Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Beyond conventional immune-checkpoint inhibition — novel immunotherapies for renal cell carcinoma

Abstract

The management of advanced-stage renal cell carcinoma (RCC) has been transformed by the development of immune-checkpoint inhibitors (ICIs). Nonetheless, most patients do not derive durable clinical benefit from these agents. Importantly, unlike other immunotherapy-responsive solid tumours, most RCCs have only a moderate mutational burden, and paradoxically, high levels of tumour CD8+ T cell infiltration are associated with a worse prognosis in patients with this disease. Building on the successes of antibodies targeting the PD-1 and CTLA4 immune checkpoints, multiple innovative immunotherapies are now in clinical development for the treatment of patients with RCC, including ICIs with novel targets, co-stimulatory pathway agonists, modified cytokines, metabolic pathway modulators, cell therapies and therapeutic vaccines. However, the successful development of such novel immune-based treatments and of immunotherapy-based combinations will require a disease-specific framework that incorporates a deep understanding of RCC immunobiology. In this Review, using the structure provided by the well-described cancer–immunity cycle, we outline the key steps required for a successful antitumour immune response in the context of RCC, and describe the development of promising new immunotherapies within the context of this framework. With this approach, we summarize and analyse the most encouraging targets of novel immune-based therapies within the RCC microenvironment, and review the landscape of emerging antigen-directed therapies for this disease.

Key points

  • The biology of renal cell carcinoma (RCC) differs substantially from that of other immunotherapy-responsive solid tumours; therefore, the successful development of novel immune treatments requires an understanding of disease-specific biology.

  • RCCs are highly infiltrated with CD8+ T cells and consequently many therapeutic approaches focus on reinvigorating T cells present in the tumour immune microenvironment.

  • Novel immune-checkpoint inhibitors, co-stimulatory pathway agonists, modified cytokine therapies and metabolic pathway modulators are all promising approaches that have the potential to remodel the RCC microenvironment and improve antitumour T cell responses.

  • Precision immunotherapies aim to target RCC-specific antigens, thereby ‘steering’ the immune response towards malignant cells.

  • Monoclonal antibodies, adoptive cell therapies and therapeutic vaccines are all promising approaches that act in an antigen-directed manner and might improve the efficacy of current immunotherapies in patients with RCC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The renal cell carcinoma-specific cancer–immunity cycle.
Fig. 2: Targeting the RCC immune microenvironment.
Fig. 3: Precision immunotherapy strategies for the treatment of RCC.

Similar content being viewed by others

References

  1. Mckay, R. R., Boss, D. & Choueiri, T. K. Evolving systemic treatment landscape for patients with advanced renal cell carcinoma. J. Clin. Oncol. 36, 3615–3623 (2018).

    Article  CAS  Google Scholar 

  2. Motzer, R. J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rini, B. I. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1116–1127 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McDermott, D. F. et al. The high-dose aldesleukin “select” trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 21, 561–568 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Maruschke, M., Anastasiadis, A. G. & Hakenberg, O. W. Spontaneous regression of renal cell carcinoma: reality or myth? World J. Clin. Urol. 3, 201–208 (2014).

    Article  Google Scholar 

  7. Janiszewska, A. D., Poletajew, S. & Wasiutyński, A. Spontaneous regression of renal cell carcinoma. Contemp. Oncol. 17, 123–127 (2013).

    Google Scholar 

  8. Takahashi, Y. et al. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Invest. 118, 1099–1109 (2008); correction 118, 1584 (2008).

  9. Signoretti, S., Flaifel, A., Chen, Y. B. & Reuter, V. E. Renal cell carcinoma in the era of precision medicine: from molecular pathology to tissue-based biomarkers. J. Clin. Oncol. 36, 3553–3559 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  10. Albiges, L., Flippot, R., Rioux-Leclercq, N. & Choueiri, T. K. Non-clear cell renal cell carcinomas: from shadow to light. J. Clin. Oncol. 36, 3624–3631 (2018).

    Article  CAS  Google Scholar 

  11. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  12. Vigneron, N. Human tumor antigens and cancer immunotherapy. Biomed. Res. Int. 2015, 948501 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 51, 202–206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. FDA. FDA approves pembrolizumab for adults and children with TMB-H solid tumors https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (2020).

  15. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. McDermott, D. F. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat. Med. 24, 749–757 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braun, D. A. et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat. Med. 26, 909–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. SOGA, N. et al. Limited expression of cancer-testis antigens in renal cell carcinoma patients. Mol. Clin. Oncol. 1, 326–330 (2013).

    Article  PubMed  Google Scholar 

  21. Attermann, A. S., Bjerregaard, A. M., Saini, S. K., Grønbæk, K. & Hadrup, S. R. Human endogenous retroviruses and their implication for immunotherapeutics of cancer. Ann. Oncol. 29, 2183–2191 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, C. C. et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Invest. 128, 4804–4820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Giraldo, N. A. et al. Orchestration and prognostic significance of immune checkpoints in the microenvironment of primary and metastatic renal cell cancer. Clin. Cancer Res. 21, 3031–3040 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ricketts, C. J. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 313–326.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  28. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jubb, A. M. et al. Expression of vascular endothelial growth factor, hypoxia inducible factor 1α, and carbonic anhydrase IX in human tumours. J. Clin. Pathol. 57, 504–512 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Şenbabaoğlu, Y. et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 17, 231 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, T. et al. An empirical approach leveraging tumorgrafts to dissect the tumor microenvironment in renal cell carcinoma identifies missing link to prognostic inflammatory factors. Cancer Discov. 8, 1142–1155 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark, D. J. et al. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179, 964–983.e31 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuen, K. C. et al. High systemic and tumor-associated IL8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schalper, K. A. et al. Elevated serum interleukin 8 is associated with enhanced intratumor neutrophils and reduced clinical benefit with immune checkpoint inhibitors. Nat Med. 26, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bakouny, Z. & Choueiri, T. K. IL-8 and cancer prognosis on immunotherapy. Nat. Med. 26, 650–651 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Bakouny, Z. et al. Integrative molecular characterization of sarcomatoid and rhabdoid renal cell carcinoma reveals determinants of poor prognosis and response to immune checkpoint inhibitors. Nat. Commun. (in the press).

  38. Rini, B. I. et al. Pembrolizumab (pembro) plus axitinib (axi) versus sunitinib as first-line therapy for metastatic renal cell carcinoma (mRCC): outcomes in the combined IMDC intermediate/poor risk and sarcomatoid subgroups of the phase 3 KEYNOTE-426 study [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 4500 (2019).

    Article  Google Scholar 

  39. McDermott, D. F. et al. CheckMate 214 post-hoc analyses of nivolumab plus ipilimumab or sunitinib in IMDC intermediate/poor-risk patients with previously untreated advanced renal cell carcinoma with sarcomatoid features [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 4513 (2019).

    Article  Google Scholar 

  40. Choueiri, T. K. et al. Efficacy and biomarker analysis of patients (pts) with advanced renal cell carcinoma (aRCC) with sarcomatoid histology (sRCC): subgroup analysis from the phase III JAVELIN renal 101 trial of first-line avelumab plus axitinib (A+Ax) vs sunitinib (S) [abstract 4823]. Ann. Oncol. 30 (Suppl. 5), v361 (2019).

    Article  Google Scholar 

  41. Rini, B. I. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 393, 2404–2415 (2019).

    Article  PubMed  Google Scholar 

  42. Rini, B. I. et al. Atezolizumab (atezo) + bevacizumab (bev) versus sunitinib (sun) in pts with untreated metastatic renal cell carcinoma (mRCC) and sarcomatoid (sarc) histology: IMmotion151 subgroup analysis [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 4512 (2019).

    Article  Google Scholar 

  43. Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Giraldo, N. A. et al. Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin. Cancer Res. 23, 4416–4428 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Chevrier, S. et al. An immune atlas of clear cell renal cell carcinoma. Cell 169, 736–749.e18 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pignon, J. C. et al. Irrecist for the evaluation of candidate biomarkers of response to nivolumab in metastatic clear cell renal cell carcinoma: analysis of a phase II prospective clinical trial. Clin. Cancer Res. 25, 2174–2184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    Article  PubMed Central  Google Scholar 

  48. Beckermann, K. et al. Targeting metabolic dysregulation of T cells in kidney cancer [abstract]. J. Clin. Oncol. 38 (Suppl. 6), 722 (2020).

    Article  Google Scholar 

  49. Miao, D. et al. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma. Science 359, 801–806 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hegde, P. S., Karanikas, V. & Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 22, 1865–1874 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marhelava, K., Pilch, Z., Bajor, M., Graczyk-Jarzynka, A. & Zagozdzon, R. Targeting negative and positive immune checkpoints with monoclonal antibodies in therapy of cancer. Cancers 11, 1756 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  53. Granier, C. et al. Tim-3 expression on tumor-infiltrating PD-1+CD8+T cells correlates with poor clinical outcome in renal cell carcinoma. Cancer Res. 77, 1075–1082 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Cai, C. et al. Tim-3 expression represents dysfunctional tumor infiltrating T cells in renal cell carcinoma. World J. Urol. 34, 561–567 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Mach, N. et al. Phase (Ph) II study of MBG453 1 spartalizumab in patients (pts) with non-small cell lung cancer (NSCLC) and melanoma pretreated with anti-PD-1/L1 therapy [abstract 1202P]. Ann. Oncol. 30 (Suppl. 5), v491–v492 (2019).

    Article  Google Scholar 

  56. Harding, J. J. et al. A phase Ia/Ib study of an anti-TIM-3 antibody (LY3321367) monotherapy or in combination with an anti-PD-L1 antibody (LY3300054): interim safety, efficacy, and pharmacokinetic findings in advanced cancers [abstract]. J. Clin. Oncol. 37 (Suppl. 8), 12 (2019).

    Article  Google Scholar 

  57. Workman, C. J. & Vignali, D. A. A. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur. J. Immunol. 33, 970–979 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Andreae, S., Buisson, S. & Triebel, F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 102, 2130–2137 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Zelba, H. et al. PD-1 and LAG-3 dominate checkpoint receptor-mediated T-cell inhibition in renal cell carcinoma. Cancer Immunol. Res. 7, 1891–1899 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Brignone, C., Escudier, B., Grygar, C., Marcu, M. & Triebel, F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin. Cancer Res. 15, 6225–6231 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Bendell J. C., et al. Phase Ia/Ib dose-escalation study of the anti-TIGIT antibody tiragolumab as a single agent and in combination with atezolizumab in patients with advanced solid tumors [abstract CT302]. Presented at the American Association for Cancer Research Virtual Annual Meeting, 2020. abstractsonline.com https://www.abstractsonline.com/pp8/#!/9045/presentation/11341 (2020).

  62. Rodriguez-Abreu, D. et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE) [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 9503 (2020).

    Article  Google Scholar 

  63. Powderly, J. et al. CA-170, a first in class oral small molecule dual inhibitor of immune checkpoints PD-L1 and VISTA, demonstrates tumor growth inhibition in pre-clinical models and promotes T cell activation in phase 1 study [abstract 1141PD]. Ann. Oncol. 28 (Suppl. 5), v405–v406 (2017).

    Article  Google Scholar 

  64. Chester, C., Sanmamed, M. F., Wang, J. & Melero, I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood 131, 49–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Palazón, A. et al. The HIF-1α hypoxia response in tumor-infiltrating T lymphocytes induces functional CD137 (4-1BB) for immunotherapy. Cancer Discov. 2, 608–623 (2012).

    Article  PubMed  Google Scholar 

  66. Tolcher, A. W. et al. Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin. Cancer Res. 23, 5349–5357 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Alves Costa Silva, C., Facchinetti, F., Routy, B. & Derosa, L. New pathways in immune stimulation: targeting OX40. ESMO Open 5, e000573 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Glisson, B. S. et al. Phase 1 study of MEDI0562, a humanized OX40 agonist monoclonal antibody (mAb), in adult patients (pts) with advanced solid tumors [abstract 1052PD]. Ann. Oncol. 27 (Suppl. 6), vi361 (2016).

    Article  Google Scholar 

  69. Curti, B. D. et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 73, 7189–7198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. El-Khoueiry, A. B. et al. The relationship of pharmacodynamics (PD) and pharmacokinetics (PK) to clinical outcomes in a phase I study of OX40 agonistic monoclonal antibody (mAb) PF-04518600 (PF-8600) [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 3027 (2017).

    Article  Google Scholar 

  71. Spira, A. et al. Safety, tolerability, and pharmacokinetics of the OX40 agonist ABBV-368 in patients with advanced solid tumors [abstract 1149P]. Ann. Oncol. 29 (Suppl. 8), viii409 (2018).

    Article  Google Scholar 

  72. Klapper, J. A. et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113, 293–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Diab, A. et al. NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: preliminary phase 1/2 results of PIVOT [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3006 (2018).

    Article  Google Scholar 

  75. Tugues, S. et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 22, 237–246 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Fallon, J. et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 5, 1869–1884 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Strauss, J. et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Strauss, J. et al. Phase Ib, open-label, dose-escalation study of M9241 (NHS-IL12) plus avelumab in patients (pts) with advanced solid tumours [abstract 1224P]. Ann. Oncol. 30 (Suppl. 5), v500–v501 (2019).

    Article  Google Scholar 

  79. McDermott, D. F. et al. Safety and efficacy of the oral CXCR4 inhibitor X4P-001 + axitinib in advanced renal cell carcinoma patients: an analysis of subgroup responses by prior treatment [abstract 1186PD]. Ann. Oncol. 30 (Suppl. 5), v482–v483 (2019).

    Article  Google Scholar 

  80. Badawy, A. A. B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan. Res. 10, 1178646917691938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Eleftheriadis, T., Pissas, G., Antoniadi, G., Liakopoulos, V. & Stefanidis, I. Indoleamine 2,3-dioxygenase depletes tryptophan, activates general control non-derepressible 2 kinase and down-regulates key enzymes involved in fatty acid synthesis in primary human CD4+ T cells. Immunology 146, 292–300 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Labadie, B. W., Bao, R. & Luke, J. J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axis. Clin. Cancer Res. 25, 1462–1471 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3(+) regulatory T cells. Nat. Immunol. 11, 846–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, H. et al. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 10, 1–6 (2019).

    Google Scholar 

  85. Lara, P. et al. Epacadostat plus pembrolizumab in patients with advanced RCC: preliminary phase I/II results from ECHO-202/KEYNOTE-037 [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 4515 (2017).

    Article  Google Scholar 

  86. Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Allard, D., Turcotte, M. & Stagg, J. Targeting A2 adenosine receptors in cancer. Immunol. Cell Biol. 95, 333–339 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Leone, R. D. & Emens, L. A. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer 6, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Song, L. et al. Ecto-5′-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells. Oncotarget 8, 31977–31992 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Giannakis, M. et al. Metabolomic correlates of response in nivolumab-treated renal cell carcinoma and melanoma patients [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 3036 (2017).

    Article  Google Scholar 

  93. Fong, L. et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 10, 40–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Hirsch, L., Flippot, R., Escudier, B. & Albiges, L. Immunomodulatory roles of VEGF pathway inhibitors in renal cell carcinoma. Drugs 80, 1169–1181 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Plimack, E. R. et al. Pembrolizumab plus axitinib versus sunitinib as first-line therapy for advanced renal cell carcinoma (RCC): updated analysis of KEYNOTE-426 [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 5001 (2020).

    Article  Google Scholar 

  96. Palmer, A. C. & Sorger, P. K. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell 171, 1678–1691.e13 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kwak, E. L., Clark, J. W. & Chabner, B. Targeted agents: the rules of combination. Clin. Cancer Res. 13, 5232–5237 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Zappasodi, R., Merghoub, T. & Wolchok, J. D. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 33, 581–598 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hammers, H. J. et al. Combination of dual immune checkpoint inhibition (ICI) with stereotactic radiation (SBRT) in metastatic renal cell carcinoma (mRCC) (RADVAX RCC) [abstract]. J. Clin. Oncol. 38 (Suppl. 6), 614 (2020).

    Article  Google Scholar 

  100. Masini, C. et al. Nivolumab (NIVO) in combination with stereotactic body radiotherapy (SBRT) in pretreated patients (pts) with metastatic renal cell carcinoma (mRCC): first results of phase II NIVES study [abstract]. J. Clin. Oncol. 38 (Suppl. 6), 613 (2020).

    Article  Google Scholar 

  101. Jonasch, E. et al. A first-in-human phase 1/2 trial of the oral HIF-2a inhibitor PT2977 in patients with advanced RCC [abstract 911PD]. Ann. Oncol. 30 (Suppl. 5), v361–v362 (2019).

    Article  Google Scholar 

  102. Choueiri, T. K. & Kaelin, W. G. Targeting the HIF2–VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Reynolds, K., Thomas, M. & Dougan, M. Diagnosis and management of hepatitis in patients on checkpoint blockade. Oncologist 23, 991–997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Braun, D. A. & Wu, C. J. Antigen discovery and therapeutic targeting in hematologic malignancies. Cancer J. 23, 115–124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ott, P. A. & Wu, C. J. Cancer vaccines: steering T cells down the right path to eradicate tumors. Cancer Discov. 9, 476–481 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Maude, S. L., Teachey, D. T., Porter, D. L. & Grupp, S. A. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood 125, 4017–4023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. D’Agostino, M. & Raje, N. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better? Leukemia 34, 21–34 (2020).

    Article  PubMed  Google Scholar 

  108. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Martinez, M. & Moon, E. K. CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 10, 128 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kaluz, S., Kaluzová, M., Liao, S. Y., Lerman, M. & Stanbridge, E. J. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim. Biophys. Acta 1795, 162–172 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tostain, J., Li, G., Gentil-Perret, A. & Gigante, M. Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur. J. Cancer 46, 3141–3148 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Lamers, C. H. J. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

    Article  PubMed  Google Scholar 

  113. Lamers, C. H. J. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lamers, C. H. J., Klaver, Y., Gratama, J. W., Sleijfer, S. & Debets, R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells – a completed study overview. Biochem. Soc. Trans. 44, 951–959 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Wang, Q. J. et al. Preclinical evaluation of chimeric antigen receptors targeting CD70-expressing cancers. Clin. Cancer Res. 23, 2267–2276 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Roybal, K. T. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 164, 770–779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Diaconu, I. et al. Inducible caspase-9 selectively modulates the toxicities of CD19-specific chimeric antigen receptor-modified T cells. Mol. Ther. 25, 580–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, H. et al. CAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer models. J. Immunother. 43, 16–28 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Loustau, M. First CAR-T cell immunotherapy against HLA-G: targeting a unique ICP and TAA. Ann. Oncol. 30 (Suppl. 11), xi12 (2019).

    Article  Google Scholar 

  122. Wang, Y. et al. Design and activity of 2nd generation, dual-targeted CAR T cell factories against ccRCC [abstract]. Cancer Res. 79 (Suppl. 13), 3179 (2019).

    Article  Google Scholar 

  123. Suarez, E. R. et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget. 7, 34341–34355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Scott, A. M., Allison, J. P. & Wolchok, J. D. Monoclonal antibodies in cancer therapy. Cancer Immun. 12, 14 (2012).

    PubMed  PubMed Central  Google Scholar 

  125. Chamie, K. et al. Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma: the ARISER randomized clinical trial. JAMA Oncol. 3, 913–920 (2017).

    Article  PubMed  Google Scholar 

  126. Diamantis, N. & Banerji, U. Antibody-drug conjugates – an emerging class of cancer treatment. Br. J. Cancer 114, 362–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Muselaers, C. H. J. et al. Phase 2 study of lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur. Urol. 69, 767–770 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Coats, S. et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 25, 5441–5448 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Pal, S. K. et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer 125, 1124–1132 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. McGregor, B. A. et al. Safety and efficacy of CDX-014, an antibody-drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest. New Drugs 38, 1807–1814 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Thompson, J. A. et al. Phase I trials of anti-ENPP3 antibody–drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res. 24, 4399–4406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kollmannsberger, C. et al. A randomized phase II study of AGS-16C3F versus axitinib in previously treated patients with metastatic renal cell carcinoma. Oncologist https://doi.org/10.1002/onco.13628 (2021).

  133. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    Article  CAS  PubMed  Google Scholar 

  134. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sarnaik, A. et al. Long-term follow up of lifileucel (LN-144) cryopreserved autologous tumor infiltrating lymphocyte therapy in patients with advanced melanoma progressed on multiple prior therapies [abstract]. J. Clin. Oncol. 38 (Suppl. 15), 10006 (2020).

    Article  Google Scholar 

  137. Figlin, R. A. et al. Treatment of metastatic renal cell carcinoma with nephrectomy, interleukin-2 and cytokine-primed or CD8(+) selected tumor infiltrating lymphocytes from primary tumor. J. Urol. 158, 740–745 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Figlin, R. A. et al. Multicenter, randomized, phase III trial of CD8+ tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma. J. Clin. Oncol. 17, 2521–2529 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Andersen, R. et al. T-cell responses in the microenvironment of primary renal cell carcinoma-implications for adoptive cell therapy. Cancer Immunol. Res. 6, 222–235 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Childs, R. et al. Regression of metastatic renal-cell carcinoma after nonmyeloablative allogeneic peripheral-blood stem-cell transplantation. N. Engl. J. Med. 343, 750–758 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Cherkasova, E. et al. Detection of an immunogenic HERV-E envelope with selective expression in clear cell kidney cancer. Cancer Res. 76, 2177–2185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Linette, G. P. et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122, 863–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kula, T. et al. T-scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell 178, 1016–1028.e13 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Walter, S. et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat. Med. 18, 1254–1261 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Kirner, A., Mayer-Mokler, A. & Reinhardt, C. IMA901: a multi-peptide cancer vaccine for treatment of renal cell cancer. Hum. Vaccines Immunother. 10, 3179–3189 (2014).

    Article  Google Scholar 

  147. Rini, B. I. et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 17, 1599–1611 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Rausch, S. et al. Results of a phase 1/2 study in metastatic renal cell carcinoma patients treated with a patient-specific adjuvant multi-peptide vaccine after resection of metastases. Eur. Urol. Focus. 5, 604–607 (2019).

    Article  PubMed  Google Scholar 

  149. Figlin, R. A. et al. Results of the ADAPT phase 3 study of rocapuldencel-T in combination with sunitinib as first-line therapy in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 26, 2327–2335 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Sarkizova, S. et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat. Biotechnol. 38, 199–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  151. Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222–226 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Hilf, N. et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 565, 240–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Lopez, J. S. et al. A phase Ib study to evaluate RO7198457, an individualized neoantigen specific immunotherapy (iNeST), in combination with atezolizumab in patients with locally advanced or metastatic solid tumors [abstract]. Cancer Res. 80 (Suppl. 16), CT301 (2020).

    Article  Google Scholar 

  156. Verma, V. et al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38hi cells and anti-PD-1 resistance. Nat. Immunol. 20, 1231–1243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pauken, K. E. et al. The PD-1 pathway regulates development and function of memory CD8+T cells following respiratory viral infection. Cell Rep. 31, 107827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hu, Z. et al. A cloning and expression system to probe T-cell receptor specificity and assess functional avidity to neoantigens. Blood 132, 1911–1921 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Grünwald, V. et al. Depth of remission is a prognostic factor for survival in patients with metastatic renal cell carcinoma. Eur. Urol. 67, 952–958 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Voss, M. H. et al. Depth of response (DepOR) analysis and correlation with clinical outcomes from JAVELIN Renal 101. J. Clin. Oncol. 38, 690–690 (2020).

    Article  Google Scholar 

  161. Motzer, R. J. et al. Survival outcomes and independent response assessment with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma: 42-month follow-up of a randomized phase 3 clinical trial. J. Immunother. Cancer 8, 891 (2020).

    Article  Google Scholar 

  162. Grünwald, V. et al. Association between depth of response and overall survival: exploratory analysis in patients with previously untreated advanced renal cell carcinoma (aRCC) in CheckMate 214 [abstract 950P]. Ann. Oncol. 30 (Suppl. 5), v382–v383 (2019).

    Article  Google Scholar 

  163. Ravi, P. et al. Evaluation of the safety and efficacy of immunotherapy rechallenge in patients with renal cell carcinoma. JAMA Oncol. 6, 1606–1610 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Gul, A. et al. Salvage ipilimumab and nivolumab in patients with metastatic renal cell carcinoma after prior immune checkpoint inhibitors. J. Clin. Oncol. 38, 3088–3094 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Regan, M. M. et al. Treatment-free survival: a novel outcome measure of the effects of immune checkpoint inhibition — a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 37, 3350–3358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Regan, M. M. et al. Treatment-free survival, with and without toxicity, as a novel outcome applied to immuno-oncology agents in advanced renal cell carcinoma [abstract 971P]. Ann. Oncol. 30 (Suppl. 5), v393–v394 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge W. Kaelin for helpful discussion and comments. D.A.B. acknowledges support from the DF/HCC Kidney Cancer SPORE Career Enhancement Program (P50CA101942-15), the US Department of Defense (DOD) congressionally directed medical research programs (CDMRP) (KC170216 and KC190130) and the DOD Academy of Kidney Cancer Investigators (KC190128). L.H. is supported by the Fondation de France during her postdoctoral research fellowship at Dana-Farber Cancer Institute. E.M.V.A. acknowledges support from the US NIH (NCI-R01-CA227388 and U01-CA233100). C.J.W. is a Scholar of the Leukemia and Lymphoma Society, and is supported in part by the Parker Institute for Cancer Immunotherapy. C.J.W. acknowledges support from the US NIH (NCI-1RO1CA155010 and NIH/NCI U24 CA224331), and The G. Harold and Leila Y. Mathers Foundation. T.K.C. is supported in part by the Dana-Farber/Harvard Cancer Center Kidney SPORE (P50CA101942) and Cancer Center Support Grant (P30CA006516), the Kohlberg Chair at Harvard Medical School, the Trust Family, Michael Brigham, and Loker Pinard Funds for Kidney Cancer Research at DFCI, and various US National Cancer Institute (NCI), DOD, Research Foundations and industry grants.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to all aspects of the preparation of the manuscript.

Corresponding author

Correspondence to Toni K. Choueiri.

Ethics declarations

Competing interests

D.A.B. has acted as a consultant of Adept Field Solutions, Blueprint Partnerships, Charles River Associates, Dedham Group, Defined Health, Insight Strategy, Octane Global, Slingshot Insights and Trinity Group, has received travel support from Bristol Myers Squibb and has received honoraria from LM Education/Exchange Services. Z.B. has received research support from Bristol Myers Squibb and Genentech. E.M.V.A. has served on the advisory boards of Enara Bio, Genome Medical, Manifold Bio, and Monte Rosa, has acted as a consultant of Invitae, Janssen and Tango Therapeutics, has received research funding from Bristol Myers Squibb-IION and Novartis, holds equity in Enara Bio, Genome Medical, Manifold Bio, Microsoft, Monte Rosa, Syapse and Tango Therapeutics, has received travel support from Roche/Genentech, and is listed on several institutional patents filed on chromatin mutations and immunotherapy response, and methods for clinical interpretation. C.J.W. holds equity in BioNtech. T.K.C. has acted as a consultant of AstraZeneca, Bristol Myers Squibb, Corvus, Eisai, Exelixis, Genentech, GlaxoSmithKline, Ipsen, Merck, Novartis, Peloton, Pfizer, Prometheus Labs, Roche, Surface Oncology, Tracon and Up-to-Date, and has received research funding from Astellas, AstraZeneca, Bristol Myers Squibb, Corvus, Exelixis, Genentech, GlaxoSmithKline, Merck, Novartis, Peloton, Pfizer and Tracon. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reviewer recognition statement

Nature Reviews Clinical Oncology thanks J. Bedke, R. Figlin, and C. Porta for their contribution to the peer review of this work.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, D.A., Bakouny, Z., Hirsch, L. et al. Beyond conventional immune-checkpoint inhibition — novel immunotherapies for renal cell carcinoma. Nat Rev Clin Oncol 18, 199–214 (2021). https://doi.org/10.1038/s41571-020-00455-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-00455-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing