-Notch signaling as a therapeutic target in tumor angiogenesis. Vasc. Cell 3, 20 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu, J. W. et al. Notch signals in the endothelium and cancer "stem-like" cells: opportunities for cancer therapy. Vasc. Cell 4, 7 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, J. et al. Dll4 inhibition plus aflibercept markedly reduces ovarian tumor growth. Mol. Cancer Ther. 15, 1344–1352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Miles, K. M. et al. Dll4 blockade potentiates the anti-tumor effects of VEGF inhibition in renal cell carcinoma patient-derived xenografts. PLOS ONE 9, e112371 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Chiorean, E. G. et al. A phase I first-in-human study of enoticumab (REGN421), a fully human delta-like ligand 4 (Dll4) monoclonal antibody in patients with advanced solid tumors. Clin. Cancer Res. 21, 2695–2703 (2015).

    CAS  PubMed  Google Scholar 

  44. McKeage, M. J. et al. Phase Ib trial of the anti-cancer stem cell DLL4-binding agent demcizumab with pemetrexed and carboplatin as first-line treatment of metastatic non-squamous NSCLC. Target Oncol. 13, 89–98 (2018).

    PubMed  Google Scholar 

  45. Hughes, B. et al. Abstract A084: DENALI: a 3-arm double-blind randomized phase 2 study of carboplatin, pemetrexed, and placebo (CPP) versus carboplatin, pemetrexed, and either 1 or 2 truncated courses of demcizumab (CPD) in patients with non-squamous non-small cell lung cancer (NSCLC). Mol. Cancer Ther. 17, A084 (2018).

    Google Scholar 

  46. Hidalgo, M. et al. A phase 1b study of the anti-cancer stem cell agent demcizumab (DEM) and gemcitabine (GEM) +/- nab-paclitaxel in patients with pancreatic cancer. J. Clin. Oncol. 34, 341 (2016).

    Google Scholar 

  47. Cubillo Gracian, A. et al. 620PDYOSEMITE: a 3 arm double-blind randomized phase 2 study of gemcitabine, paclitaxel protein-bound particles for injectable suspension, and placebo (GAP) versus gemcitabine, paclitaxel protein-bound particles for injectable suspension and either 1 or 2 truncated courses of demcizumab (GAD). Ann. Oncol. 28 (Suppl. 5), mdx369.004 (2017).

    Google Scholar 

  48. Rudin, C. M. et al. Rovalpituzumab tesirine, a DLL3-targeted antibody–drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 18, 42–51 (2017).

    CAS  PubMed  Google Scholar 

  49. Carbone, D. P. et al. Efficacy and safety of rovalpituzumab tesirine in patients with DLL3-expressing, ≥ 3rd line small cell lung cancer: results from the phase 2 TRINITY study. J. Clin. Oncol. 36, 8507 (2018).

    Google Scholar 

  50. Casulo, C. et al. Safety and preliminary efficacy results of a phase I first-in-human study of the novel Notch-1 targeting antibody brontictuzumab (OMP-52M51) administered intravenously to patients with hematologic malignancies. Blood 128, 5108 (2016).

    Google Scholar 

  51. Ferrarotto, R. et al. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann. Oncol. 29, 1561–1568 (2018).

    CAS  PubMed  Google Scholar 

  52. Pietanza, M. C. et al. Final results of phase Ib of tarextumab (TRXT, OMP-59R5, anti-Notch2/3) in combination with etoposide and platinum (EP) in patients (pts) with untreated extensive-stage small-cell lung cancer (ED-SCLC). J. Clin. Oncol. 33, 7508 (2015).

    Google Scholar 

  53. Hu, Z. I. et al. A randomized phase II trial of nab-paclitaxel and gemcitabine with tarextumab or placebo in patients with untreated metastatic pancreatic cancer. Cancer Med. 8, 5148–5157 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Weber, D. et al. 66P Pharmacological activity of CB-103: an oral pan-NOTCH inhibitor targeting the NOTCH transcription complex. Ann. Oncol. 29, mdy047.015 (2018).

    Google Scholar 

  55. Astudillo, L. et al. The small molecule IMR-1 inhibits the notch transcriptional activation complex to suppress tumorigenesis. Cancer Res. 76, 3593–3603 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Westhoff, B. et al. Alterations of the Notch pathway in lung cancer. Proc. Natl Acad. Sci. USA 106, 22293–22298 (2009).

    CAS  PubMed  Google Scholar 

  57. Pine, S. R. Rethinking γ-secretase inhibitors for treatment of non-small cell lung cancer: is Notch the target? Clin. Cancer Res. 24, 6136–6141 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Katoh, M. & Katoh, M. Molecular genetics and targeted therapy of WNT-related human diseases (review). Int. J. Mol. Med. 40, 587–606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).

    CAS  PubMed  Google Scholar 

  60. Vermeulen, L. et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 12, 468–476 (2010).

    CAS  PubMed  Google Scholar 

  61. Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, Y. et al. Canonical Wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73, 4909–4922 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Morris, J. P. 4th, Cano, D. A., Sekine, S., Wang, S. C. & Hebrok, M. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J. Clin. Invest. 120, 508–520 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang, X. et al. Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc. Natl Acad. Sci. USA 110, 12649–12654 (2013).

    CAS  PubMed  Google Scholar 

  65. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488, 660–664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Llovet, J. M., Montal, R., Sia, D. & Finn, R. S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599–616 (2018).

    PubMed  Google Scholar 

  67. Palacios, J. & Gamallo, C. Mutations in the β-catenin gene (CTNNB1) in endometrioid ovarian carcinomas. Cancer Res. 58, 1344–1347 (1998).

    CAS  PubMed  Google Scholar 

  68. Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    CAS  PubMed  Google Scholar 

  69. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    CAS  PubMed  Google Scholar 

  70. Delmas, V. et al. β-catenin induces immortalization of melanocytes by suppressing p16 INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 21, 2923–2935 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chien, A. J. et al. Targeted BRAF inhibition impacts survival in melanoma patients with high levels of Wnt/β-catenin signaling. PLOS ONE 9, e94748 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Khramtsov, A. I. et al. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am. J. Pathol. 176, 2911–2920 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Miranda Kuzan-Fischer, C., Juraschka, K. & Taylor, M. D. Medulloblastoma in the molecular era. J. Korean Neurosurg. Soc. 61, 292–301 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Yeung, J. et al. β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18, 606–618 (2010).

    CAS  PubMed  Google Scholar 

  75. Lane, S. W. et al. Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 118, 2849–2856 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Muller-Tidow, C. et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol. Cell Biol. 24, 2890–2904 (2004).

    PubMed  PubMed Central  Google Scholar 

  77. Griffiths, E. A. et al. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. Leuk. Lymphoma 51, 1711–1719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Valencia, A. et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia 23, 1658–1666 (2009).

    CAS  PubMed  Google Scholar 

  79. van Andel, H., Kocemba, K. A., Spaargaren, M. & Pals, S. T. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options. Leukemia 33, 1063–1075 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Chim, C. S., Pang, R., Fung, T. K., Choi, C. L. & Liang, R. Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia 21, 2527–2536 (2007).

    CAS  PubMed  Google Scholar 

  81. Kocemba, K. A. et al. Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLOS ONE 7, e30359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12, 528–541 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gregory, M. A. et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell 18, 74–87 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Heidel, F. H. et al. Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 10, 412–424 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Guo, W. et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453, 529–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaveri, D. et al. β-Catenin activation synergizes with Pten loss and Myc overexpression in Notch-independent T-ALL. Blood 122, 694–704 (2013).

    CAS  PubMed  Google Scholar 

  87. Moskalev, E. A. et al. Concurrent epigenetic silencing of Wnt/β-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer 12, 213 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, L. et al. Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL. Blood 124, 1089–1098 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kagey, M. H. & He, X. Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br. J. Pharmacol. 174, 4637–4650 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yamabuki, T. et al. Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas. Cancer Res. 67, 2517–2525 (2007).

    CAS  PubMed  Google Scholar 

  91. Ryan, D. P. et al. Current results of a phase I study of DKN-01, an anti-DKK1 antibody, in combination with paclitaxel (P) in patients (pts) with advanced DKK1+ esophageal cancer (EC) or gastro-esophageal junction tumors (GEJ). J. Clin. Oncol. 34, e15525 (2016).

    Google Scholar 

  92. Jimeno, A. et al. A first-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in patients with advanced solid tumors. Clin. Cancer Res. 23, 7490–7497 (2017).

    CAS  PubMed  Google Scholar 

  93. Gurney, A. et al. Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc. Natl Acad. Sci. USA 109, 11717–11722 (2012).

    CAS  PubMed  Google Scholar 

  94. Smith, D. C. et al. First-in-human evaluation of the human monoclonal antibody vantictumab (OMP-18R5; anti-Frizzled) targeting the WNT pathway in a phase I study for patients with advanced solid tumors. J. Clin. Oncol. 31, 2540 (2013).

    Google Scholar 

  95. Messersmith, W. et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with nab-paclitaxel (Nab-P) and gemcitabine (G) in patients (pts) with previously untreated stage IV pancreatic cancer (PC). Ann. Oncol. 27, 677P (2016).

    Google Scholar 

  96. Mita, M. M. et al. Phase 1b study of WNT inhibitor vantictumab (VAN, human monoclonal antibody) with paclitaxel (P) in patients (pts) with 1st- to 3rd-line metastatic HER2-negative breast cancer (BC). J. Clin. Oncol. 34, 2516 (2016).

    Google Scholar 

  97. Karvonen, H. et al. Wnto5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting. Oncogene 38, 3288–3300 (2019).

    CAS  PubMed  Google Scholar 

  98. Choi, M. Y. et al. Phase I trial: cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell 22, 951–959.e3 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yu, J. et al. Cirmtuzumab inhibits Wnt5a-induced Rac1 activation in chronic lymphocytic leukemia treated with ibrutinib. Leukemia 31, 1333–1339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Soerensen, P. G. et al. Phase I dose-escalating study to evaluate the safety, tolerability, and pharmacokinetic and pharmacodynamic profiles of Foxy-5 in patients with metastatic breast, colorectal, or prostate cancer. J. Clin. Oncol. 32, TPS1140 (2014).

    Google Scholar 

  101. Pai, S. G. et al. Wnt/β-catenin pathway: modulating anticancer immune response. J. Hematol. Oncol. 10, 101 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. DeBruine, Z. J. et al. Wnt5a promotes Frizzled-4 signalosome assembly by stabilizing cysteine-rich domain dimerization. Genes Dev. 31, 916–926 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Agarwal, P. et al. Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI. Blood 129, 1008–1020 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Janku, F. et al. Abstract C45: Phase I study of WNT974, a first-in-class Porcupine inhibitor, in advanced solid tumors. Mol. Cancer Ther. 14, C45 (2015).

    Google Scholar 

  105. Yoon, S.-S. et al. Novel phase 1a/1b dose-finding study design of CWP232291 (CWP291) in relapsed or refractory myeloma (MM). J. Clin. Oncol. 35, TPS8058 (2017).

    Google Scholar 

  106. Manasanch, E. E. et al. Interim results from the phase 1a/1b dose-finding study of CWP232291 (CWP291) in relapsed or refractory myeloma (RRMM) alone or in combination with lenalidomide and dexamethasone. Blood 130, 3091 (2017).

    Google Scholar 

  107. Cortes, J. E. et al. Phase 1 study of CWP232291 in relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). J. Clin. Oncol. 33, 7044 (2015).

    Google Scholar 

  108. Menon, M. et al. A novel tankyrase inhibitor, MSC2504877, enhances the effects of clinical CDK4/6 inhibitors. Sci. Rep. 9, 201 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Wang, W. et al. Tankyrase inhibitors target YAP by stabilizing angiomotin family proteins. Cell Rep. 13, 524–532 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Schoumacher, M. et al. Inhibiting tankyrases sensitizes KRAS-mutant cancer cells to MEK inhibitors via FGFR2 feedback signaling. Cancer Res. 74, 3294–3305 (2014).

    CAS  PubMed  Google Scholar 

  111. Plummer, E. R. et al. First-in-human phase 1 study of the PARP/tankyrase inhibitor 2X-121 (E7449) as monotherapy in patients with advanced solid tumors and validation of a novel drug response predictor (DRP) mRNA biomarker. J. Clin. Oncol. 36, 2505 (2018).

    Google Scholar 

  112. Ko, A. H. et al. Final results of a phase Ib dose-escalation study of PRI-724, a CBP/beta-catenin modulator, plus gemcitabine (GEM) in patients with advanced pancreatic adenocarcinoma (APC) as second-line therapy after FOLFIRINOX or FOLFOX. J. Clin. Oncol. 34, e15721 (2016).

    Google Scholar 

  113. Yamada, K. et al. Abstract 2927: antitumor and antiangiogenesis activities of E7386, an orally active CBP/β-catenin modulator, as a single agent and in combination with lenvatinib in human HCC xenograft models. Cancer Res. 78, 2927 (2018).

    Google Scholar 

  114. Steg, A. D. et al. Smoothened antagonists reverse taxane resistance in ovarian cancer. Mol. Cancer Ther. 11, 1587–1597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lim, Y. & Matsui, W. Hedgehog signaling in hematopoiesis. Crit. Rev. Eukaryot. Gene Expr. 20, 129–139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Theunissen, J. W. & de Sauvage, F. J. Paracrine Hedgehog signaling in cancer. Cancer Res. 69, 6007–6010 (2009).

    CAS  PubMed  Google Scholar 

  117. Murone, M., Rosenthal, A. & de Sauvage, F. J. Hedgehog signal transduction: from flies to vertebrates. Exp. Cell Res. 253, 25–33 (1999).

    CAS  PubMed  Google Scholar 

  118. Pasca di Magliano, M. & Hebrok, M. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer 3, 903–911 (2003).

    PubMed  Google Scholar 

  119. Ng, J. M. & Curran, T. The Hedgehog's tale: developing strategies for targeting cancer. Nat. Rev. Cancer 11, 493–501 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Amakye, D., Jagani, Z. & Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 19, 1410–1422 (2013).

    CAS  PubMed  Google Scholar 

  121. Rudin, C. M. et al. Treatment of medulloblastoma with Hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Aberger, F., Hutterer, E., Sternberg, C., Del Burgo, P. J. & Hartmann, T. N. Acute myeloid leukemia — strategies and challenges for targeting oncogenic Hedgehog/GLI signaling. Cell Commun. Signal. 15, 8 (2017).

    PubMed  PubMed Central  Google Scholar 

  123. Queiroz, K. C. et al. Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene 29, 6314–6322 (2010).

    CAS  PubMed  Google Scholar 

  124. Lim, Y. et al. Integration of Hedgehog and mutant FLT3 signaling in myeloid leukemia. Sci. Transl Med. 7, 291ra296 (2015).

    Google Scholar 

  125. Dierks, C. et al. Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14, 238–249 (2008).

    CAS  PubMed  Google Scholar 

  126. Jorgensen, H. G., Allan, E. K., Jordanides, N. E., Mountford, J. C. & Holyoake, T. L. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109, 4016–4019 (2007).

    CAS  PubMed  Google Scholar 

  127. Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA 104, 4048–4053 (2007).

    CAS  PubMed  Google Scholar 

  128. Hegde, G. V. et al. Hedgehog-induced survival of B-cell chronic lymphocytic leukemia cells in a stromal cell microenvironment: a potential new therapeutic target. Mol. Cancer Res. 6, 1928–1936 (2008).

    CAS  PubMed  Google Scholar 

  129. Desch, P. et al. Inhibition of GLI, but not Smoothened, induces apoptosis in chronic lymphocytic leukemia cells. Oncogene 29, 4885–4895 (2010).

    CAS  PubMed  Google Scholar 

  130. Kim, J. E. et al. Sonic Hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma. Mod. Pathol. 22, 1312–1320 (2009).

    CAS  PubMed  Google Scholar 

  131. Singh, R. R. et al. ABCG2 is a direct transcriptional target of Hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma. Oncogene 30, 4874–4886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Yang, L., Xie, G., Fan, Q. & Xie, J. Activation of the Hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene 29, 469–481 (2010).

    PubMed  Google Scholar 

  133. Sekulic, A. et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 366, 2171–2179 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Basset-Seguin, N. et al. Vismodegib in patients with advanced basal cell carcinoma: primary analysis of STEVIE, an international, open-label trial. Eur. J. Cancer 86, 334–348 (2017).

    CAS  PubMed  Google Scholar 

  135. Lear, J. T. et al. Long-term efficacy and safety of sonidegib in patients with locally advanced and metastatic basal cell carcinoma: 30-month analysis of the randomized phase 2 BOLT study. J. Eur. Acad. Dermatol. Venereol. 32, 372–381 (2018).

    CAS  PubMed  Google Scholar 

  136. Xie, P. & Lefrancois, P. Efficacy, safety, and comparison of sonic Hedgehog inhibitors in basal cell carcinomas: a systematic review and meta-analysis. J. Am. Acad. Dermatol. 79, 1089–1100.e17 (2018).

    CAS  PubMed  Google Scholar 

  137. Bendell, J. et al. Phase I study of LY2940680, a SMO antagonist, in patients with advanced cancer including treatment-naive and previously treated basal cell carcinoma. Clin. Cancer Res. 24, 2082–2091 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Berlin, J. et al. A randomized phase II trial of vismodegib versus placebo with FOLFOX or FOLFIRI and bevacizumab in patients with previously untreated metastatic colorectal cancer. Clin. Cancer Res. 19, 258–267 (2013).

    CAS  PubMed  Google Scholar 

  139. Catenacci, D. V. T. et al. Final analysis of a phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a Hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): A University of Chicago phase II consortium study. J. Clin. Oncol. 31, 4012 (2013).

    Google Scholar 

  140. Cohen, D. J. et al. Vismodegib (V), a Hedgehog (HH) pathway inhibitor, combined with FOLFOX for first-line therapy of patients (pts) with advanced gastric and gastroesophageal junction (GEJ) carcinoma: a New York cancer consortium led phase II randomized study. J. Clin. Oncol. 31, 4011 (2013).

    Google Scholar 

  141. Kaye, S. B. et al. A phase II, randomized, placebo-controlled study of vismodegib as maintenance therapy in patients with ovarian cancer in second or third complete remission. Clin. Cancer Res. 18, 6509–6518 (2012).

    CAS  PubMed  Google Scholar 

  142. Robinson, G. W. et al. Vismodegib exerts targeted efficacy against recurrent sonic Hedgehog-subgroup medulloblastoma: results from phase ii pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J. Clin. Oncol. 33, 2646–2654 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Gajjar, A. et al. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin. Cancer Res. 19, 6305–6312 (2013).

    CAS  PubMed  Google Scholar 

  144. Petrirena, G. J. et al. Recurrent extraneural sonic Hedgehog medulloblastoma exhibiting sustained response to vismodegib and temozolomide monotherapies and inter-metastatic molecular heterogeneity at progression. Oncotarget 9, 10175–10183 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Bowles, D. W. et al. A pilot study of cetuximab and the Hedgehog inhibitor IPI-926 in recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 53, 74–79 (2016).

    CAS  PubMed  Google Scholar 

  146. Rudin, C. M. et al. A phase I study of IPI-926, a novel Hedgehog pathway inhibitor, in patients (pts) with advanced or metastatic solid tumors. J. Clin. Oncol. 29, 3014 (2011).

    Google Scholar 

  147. Cortes, J. E. et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33, 379–389 (2019).

    CAS  PubMed  Google Scholar 

  148. Cortes, J. E. et al. Glasdegib in combination with cytarabine and daunorubicin in patients with AML or high-risk MDS: phase 2 study results. Am. J. Hematol. 93, 1301–1310 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388–399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Antonarakis, E. S. et al. Repurposing itraconazole as a treatment for advanced prostate cancer: a noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist 18, 163–173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Tsubamoto, H. et al. Repurposing itraconazole as an anticancer agent. Oncol. Lett. 14, 1240–1246 (2017).

    PubMed  PubMed Central  Google Scholar 

  152. Inoue, K., Tsubamoto, H., Isono-Nakata, R., Sakata, K. & Nakagomi, N. Itraconazole treatment of primary malignant melanoma of the vagina evaluated using positron emission tomography and tissue cDNA microarray: a case report. BMC Cancer 18, 630 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Ueda, T. et al. Itraconazole modulates Hedgehog, WNT/β-catenin, as well as Akt signalling, and inhibits proliferation of cervical cancer cells. Anticancer Res. 37, 3521–3526 (2017).

    CAS  PubMed  Google Scholar 

  154. Tsubamoto, H., Sonoda, T. & Inoue, K. Impact of itraconazole on the survival of heavily pre-treated patients with triple-negative breast cancer. Anticancer Res. 34, 3839–3844 (2014).

    CAS  PubMed  Google Scholar 

  155. Tsubamoto, H. et al. Combination chemotherapy with itraconazole for treating metastatic pancreatic cancer in the second-line or additional setting. Anticancer Res. 35, 4191–4196 (2015).

    CAS  PubMed  Google Scholar 

  156. Rudin, C. M. et al. Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J. Thorac. Oncol. 8, 619–623 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Atwood, S. X. et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 27, 342–353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sharpe, H. J. et al. Genomic analysis of Smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 27, 327–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang, L., Walter, V., Hayes, D. N. & Onaitis, M. Hedgehog-GLI signaling inhibition suppresses tumor growth in squamous lung cancer. Clin. Cancer Res. 20, 1566–1575 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Didiasova, M. et al. Pirfenidone exerts antifibrotic effects through inhibition of GLI transcription factors. FASEB J. 31, 1916–1928 (2017).

    CAS  PubMed  Google Scholar 

  161. Polydorou, C., Mpekris, F., Papageorgis, P., Voutouri, C. & Stylianopoulos, T. Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget 8, 24506–24517 (2017).

    PubMed  PubMed Central  Google Scholar 

  162. Zou, W. J. et al. Pirfenidone inhibits proliferation and promotes apoptosis of hepatocellular carcinoma cells by inhibiting the Wnt/β-catenin signaling pathway. Med. Sci. Monit. 23, 6107–6113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Chen, Q. et al. Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling. PLOS ONE 9, e88386 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Srivastava, R. K. et al. GLI inhibitor GANT-61 diminishes embryonal and alveolar rhabdomyosarcoma growth by inhibiting Shh/AKT-mTOR axis. Oncotarget 5, 12151–12165 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Lauth, M., Bergstrom, A., Shimokawa, T. & Toftgard, R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl Acad. Sci. USA 104, 8455–8460 (2007).

    CAS  PubMed  Google Scholar 

  166. Hou, X. et al. Inhibition of Hedgehog signaling by GANT58 induces apoptosis and shows synergistic antitumor activity with AKT inhibitor in acute T cell leukemia cells. Biochimie 101, 50–59 (2014).

    CAS  PubMed  Google Scholar 

  167. Beauchamp, E. M. et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J. Clin. Invest. 121, 148–160 (2011).

    CAS  PubMed  Google Scholar 

  168. Ally, M. S. et al. Effects of combined treatment with arsenic trioxide and itraconazole in patients with refractory metastatic basal cell carcinoma. JAMA Dermatol. 152, 452–456 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    CAS  PubMed  Google Scholar 

  170. Yu, F. X., Zhao, B. & Guan, K. L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Panciera, T. et al. Induction of expandable tissue-specific stem/progenitor cells through transient expression of YAP/TAZ. Cell Stem Cell 19, 725–737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Andl, T., Zhou, L., Yang, K., Kadekaro, A. L. & Zhang, Y. YAP and WWTR1: new targets for skin cancer treatment. Cancer Lett. 396, 30–41 (2017).

    CAS  PubMed  Google Scholar 

  173. Zhang, Y. et al. VGLL4 selectively represses YAP-dependent gene induction and tumorigenic phenotypes in breast cancer. Sci. Rep. 7, 6190 (2017).

    PubMed  PubMed Central  Google Scholar 

  174. Cao, L., Sun, P. L., Yao, M., Jia, M. & Gao, H. Expression of YES-associated protein (YAP) and its clinical significance in breast cancer tissues. Hum. Pathol. 68, 166–174 (2017).

    CAS  PubMed  Google Scholar 

  175. Allensworth, J. L., Sauer, S. J., Lyerly, H. K., Morse, M. A. & Devi, G. R. Smac mimetic Birinapant induces apoptosis and enhances TRAIL potency in inflammatory breast cancer cells in an IAP-dependent and TNF-α-independent mechanism. Breast Cancer Res. Treat. 137, 359–371 (2013).

    CAS  PubMed  Google Scholar 

  176. Lamar, J. M., Motilal Nehru, V. & Weinberg, G. Epithelioid hemangioendothelioma as a model of YAP/TAZ-driven cancer: insights from a rare fusion sarcoma. Cancers 10, 229 (2018).

    PubMed Central  Google Scholar 

  177. Tanas, M. R. et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci. Transl Med. 3, 98ra82 (2011).

    PubMed  Google Scholar 

  178. Marsola, A. et al. Expression of Hippo signaling pathway and aurora kinase genes in chronic myeloid leukemia. Med. Oncol. 35, 26 (2018).

    PubMed  Google Scholar 

  179. Cottini, F. et al. Rescue of Hippo coactivator YAP1 triggers DNA damage-induced apoptosis in hematological cancers. Nat. Med. 20, 599–606 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bellam, N. & Pasche, B. TGF-β signaling alterations and colon cancer. Cancer Treat. Res. 155, 85–103 (2010).

    CAS  PubMed  Google Scholar 

  181. Lobry, C., Oh, P. & Aifantis, I. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med. 208, 1931–1935 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    CAS  PubMed  Google Scholar 

  183. Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 (2009).

    PubMed  Google Scholar 

  184. Wang, Y. et al. Comprehensive molecular characterization of the Hippo signaling pathway in cancer. Cell Rep. 25, 1304–1317.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim, W. et al. Hippo signaling interactions with Wnt/β-catenin and Notch signaling repress liver tumorigenesis. J. Clin. Invest. 127, 137–152 (2017).

    PubMed  Google Scholar 

  186. Hansen, C. G., Moroishi, T. & Guan, K. L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 25, 499–513 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  188. Morales, F. & Giordano, A. Overview of CDK9 as a target in cancer research. Cell Cycle 15, 519–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Al-Moujahed, A. et al. Verteporfin inhibits growth of human glioma in vitro without light activation. Sci. Rep. 7, 7602 (2017).

    PubMed  PubMed Central  Google Scholar 

  190. Song, S. et al. A novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma. Mol. Cancer Ther. 17, 443–454 (2018).

    CAS  PubMed  Google Scholar 

  191. Jiao, S. et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25, 166–180 (2014).

    CAS  PubMed  Google Scholar 

  192. Jiao, S. et al. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat. Commun. 8, 14058 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Sekido, Y. Targeting the Hippo pathway is a new potential therapeutic modality for malignant mesothelioma. Cancers 10, E90 (2018).

    PubMed  Google Scholar 

  194. Swords, R. T. et al. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, combined with azacitidine in patients with AML. Blood 131, 1415–1424 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Swords, R. T. et al. Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br. J. Haematol. 169, 534–543 (2015).

    CAS  PubMed  Google Scholar 

  196. Lockhart, A. C. et al. Phase Ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docetaxel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors. Invest. New Drugs 37, 87–97 (2019).

    CAS  PubMed  Google Scholar 

  197. Wan, S. et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147, 1393–1404 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Lu, H. et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat. Cell Biol. 16, 1105–1117 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Korkaya, H., Liu, S. & Wicha, M. S. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin. Cancer Res. 17, 6125–6129 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Cui, T. X. et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity 39, 611–621 (2013).

    CAS  PubMed  Google Scholar 

  201. Lee, C. G. et al. A rare fraction of drug-resistant follicular lymphoma cancer stem cells interacts with follicular dendritic cells to maintain tumourigenic potential. Br. J. Haematol. 158, 79–90 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yang, S. et al. Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J. Leukoc. Biol. 89, 85–91 (2011).

    CAS  PubMed  Google Scholar 

  203. Codd, A. S., Kanaseki, T., Torigo, T. & Tabi, Z. Cancer stem cells as targets for immunotherapy. Immunology 153, 304–314 (2018).

    CAS  PubMed  Google Scholar 

  204. Jinushi, M. Role of cancer stem cell-associated inflammation in creating pro-inflammatory tumorigenic microenvironments. Oncoimmunology 3, e28862 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. Theocharides, A. P. et al. Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J. Exp. Med. 209, 1883–1899 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Liu, L. et al. Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front. Immunol. 8, 404 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Di Tomaso, T. et al. Immunobiological characterization of cancer stem cells isolated from glioblastoma patients. Clin. Cancer Res. 16, 800–813 (2010).

    PubMed  PubMed Central  Google Scholar 

  208. Schatton, T. et al. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res. 70, 697–708 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Todaro, M. et al. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1, 389–402 (2007).

    CAS  PubMed  Google Scholar 

  210. Wu, A. et al. Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro. Oncol. 12, 1113–1125 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Zhang, D., Tang, D. G. & Rycaj, K. Cancer stem cells: regulation programs, immunological properties and immunotherapy. Semin. Cancer Biol. 52, 94–106 (2018).

    CAS  PubMed  Google Scholar 

  212. Lee, Y. et al. CD44+ cells in head and neck squamous cell carcinoma suppress T-cell-mediated immunity by selective constitutive and inducible expression of PD-L1. Clin. Cancer Res. 22, 3571–3581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e14 (2019).

    CAS  PubMed  Google Scholar 

  214. Ames, E. et al. NK cells preferentially target tumor cells with a cancer stem cell phenotype. J. Immunol. 195, 4010–4019 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. She, M. et al. Resistance of leukemic stem-like cells in AML cell line KG1a to natural killer cell-mediated cytotoxicity. Cancer Lett. 318, 173–179 (2012).

    CAS  PubMed  Google Scholar 

  216. Wang, B. et al. Metastatic consequences of immune escape from NK cell cytotoxicity by human breast cancer stem cells. Cancer Res. 74, 5746–5757 (2014).

    CAS  PubMed  Google Scholar 

  217. Paczulla, A. M. et al. Absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature 572, 254–259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Sia, D. et al. Identification of an immune-specific class of hepatocellular carcinoma, based on molecular features. Gastroenterology 153, 812–826 (2017).

    CAS  PubMed  Google Scholar 

  219. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    CAS  PubMed  Google Scholar 

  220. Balli, D., Rech, A. J., Stanger, B. Z. & Vonderheide, R. H. Immune cytolytic activity stratifies molecular subsets of human pancreatic cancer. Clin. Cancer Res. 23, 3129–3138 (2017).

    CAS  PubMed  Google Scholar 

  221. Shen, Q. et al. Notch shapes the innate immunophenotype in breast cancer. Cancer Discov. 7, 1320–1335 (2017).

    CAS  PubMed  Google Scholar 

  222. Sarkar, S. et al. PRKCI promotes immune suppression in ovarian cancer. Genes Dev. 31, 1109–1121 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang, G. et al. Targeting YAP-dependent MDSC infiltration impairs tumor progression. Cancer Discov. 6, 80–95 (2016).

    PubMed  Google Scholar 

  224. Palaga, T., Miele, L., Golde, T. E. & Osborne, B. A. TCR-mediated Notch signaling regulates proliferation and IFN-γ production in peripheral T cells. J. Immunol. 171, 3019–3024 (2003).

    CAS  PubMed  Google Scholar 

  225. Gattinoni, L., Ji, Y. & Restifo, N. P. Wnt/β-catenin signaling in T-cell immunity and cancer immunotherapy. Clin. Cancer Res. 16, 4695–4701 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Taha, Z., Janse van Rensburg, H. J. & Yang, X. The Hippo pathway: immunity and cancer. Cancers 10, E94 (2018).

    PubMed  Google Scholar 

  227. Buglioni, S. et al. Analysis of the Hippo transducers TAZ and YAP in cervical cancer and its microenvironment. Oncoimmunology 5, e1160187 (2016).

    PubMed  PubMed Central  Google Scholar 

  228. Frese, K. K. & Tuveson, D. A. Maximizing mouse cancer models. Nat. Rev. Cancer 7, 645–658 (2007).

    CAS  PubMed  Google Scholar 

  229. Lee, M. J. et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc. Natl Acad. Sci. USA 109, 7859–7864 (2012).

    CAS  PubMed  Google Scholar 

  230. Xu, Q. et al. Antigen-specific T-cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 27, 1734–1740 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhao, L. et al. Targeting CD133high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody. J. Immunother. 38, 217–228 (2015).

    CAS  PubMed  Google Scholar 

  232. Dhodapkar, M. V. & Dhodapkar, K. M. Vaccines targeting cancer stem cells: are they within reach? Cancer J. 17, 397–402 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Pan, Q. et al. Concise review: targeting cancer stem cells using immunologic approaches. Stem Cells 33, 2085–2092 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Jordan, C. T. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    CAS  PubMed  Google Scholar 

  235. Luo, H. et al. A new strategy using ALDHhigh-CD8+ T cells to inhibit tumorigenesis. PLOS ONE 9, e103193 (2014).

    PubMed  PubMed Central  Google Scholar 

  236. Visus, C. et al. Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8+ T cells. Clin. Cancer Res. 17, 6174–6184 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Schuster, S. J. et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380, 45–56 (2019).

    CAS  PubMed  Google Scholar 

  239. Luo, Y. et al. First-in-man CD123-specific chimeric antigen receptor-modified T cells for the treatment of refractory acute myeloid leukemia. Blood 126, 3778 (2015).

    Google Scholar 

  240. Beard, R. E. et al. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J. Immunother. Cancer 2, 25 (2014).

    PubMed  PubMed Central  Google Scholar 

  241. Brown, C. E. et al. Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T Cells. Clin. Cancer Res. 18, 2199–2209 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Deng, Z., Wu, Y., Ma, W., Zhang, S. & Zhang, Y. Q. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 16, 1 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Morgan, R. A. et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum. Gene. Ther. 23, 1043–1053 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang, Y. et al. CD133-directed CAR T cells for advanced metastasis malignancies: a phase I trial. Oncoimmunology 7, e1440169 (2018).

    PubMed  PubMed Central  Google Scholar 

  245. Kubasch, A. S. et al. Anti-CD123 targeted therapy with talacotuzumab in advanced MDS and AML after failing hypomethylating agents — final results of the SAMBA trial. Blood 132, 4045 (2018).

    Google Scholar 

  246. Menke-van der Houven van Oordt, C. W. et al. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. Oncotarget 7, 80046–80058 (2016).

    PubMed  PubMed Central  Google Scholar 

  247. Huang, J. et al. Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133(high) cancer stem cells in vitro and in vivo. Clin. Immunol. 149, 156–168 (2013).

    CAS  PubMed  Google Scholar 

  248. Shi, X. et al. PD-1 blockade enhances the antitumor efficacy of GM-CSF surface-modified bladder cancer stem cells vaccine. Int. J. Cancer 142, 2106–2117 (2018).

    CAS  PubMed  Google Scholar 

  249. Lee, H., Pal, S. K., Reckamp, K., Figlin, R. A. & Yu, H. STAT3: a target to enhance antitumor immune response. Curr. Top Microbiol. Immunol. 344, 41–59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Marzec, M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl Acad. Sci. USA 105, 20852–20857 (2008).

    CAS  PubMed  Google Scholar 

  251. Ginestier, C. et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J. Clin. Invest. 120, 485–497 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Jia, D. et al. An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis. 8, e2932 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Kim, S. Y. et al. Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell. Signal. 25, 961–969 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Cioffi, M. et al. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin. Cancer Res. 21, 2325–2337 (2015).

    CAS  PubMed  Google Scholar 

  256. Sikic, B. I. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 37, 946–953 (2019).

    CAS  PubMed  Google Scholar 

  257. Adeegbe, D. O. et al. Synergistic immunostimulatory effects and therapeutic benefit of combined histone deacetylase and bromodomain inhibition in non-small cell lung cancer. Cancer Discov. 7, 852–867 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Deangelo, D. J. et al. A phase I clinical trial of the Notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J. Clin. Oncol. 24, 6585 (2006).

    Google Scholar 

  259. Piha-Paul, S. A. et al. Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur. J. Cancer 51, 1865–1873 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Locatelli, M. A. et al. Phase I study of the gamma secretase inhibitor PF-03084014 in combination with docetaxel in patients with advanced triple-negative breast cancer. Oncotarget 8, 2320–2328 (2017).

    PubMed  Google Scholar 

  261. Pant, S. et al. A first-in-human phase I study of the oral Notch inhibitor, LY900009, in patients with advanced cancer. Eur. J. Cancer 56, 1–9 (2016).

    CAS  PubMed  Google Scholar 

  262. De Jesus-Acosta, A. et al. A phase II study of the γ secretase inhibitor RO4929097 in patients with previously treated metastatic pancreatic adenocarcinoma. Invest. New Drugs 32, 739–745 (2014).

    PubMed  PubMed Central  Google Scholar 

  263. Strosberg, J. R. et al. A phase II study of RO4929097 in metastatic colorectal cancer. Eur. J. Cancer 48, 997–1003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Tolcher, A. W. et al. Phase I study of RO4929097, a γ secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J. Clin. Oncol. 30, 2348–2353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Richter, S. et al. A phase I study of the oral γ secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Invest. New Drugs 32, 243–249 (2014).

    CAS  PubMed  Google Scholar 

  266. Diaz-Padilla, I. et al. A phase Ib combination study of RO4929097, a γ-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Invest. New Drugs 31, 1182–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Falchook, G. S. et al. Phase I study of MEDI0639 in patients with advanced solid tumors. J. Clin. Oncol. 33, 3024 (2015).

    Google Scholar 

  268. Kim, E. J. et al. Pilot clinical trial of Hedgehog pathway inhibitor GDC-0449 (vismodegib) in combination with gemcitabine in patients with metastatic pancreatic adenocarcinoma. Clin. Cancer Res. 20, 5937–5945 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Sloan, A. E. et al. Targeting glioma initiating cells in GBM: ABTC-0904, a randomized phase 0/II study targeting the sonic Hedgehog-signaling pathway. Neuro-Oncology 16, iii46 (2014).

    PubMed Central  Google Scholar 

  270. Lee, M. et al. A phase II study of itraconazole in biochemically recurrent prostate cancer. J. Clin. Oncol. 36, 362 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to researching the data for the article, discussions of content, writing the article and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Naoko Takebe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks M. Katoh, M. Wicha and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clara, J.A., Monge, C., Yang, Y. et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nat Rev Clin Oncol 17, 204–232 (2020). https://doi.org/10.1038/s41571-019-0293-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-019-0293-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer