Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TGFβ biology in cancer progression and immunotherapy

Subjects

Abstract

TGFβ signalling has key roles in cancer progression: most carcinoma cells have inactivated their epithelial antiproliferative response and benefit from increased TGFβ expression and autocrine TGFβ signalling through effects on gene expression, release of immunosuppressive cytokines and epithelial plasticity. As a result, TGFβ enables cancer cell invasion and dissemination, stem cell properties and therapeutic resistance. TGFβ released by cancer cells, stromal fibroblasts and other cells in the tumour microenvironment further promotes cancer progression by shaping the architecture of the tumour and by suppressing the antitumour activities of immune cells, thus generating an immunosuppressive environment that prevents or attenuates the efficacy of anticancer immunotherapies. The repression of TGFβ signalling is therefore considered a prerequisite and major avenue to enhance the efficacy of current and forthcoming immunotherapies, including in tumours comprising cancer cells that are not TGFβ responsive. Herein, we introduce the mechanisms underlying TGFβ signalling in tumours and their microenvironment and discuss approaches to inhibit these signalling mechanisms as well as the use of these approaches in cancer immunotherapies and their potential adverse effects.

Key points

  • TGFβ released and activated by malignant and non-cancer cells within the tumour microenvironment (TME) promotes cancer progression through highly regulated and differential effects on multiple cell types.

  • Enhanced TGFβ signalling promotes cancer cell invasion, dissemination and stem cell properties, and suppresses the sensitivity to anticancer drugs.

  • TGFβ shapes the TME through effects on cancer-associated fibroblasts, endothelial cells and pericytes, tumour architecture and suppression of protective immune cell functions.

  • TGFβ signalling in the TME represses the antitumour functions of various immune cell populations, including T cells and natural killer cells; the resulting immune suppression severely limits the efficacy of immune-checkpoint inhibitors and other immunotherapeutic approaches.

  • Inhibition of TGFβ signalling is currently being evaluated in multiple clinical trials as a major avenue to enhance the efficacy of cancer immunotherapies but systemic adverse effects and the therapeutic index need careful consideration.

  • Diverse approaches towards more selective inhibition of TGFβ activation or signalling are being actively pursued in order to enhance effectiveness and reduce the toxicity of a diverse array of cancer immunotherapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cell type heterogeneity within the tumour microenvironment.
Fig. 2: Latent TGFβ activation and initiation of TGFβ signalling through its receptors and Smad proteins.
Fig. 3: Epithelial plasticity of carcinoma cells in response to TGFβ.
Fig. 4: Effects of TGFβ on immune cell populations.
Fig. 5: Response of cancer-associated fibroblasts and endothelial cells to TGFβ.
Fig. 6: Anti-TGFβ therapy potentiates infiltration of T cells into the tumour core.

Similar content being viewed by others

References

  1. Moses, H. L., Roberts, A. B. & Derynck, R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb. Perspect. Biol. 8, a021865 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Moses, H. L., Branum, E. L., Proper, J. A. & Robinson, R. A. Transforming growth factor production by chemically transformed cells. Cancer Res. 41, 2842–2848 (1981).

    CAS  PubMed  Google Scholar 

  3. Roberts, A. B., Anzano, M. A., Lamb, L. C., Smith, J. M. & Sporn, M. B. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc. Natl Acad. Sci. USA 78, 5339–5343 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Derynck, R. et al. Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 316, 701–705 (1985).

    CAS  PubMed  Google Scholar 

  5. Derynck, R. et al. Synthesis of messenger RNAs for transforming growth factors α and β and the epidermal growth factor receptor by human tumors. Cancer Res. 47, 707–712 (1987).

    CAS  PubMed  Google Scholar 

  6. Tucker, R. F., Shipley, G. D., Moses, H. L. & Holley, R. W. Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science 226, 705–707 (1984).

    CAS  PubMed  Google Scholar 

  7. Siegel, P. M. & Massagué, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer 3, 807–821 (2003).

    CAS  PubMed  Google Scholar 

  8. Miettinen, P. J., Ebner, R., Lopez, A. R. & Derynck, R. TGF-beta-induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036 (1994).

    CAS  PubMed  Google Scholar 

  9. Katsuno, Y., Lamouille, S. & Derynck, R. TGF-β signaling and epithelial-mesenchymal transition in cancer progression. Curr. Opin. Oncol. 25, 76–84 (2013).

    CAS  PubMed  Google Scholar 

  10. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    CAS  PubMed  Google Scholar 

  11. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  PubMed  Google Scholar 

  12. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015).

    CAS  PubMed  Google Scholar 

  13. Peske, J. D., Woods, A. B. & Engelhard, V. H. Control of CD8 T-cell infiltration into tumors by vasculature and microenvironment. Adv. Cancer Res. 128, 263–307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicolas-Boluda, A. & Donnadieu, E. Obstacles to T cell migration in the tumor microenvironment. Comp. Immunol. Microbiol. Infect. Dis. 63, 22–30 (2019).

    PubMed  Google Scholar 

  15. Krummel, M. F., Bartumeus, F. & Gerard, A. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 16, 193–201 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    CAS  PubMed  Google Scholar 

  17. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  18. Swartz, M. A. & Lund, A. W. Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat. Rev. Cancer 12, 210–219 (2012).

    CAS  PubMed  Google Scholar 

  19. Zheng, W., Aspelund, A. & Alitalo, K. Lymphangiogenic factors, mechanisms, and applications. J. Clin. Invest. 124, 878–887 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lengyel, E., Makowski, L., DiGiovanni, J. & Kolonin, M. G. Cancer as a matter of fat: the crosstalk between adipose tissue and tumors. Trends Cancer 4, 374–384 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Chakravarthy, A., Khan, L., Bensler, N. P., Bose, P. & De Carvalho, D. D. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat. Commun. 9, 4692 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    CAS  PubMed  Google Scholar 

  24. Thorsson, V. et al. The immune landscape of cancer. Immunity 48, 812–830 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Dahmani, A. & Delisle, J. S. TGF-β in T cell biology: implications for cancer immunotherapy. Cancers 10, 194 (2018).

    PubMed Central  Google Scholar 

  26. Ungefroren, H. Blockade of TGF-β signaling: a potential target for cancer immunotherapy? Expert Opin. Ther. Targets 23, 679–693 (2019).

    CAS  PubMed  Google Scholar 

  27. Batlle, E. & Massagué, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sieweke, M. H., Thompson, N. L., Sporn, M. B. & Bissell, M. J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-β. Science 248, 1656–1660 (1990).

    CAS  PubMed  Google Scholar 

  29. Akhurst, R. J., Fee, F. & Balmain, A. Localized production of TGF-β mRNA in tumour promoter-stimulated mouse epidermis. Nature 331, 363–365 (1988).

    CAS  PubMed  Google Scholar 

  30. DiPaolo, J. A., DeMarinis, A. J., Evans, C. H. & Doniger, J. Expression of initiated and promoted stages of irradiation carcinogenesis in vitro. Cancer Lett. 14, 243–249 (1981).

    CAS  PubMed  Google Scholar 

  31. Harjunpaa, H., Llort Asens, M., Guenther, C. & Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Onnis, A. & Baldari, C. T. Orchestration of immunological synapse assembly by vesicular trafficking. Front. Cell Dev. 7, 110 (2019).

    Google Scholar 

  33. Castro-Sanchez, P., Aguilar-Sopena, O., Alegre-Gomez, S., Ramirez-Munoz, R. & Roda-Navarro, P. Regulation of CD4+ T cell signaling and immunological synapse by protein tyrosine phosphatases: molecular mechanisms in autoimmunity. Front. Immunol. 10, 1447 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Brabletz, T., Kalluri, R., Nieto, M. A. & Weinberg, R. A. EMT in cancer. Nat. Rev. Cancer 18, 128–134 (2018).

    CAS  PubMed  Google Scholar 

  36. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    CAS  PubMed  Google Scholar 

  37. Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell. Biol. 20, 69–84 (2019).

    CAS  PubMed  Google Scholar 

  38. Zhao, F. et al. Stromal fibroblasts mediate anti-PD-1 resistance via MMP-9 and dictate TGFβ inhibitor sequencing in melanoma. Cancer Immunol. Res. 6, 1459–1471 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 211, 1503–1523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

    CAS  PubMed  Google Scholar 

  41. Cui, W. et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    CAS  PubMed  Google Scholar 

  42. Portella, G. et al. Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9, 393–404 (1998).

    CAS  PubMed  Google Scholar 

  43. Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  45. Ferrara, N. VEGF as a therapeutic target in cancer. Oncology 69 (Suppl. 3)), 11–16 (2005).

    CAS  PubMed  Google Scholar 

  46. Goel, S., Wong, A. H. & Jain, R. K. Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb. Perspect. Med. 2, a006486 (2012).

    PubMed  PubMed Central  Google Scholar 

  47. Johansson-Percival, A., He, B. & Ganss, R. Immunomodulation of tumor vessels: it takes two to tango. Trends Immunol. 39, 801–814 (2018).

    CAS  PubMed  Google Scholar 

  48. Hashimoto, M. et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu. Rev. Med. 69, 301–318 (2018).

    CAS  PubMed  Google Scholar 

  49. Chiossone, L., Dumas, P. Y., Vienne, M. & Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 18, 671–688 (2018).

    CAS  PubMed  Google Scholar 

  50. Fu, C. & Jiang, A. Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front. Immunol. 9, 3059 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8β+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    CAS  PubMed  Google Scholar 

  53. Engelhardt, J. J. et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21, 402–417 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Salmon, H. et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44, 924–938 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    CAS  PubMed  Google Scholar 

  56. Shalapour, S. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551, 340–345 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, Z. et al. Gr-1+CD11b+ cells are responsible for tumor promoting effect of TGF-β in breast cancer progression. Int. J. Cancer 131, 2584–2595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, M. L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl Acad. Sci. USA 102, 419–424 (2005).

    CAS  PubMed  Google Scholar 

  59. Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2008).

    CAS  PubMed  Google Scholar 

  61. Sanjabi, S., Oh, S. A. & Li, M. O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 9, a022236 (2017).

    PubMed  PubMed Central  Google Scholar 

  62. Liu, M., Li, S. & Li, M. O. TGF-β control of adaptive immune tolerance: a break from Treg cells. Bioessays 40, e1800063 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Donkor, M. K., Sarkar, A. & Li, M. O. TGF-β1 produced by activated CD4+ T cells antagonizes T cell surveillance of tumor development. Oncoimmunology 1, 162–171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cuende, J. et al. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci. Transl Med. 7, 284ra256 (2015).

    Google Scholar 

  65. Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, aav5183 (2019).

    Google Scholar 

  66. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. M. & Sporn, M. B. Transforming growth factor-β in human platelets. Identification of a major storage site, purification, and characterization. J. Biol. Chem. 258, 7155–7160 (1983).

    CAS  PubMed  Google Scholar 

  67. Cheifetz, S. et al. Heterodimeric transforming growth factor β. Biological properties and interaction with three types of cell surface receptors. J. Biol. Chem. 263, 10783–10789 (1988).

    CAS  PubMed  Google Scholar 

  68. Cui, W., Kemp, C. J., Duffie, E., Balmain, A. & Akhurst, R. J. Lack of transforming growth factor-β1 expression in benign skin tumors of p53null mice is prognostic for a high risk of malignant conversion. Cancer Res. 54, 5831–5836 (1994).

    CAS  PubMed  Google Scholar 

  69. Qin, X. et al. TGFβ3-mediated induction of periostin facilitates head and neck cancer growth and is associated with metastasis. Sci. Rep. 6, 20587 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hachim, M. Y., Hachim, I. Y., Dai, M., Ali, S. & Lebrun, J. J. Differential expression of TGFβ isoforms in breast cancer highlights different roles during breast cancer progression. Tumor Biol. 40, 1010428317748254 (2018).

    Google Scholar 

  71. Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumour immune landscape. Sci. Transl Med. 12, eaay8456 (2020).

    CAS  PubMed  Google Scholar 

  72. Stockis, J., Dedobbeleer, O. & Lucas, S. Role of GARP in the activation of latent TGF-β1. Mol. Biosyst. 13, 1925–1935 (2017).

    CAS  PubMed  Google Scholar 

  73. Metelli, A. et al. Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β. Sci. Transl Med. 12, eaay4860 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Roubin, R. et al. Structure and developmental expression of mouse Garp, a gene encoding a new leucine-rich repeat-containing protein. Int. J. Dev. Biol. 40, 545–555 (1996).

    CAS  PubMed  Google Scholar 

  75. Qin, Y. et al. A milieu molecule for TGF-β required for microglia function in the nervous system. Cell 174, 156–171 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, W., Qin, Y., Chapuy, B. & Lu, C. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS ONE 14, e0213482 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020).

    CAS  PubMed  Google Scholar 

  78. Purcell, J. W. et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res. 78, 4059–4072 (2018).

    CAS  PubMed  Google Scholar 

  79. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Henderson, N. C. & Sheppard, D. Integrin-mediated regulation of TGFβ in fibrosis. Biochim. Biophys. Acta. 1832, 891–896 (2013).

    CAS  PubMed  Google Scholar 

  81. Brown, N. F. & Marshall, J. F. Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers 11, 1221 (2019).

    CAS  PubMed Central  Google Scholar 

  82. Stockis, J. et al. Blocking immunosuppression by human Tregs in vivo with antibodies targeting integrin αvβ8. Proc. Natl Acad. Sci. USA 114, E10161–E10168 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Arnold, T. D. et al. Defective retinal vascular endothelial cell development as a consequence of impaired integrin αvβ8-mediated activation of transforming growth factor-β. J. Neurosci. 32, 1197–1206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Arnold, T. D. et al. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 141, 4489–4499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Takasaka, N. et al. Integrin αvβ8-expressing tumor cells evade host immunity by regulating TGF-β activation in immune cells. JCI Insight 3, e122591 (2018).

    PubMed Central  Google Scholar 

  86. Hata, A. & Chen, Y. G. TGF-β signaling from receptors to Smads. Cold Spring Harb. Perspect. Biol. 8, a022061 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Hill, C. S. Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079 (2016).

    PubMed  PubMed Central  Google Scholar 

  88. Heldin, C. H. & Moustakas, A. Signaling receptors for TGF-β family members. Cold Spring Harb. Perspect. Biol. 8, a022053 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Zhang, Y. E. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 9, a022129 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Budi, E. H., Muthusamy, B. P. & Derynck, R. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Sci. Signal. 8, ra96 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Wu, L. & Derynck, R. Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev. Cell 17, 35–48 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, J. et al. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein. Cell 5, 503–517 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, C., Xu, P., Lamouille, S., Xu, J. & Derynck, R. TACE-mediated ectodomain shedding of the type I TGF-β receptor downregulates TGF-β signaling. Mol. Cell 35, 26–36 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Oft, M., Akhurst, R. J. & Balmain, A. Metastasis is driven by sequential elevation of H-Ras and Smad2 levels. Nat. Cell Biol. 4, 487–494 (2002).

    CAS  PubMed  Google Scholar 

  96. Birchenall-Roberts, M. C. et al. Transcriptional regulation of the transforming growth factor β1 promoter by v-src gene products is mediated through the AP-1 complex. Mol. Cell Biol. 10, 4978–4983 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Thatikunta, P., Raj, G. V., Kundu, M., Khalili, K. & Amini, S. The transcription factor E2F-1 modulates TGF-β1 RNA expression in glial cells. Oncogene 14, 2959–2969 (1997).

    CAS  PubMed  Google Scholar 

  98. Cui, W. et al. Concerted action of TGF-β1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev. 9, 945–955 (1995).

    CAS  PubMed  Google Scholar 

  99. Mayer, I. A. & Arteaga, C. L. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med. 67, 11–28 (2016).

    CAS  PubMed  Google Scholar 

  100. Manning, B. D. & Toker, A. AKT/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Guo, L. et al. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumor Biol. 37, 115–125 (2016).

    CAS  Google Scholar 

  102. Lamouille, S., Subramanyam, D., Blelloch, R. & Derynck, R. Regulation of epithelial-mesenchymal and mesenchymal-epithelial transitions by microRNAs. Curr. Opin. Cell Biol. 25, 200–207 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Blahna, M. T. & Hata, A. Regulation of miRNA biogenesis as an integrated component of growth factor signaling. Curr. Opin. Cell Biol. 25, 233–240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Horiguchi, K. et al. TGF-β drives epithelial-mesenchymal transition through βEF1-mediated downregulation of ESRP. Oncogene 31, 3190–3201 (2012).

    CAS  PubMed  Google Scholar 

  105. Howley, B. V. & Howe, P. H. TGF-β signaling in cancer: post-transcriptional regulation of EMT via hnRNP E1. Cytokine 118, 19–26 (2019).

    CAS  PubMed  Google Scholar 

  106. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hubmacher, D. & Apte, S. S. The biology of the extracellular matrix: novel insights. Curr. Opin. Rheumatol. 25, 65–70 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure - an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    CAS  PubMed  Google Scholar 

  109. Massagué, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    PubMed  Google Scholar 

  110. Zhang, Y., Alexander, P. B. & Wang, X. F. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 9, a022145 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Seoane, J. & Gomis, R. R. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb. Perspect. Biol. 9, a022277 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Ikushima, H. & Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nat. Rev. Cancer 10, 415–424 (2010).

    CAS  PubMed  Google Scholar 

  113. Pino, M. S. et al. Epithelial to mesenchymal transition is impaired in colon cancer cells with microsatellite instability. Gastroenterology 138, 1406–1417 (2010).

    CAS  PubMed  Google Scholar 

  114. Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015).

    Google Scholar 

  115. Cho, S. Y. et al. Sporadic early-onset diffuse gastric cancers have high frequency of somatic CDH1 alterations, but low frequency of somatic RHOA mutations compared with late-onset cancers. Gastroenterology 153, 536–549.e26 (2017).

    CAS  PubMed  Google Scholar 

  116. Korkut, A. et al. A pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-β superfamily. Cell Syst. 7, 422–437.e7 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Blackford, A. et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin. Cancer Res. 15, 4674–4679 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Descargues, P. et al. IKKβ is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc. Natl Acad. Sci. USA 105, 2487–2492 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Levy, L. & Hill, C. S. Smad4 dependency defines two classes of transforming growth factor β target genes and distinguishes TGF-β-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol. Cell Biol. 25, 8108–8125 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, L. & Karin, M. Roles of tumor suppressors in regulating tumor-associated inflammation. Cell Death Differ. 21, 1677–1686 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Inman, G. J. et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine-associated mutational signature. Nat. Commun. 9, 3667 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Busch, S. et al. TGF-β receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 34, 27–38 (2015).

    CAS  PubMed  Google Scholar 

  123. Suriyamurthy, S., Baker, D., ten Dijke, P. & Iyengar, P. V. Epigenetic reprogramming of TGF-β signaling in breast cancer. Cancers 11, 726 (2019).

    CAS  PubMed Central  Google Scholar 

  124. Miyazawa, K. & Miyazono, K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb. Perspect. Biol. 9, a022095 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Tang, J., Gifford, C. C., Samarakoon, R. & Higgins, P. J. Deregulation of negative controls on TGF-β1 signaling in tumor progression. Cancers 10, 159 (2018).

    PubMed Central  Google Scholar 

  126. Kalluri, R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest. 119, 1417–1419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Derynck, R. & Weinberg, R. A. EMT and cancer: more than meets the eye. Dev. Cell 49, 313–316 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramachandran, A. et al. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. eLife 7, e31756 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Zeisberg, M. & Neilson, E. G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 119, 1429–1437 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Tam, W. L. & Weinberg, R. A. The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat. Med. 19, 1438–1449 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Derynck, R., Muthusamy, B. P. & Saeteurn, K. Y. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr. Opin. Cell Biol. 31, 56–66 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chaffer, C. L., San Juan, B. P., Lim, E. & Weinberg, R. A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35, 645–654 (2016).

    PubMed  Google Scholar 

  134. Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

    CAS  PubMed  Google Scholar 

  135. Jolly, M. K. et al. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol. Ther. 194, 161–184 (2019).

    CAS  PubMed  Google Scholar 

  136. Mishra, A. K., Campanale, J. P., Mondo, J. A. & Montell, D. J. Cell interactions in collective cell migration. Development 146, dev172056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Celia-Terrassa, T. & Jolly, M. K. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a036905 (2019).

  138. Aponte, P. M. & Caicedo, A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cell Int. 2017, 5619472 (2017).

    Google Scholar 

  139. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Scheel, C. & Weinberg, R. A. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin. Cancer Biol. 22, 396–403 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Dongre, A. et al. Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res. 77, 3982–3989 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Katsuno, Y. et al. Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci. Signal. 12, aau8544 (2019).

    Google Scholar 

  143. Soundararajan, R. et al. Targeting the interplay between epithelial-to-mesenchymal-transition and the immune system for effective immunotherapy. Cancers 11, 714 (2019).

    CAS  PubMed Central  Google Scholar 

  144. Terry, S. et al. New insights into the role of EMT in tumor immune escape. Mol. Oncol. 11, 824–846 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Dodagatta-Marri, E. et al. α-PD-1 therapy elevates Treg/Th balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer 7, 62 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jiang, Y. & Zhan, H. Communication between EMT and PD-L1 signaling: new insights into tumor immune evasion. Cancer Lett. 468, 72–81 (2020).

    CAS  PubMed  Google Scholar 

  147. Reddy, S. M., Carroll, E. & Nanda, R. Atezolizumab for the treatment of breast cancer. Expert. Rev. Anticancer Ther. 20, 151–158 (2020).

    CAS  PubMed  Google Scholar 

  148. Schmid, P. et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 21, 44–59 (2020).

    CAS  PubMed  Google Scholar 

  149. Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741–4751 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. van Staalduinen, J., Baker, D., ten Dijke, P. & van Dam, H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene 37, 6195–6211 (2018).

    PubMed  Google Scholar 

  151. Fischer, K. R. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527, 472–476 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Oshimori, N., Oristian, D. & Fuchs, E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 160, 963–976 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Nunes, T. et al. Targeting cancer stem cells to overcome chemoresistance. Int. J. Mol. Sci. 19, 4036 (2018).

    PubMed Central  Google Scholar 

  154. De Angelis, M. L., Francescangeli, F. & Zeuner, A. Breast cancer stem cells as drivers of tumor chemoresistance, dormancy and relapse: new challenges and therapeutic opportunities. Cancers 11, 1569 (2019).

    PubMed Central  Google Scholar 

  155. Steinbichler, T. B. et al. Therapy resistance mediated by cancer stem cells. Semin. Cancer Biol. 53, 156–167 (2018).

    CAS  PubMed  Google Scholar 

  156. Ewan, K. B. et al. Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Res. 62, 5627–5631 (2002).

    CAS  PubMed  Google Scholar 

  157. Glick, A. B., Weinberg, W. C., Wu, I. H., Quan, W. & Yuspa, S. H. Transforming growth factor β1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res. 56, 3645–3650 (1996).

    CAS  PubMed  Google Scholar 

  158. Comaills, V. et al. Genomic instability is induced by persistent proliferation of cells undergoing epithelial-to-mesenchymal transition. Cell Rep. 17, 2632–2647 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pal, D. et al. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells. elife 6, e21615 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Morvan, M. G. & Lanier, L. L. NK cells and cancer: you can teach innate cells new tricks. Nat. Rev. Cancer 16, 7–19 (2016).

    CAS  PubMed  Google Scholar 

  163. Trinh, T. L. et al. Immune evasion by TGFβ-induced miR-183 repression of MICA/B expression in human lung tumor cells. Oncoimmunology 8, e1557372 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. Nam, J. S. et al. An anti-transforming growth factor β antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res. 68, 3835–3843 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Friese, M. A. et al. RNA interference targeting transforming growth factor-β enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res. 64, 7596–7603 (2004).

    CAS  PubMed  Google Scholar 

  166. Lazarova, M. & Steinle, A. Impairment of NKG2D-mediated tumor immunity by TGF-β. Front. Immunol. 10, 2689 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Sadallah, S. et al. Platelet-derived ectosomes reduce NK cell function. J. Immunol. 197, 1663–1671 (2016).

    CAS  PubMed  Google Scholar 

  168. Naganuma, H. et al. Transforming growth factor-β inhibits interferon-Gamma secretion by lymphokine-activated killer cells stimulated with tumor cells. Neurol. Med. Chir. 36, 789–795 (1996).

    CAS  Google Scholar 

  169. Gonzalez, H., Hagerling, C. & Werb, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 32, 1276–1284 (2018).

    Google Scholar 

  170. Wong, C. E. et al. Inflammation and HRas signaling control epithelial-mesenchymal transition during skin tumor progression. Genes Dev. 27, 670–682 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    CAS  PubMed  Google Scholar 

  173. Hildenbrand, R. et al. Transforming growth factor-β stimulates urokinase expression in tumor-associated macrophages of the breast. Lab. Invest. 78, 59–71 (1998).

    CAS  PubMed  Google Scholar 

  174. Laoui, D. et al. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int. J. Dev. Biol. 55, 861–867 (2011).

    PubMed  Google Scholar 

  175. Standiford, T. J. et al. TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 30, 2475–2484 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β1. J. Immunol. 182, 240–249 (2009).

    CAS  PubMed  Google Scholar 

  178. Takeuchi, M., Kosiewicz, M. M., Alard, P. & Streilein, J. W. On the mechanisms by which transforming growth factor-β2 alters antigen-presenting abilities of macrophages on T cell activation. Eur. J. Immunol. 27, 1648–1656 (1997).

    CAS  PubMed  Google Scholar 

  179. Demidem, A., Taylor, J. R., Grammer, S. F. & Streilein, J. W. Comparison of effects of transforming growth factor-β and cyclosporin A on antigen-presenting cells of blood and epidermis. J. Invest. Dermatol. 96, 401–407 (1991).

    CAS  PubMed  Google Scholar 

  180. Seeger, P., Musso, T. & Sozzani, S. The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Rev. 26, 647–657 (2015).

    CAS  PubMed  Google Scholar 

  181. Siegert, A., Denkert, C., Leclere, A. & Hauptmann, S. Suppression of the reactive oxygen intermediates production of human macrophages by colorectal adenocarcinoma cell lines. Immunology 98, 551–556 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Nelson, B. J., Ralph, P., Green, S. J. & Nacy, C. A. Differential susceptibility of activated macrophage cytotoxic effector reactions to the suppressive effects of transforming growth factor-β1. J. Immunol. 146, 1849–1857 (1991).

    CAS  PubMed  Google Scholar 

  183. Yang, L. et al. Abrogation of TGF β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Roberts, E. W. et al. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kobie, J. J. et al. Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63, 1860–1864 (2003).

    CAS  PubMed  Google Scholar 

  187. Sato, K. et al. TGF-β1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J. Immunol. 164, 2285–2295 (2000).

    CAS  PubMed  Google Scholar 

  188. Gujar, R. & Sen, P. Transforming growth factor-β1 impairs lymph node homing of dendritic cells by downregulating C-type lectin receptor-2 expression. Cytokine 110, 39–43 (2018).

    CAS  PubMed  Google Scholar 

  189. Fenton, T. M. et al. Inflammatory cues enhance TGFβ activation by distinct subsets of human intestinal dendritic cells via integrin αvβ8. Mucosal Immunol. 10, 624–634 (2017).

    CAS  PubMed  Google Scholar 

  190. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wu, J. & Lanier, L. L. Natural killer cells and cancer. Adv. Cancer Res. 90, 127–156 (2003).

    CAS  PubMed  Google Scholar 

  192. Lugli, E., Galletti, G., Boi, S. K. & Youngblood, B. A. Stem, effector, and hybrid states of memory CD8+ T cells. Trends Immunol. 41, 17–28 (2020).

    CAS  PubMed  Google Scholar 

  193. Zhou, J., Dudley, M. E., Rosenberg, S. A. & Robbins, P. F. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J. Immunother. 28, 53–62 (2005).

    PubMed  PubMed Central  Google Scholar 

  194. Gill, S. & June, C. H. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol. Rev. 263, 68–89 (2015).

    CAS  PubMed  Google Scholar 

  195. Ahmed, N. et al. Regression of experimental medulloblastoma following transfer of HER2-specific T cells. Cancer Res. 67, 5957–5964 (2007).

    CAS  PubMed  Google Scholar 

  196. June, C. H. & Levine, B. L. T cell engineering as therapy for cancer and HIV: our synthetic future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140374 (2015).

    PubMed  PubMed Central  Google Scholar 

  197. Grosser, R., Cherkassky, L., Chintala, N. & Adusumilli, P. S. Combination immunotherapy with CAR-T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36, 471–482 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Kulkarni, A. B. et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl Acad. Sci. USA 90, 770–774 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Diebold, R. J. et al. Early-onset multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte mediated. Proc. Natl Acad. Sci. USA 92, 12215–12219 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat. Med. 7, 1118–1122 (2001).

    CAS  PubMed  Google Scholar 

  204. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Novitskiy, S. V. et al. Deletion of TGF-β signaling in myeloid cells enhances their anti-tumorigenic properties. J. Leukoc. Biol. 92, 641–651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Park, I. K., Shultz, L. D., Letterio, J. J. & Gorham, J. D. TGF-β1 inhibits T-bet induction by IFN-γ in murine CD4+ T cells through the protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1. J. Immunol. 175, 5666–5674 (2005).

    CAS  PubMed  Google Scholar 

  207. Choudhry, M. A., Sir, O. & Sayeed, M. M. TGF-β abrogates TCR-mediated signaling by upregulating tyrosine phosphatases in T cells. Shock 15, 193–199 (2001).

    CAS  PubMed  Google Scholar 

  208. Das, L. & Levine, A. D. TGF-β inhibits IL-2 production and promotes cell cycle arrest in TCR-activated effector/memory T cells in the presence of sustained TCR signal transduction. J. Immunol. 180, 1490–1498 (2008).

    CAS  PubMed  Google Scholar 

  209. Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    CAS  PubMed  Google Scholar 

  210. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    CAS  PubMed  Google Scholar 

  211. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Sci. Transl Med. 6, 261ra151 (2014).

    PubMed  PubMed Central  Google Scholar 

  212. Wang, D. et al. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity. JCI Insight 3, 99048 (2018).

    PubMed  Google Scholar 

  213. Yang, Y. et al. TCR engagement negatively affects CD8 but not CD4 CAR T cell expansion and leukemic clearance. Sci. Transl Med. 9, eaag1209 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. Bollard, C. M. et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J. Clin. Oncol. 36, 1128–1139 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Corthay, A. et al. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22, 371–383 (2005).

    CAS  PubMed  Google Scholar 

  217. Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Murphy, K. A. & Griffith, T. S. CD8 T cell-independent antitumor response and its potential for treatment of malignant gliomas. Cancers 8, 71 (2016).

    PubMed Central  Google Scholar 

  219. Marie, J. C., Liggitt, D. & Rudensky, A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    CAS  PubMed  Google Scholar 

  220. Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  221. Donkor, M. K. et al. T cell surveillance of oncogene-induced prostate cancer is impeded by T cell-derived TGF-β1 cytokine. Immunity 35, 123–134 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Moreno Ayala, M. A., Li, Z. & DuPage, M. Treg programming and therapeutic reprogramming in cancer. Immunology 157, 198–209 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Ralainirina, N. et al. Control of NK cell functions by CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 81, 144–153 (2007).

    CAS  PubMed  Google Scholar 

  224. Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Cremasco, V. et al. FAP delineates heterogeneous and functionally divergent stromal cells in immune-excluded breast tumors. Cancer Immunol. Res. 6, 1472–1485 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Boesch, M. et al. Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. Oncoimmunology 7, e1414129 (2018).

    PubMed  PubMed Central  Google Scholar 

  227. Costa, A. et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479 (2018).

    CAS  PubMed  Google Scholar 

  228. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–584 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Calon, A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 47, 320–329 (2015).

    CAS  PubMed  Google Scholar 

  232. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 20212–20217 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Fearon, D. T. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol. Res. 2, 187–193 (2014).

    CAS  PubMed  Google Scholar 

  234. Lakins, M. A., Ghorani, E., Munir, H., Martins, C. P. & Shields, J. D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Commun. 9, 948 (2018).

    PubMed  PubMed Central  Google Scholar 

  235. Hinz, B. Myofibroblasts. Exp. Eye Res. 142, 56–70 (2016).

    CAS  PubMed  Google Scholar 

  236. Calon, A., Tauriello, D. V. & Batlle, E. TGF-β in CAF-mediated tumor growth and metastasis. Semin. Cancer Biol. 25, 15–22 (2014).

    CAS  PubMed  Google Scholar 

  237. LeBleu, V. S. & Kalluri, R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis. Model. Mech. 11, dmm029447 (2018).

    PubMed  PubMed Central  Google Scholar 

  238. Park, J. E. et al. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem. 274, 36505–36512 (1999).

    CAS  PubMed  Google Scholar 

  239. Yin, M. et al. TGF-β signaling, activated stromal fibroblasts, and cysteine cathepsins B and L drive the invasive growth of human melanoma cells. Am. J. Pathol. 181, 2202–2216 (2012).

    CAS  PubMed  Google Scholar 

  240. Barker, H. E., Bird, D., Lang, G. & Erler, J. T. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Mol. Cancer Res. 11, 1425–1436 (2013).

    CAS  PubMed  Google Scholar 

  241. Wei, Y. et al. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J. Clin. Invest. 127, 3675–3688 (2017).

    PubMed  PubMed Central  Google Scholar 

  242. Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241–254 (2005).

    CAS  PubMed  Google Scholar 

  243. Karagiannis, G. S. et al. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol. Cancer Res. 10, 1403–1418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Monteran, L. & Erez, N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 10, 1835 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Ozdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Fereres, S., Hatori, R., Hatori, M. & Kornberg, T. B. Cytoneme-mediated signaling essential for tumorigenesis. PLoS Genet. 15, e1008415 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Kornberg, T. B. Distributing signaling proteins in space and time: the province of cytonemes. Curr. Opin. Genet. Dev. 45, 22–27 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Bhowmick, N. A. et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303, 848–851 (2004).

    CAS  PubMed  Google Scholar 

  249. Kim, S. J. et al. Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol. Cell Biol. 10, 1492–1497 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Flanders, K. C. et al. Quantitation of TGF-β proteins in mouse tissues shows reciprocal changes in TGF-β1 and TGF-β3 in normal vs neoplastic mammary epithelium. Oncotarget 7, 38164–38179 (2016).

    PubMed  PubMed Central  Google Scholar 

  251. Acharya, P. S. et al. Fibroblast migration is mediated by CD44-dependent TGF β activation. J. Cell Sci. 121, 1393–1402 (2008).

    CAS  PubMed  Google Scholar 

  252. Postlethwaite, A. E., Keski-Oja, J., Moses, H. L. & Kang, A. H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor β. J. Exp. Med. 165, 251–256 (1987).

    CAS  PubMed  Google Scholar 

  253. Huang, H. et al. Targeting TGFβR2-mutant tumors exposes vulnerabilities to stromal TGFβ blockade in pancreatic cancer. EMBO Mol. Med. 11, e10515 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    PubMed  Google Scholar 

  255. Foster, D. S., Jones, R. E., Ransom, R. C., Longaker, M. T. & Norton, J. A. The evolving relationship of wound healing and tumor stroma. JCI Insight 3, 99911 (2018).

    PubMed  Google Scholar 

  256. Alba-Castellon, L. et al. Snail1-dependent activation of cancer-associated fibroblast controls epithelial tumor cell invasion and metastasis. Cancer Res. 76, 6205–6217 (2016).

    CAS  PubMed  Google Scholar 

  257. Baulida, J. Epithelial-to-mesenchymal transition transcription factors in cancer-associated fibroblasts. Mol. Oncol. 11, 847–859 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Yu, W. et al. The endothelial-mesenchymal transition (EndMT) and tissue regeneration. Curr. Stem Cell Res. Ther. 9, 196–204 (2014).

    PubMed  Google Scholar 

  260. Qi, W. et al. TGF-β1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am. J. Physiol. Renal. Physiol. 290, F703–709 (2006).

    CAS  PubMed  Google Scholar 

  261. Shi, J. et al. Targeted blockade of TGF-β and IL-6/JAK2/STAT3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts. Sci. Rep. 7, 8660 (2017).

    PubMed  PubMed Central  Google Scholar 

  262. Matsumura, T. et al. Regulation of transforming growth factor-β-dependent cyclooxygenase-2 expression in fibroblasts. J. Biol. Chem. 284, 35861–35871 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Yu, P. F. et al. Downregulation of CXCL12 in mesenchymal stromal cells by TGFβ promotes breast cancer metastasis. Oncogene 36, 840–849 (2017).

    CAS  PubMed  Google Scholar 

  264. Ahirwar, D. K. et al. Fibroblast-derived CXCL12 promotes breast cancer metastasis by facilitating tumor cell intravasation. Oncogene 37, 4428–4442 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Pertovaara, L. et al. Vascular endothelial growth factor is induced in response to transforming growth factor-β in fibroblastic and epithelial cells. J. Biol. Chem. 269, 6271–6274 (1994).

    CAS  PubMed  Google Scholar 

  266. Folkman, J., Watson, K., Ingber, D. & Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58–61 (1989).

    CAS  PubMed  Google Scholar 

  267. Dickson, M.C. et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121, 1845–854 (1995).

    CAS  PubMed  Google Scholar 

  268. Goumans, M. J. et al. Activin receptor- like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    CAS  PubMed  Google Scholar 

  269. Larrivee, B. et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev. Cell 22, 489–500 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Madri, J. A., Pratt, B. M. & Tucker, A. M. Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106, 1375–1384 (1988).

    CAS  PubMed  Google Scholar 

  271. Hayashi, T. et al. Transforming growth factor β receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin. Cancer Res. 10, 7540–7546 (2004).

    CAS  PubMed  Google Scholar 

  272. Batlle, R. et al. Regulation of tumor angiogenesis and mesenchymal-endothelial transition by p38α through TGF-β and JNK signaling. Nat. Commun. 10, 3071 (2019).

    PubMed  PubMed Central  Google Scholar 

  273. Yang, E. Y. & Moses, H. L. Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 111, 731–741 (1990).

    CAS  PubMed  Google Scholar 

  274. Lin, H. et al. High immunohistochemical expression of TGF-β1 predicts a poor prognosis in cervical cancer patients who harbor enriched endoglin microvessel density. Int. J. Gynecol. Pathol. 31, 482–489 (2012).

    CAS  PubMed  Google Scholar 

  275. Li, G. C. et al. Mesenchymal stem cells promote tumor angiogenesis via the action of transforming growth factor β1. Oncol. Lett. 11, 1089–1094 (2016).

    CAS  PubMed  Google Scholar 

  276. Goumans, M. J. & ten Dijke, P. TGF-β signaling in control of cardiovascular function. Cold Spring. Harb. Perspect. Biol. 10, a022210 (2018).

    PubMed  PubMed Central  Google Scholar 

  277. Sato, Y., Tsuboi, R., Lyons, R., Moses, H. & Rifkin, D. B. Characterization of the activation of latent TGF-β by co-cultures of endothelial cells and pericytes or smooth muscle cells: a self-regulating system. J. Cell Biol. 111, 757–763 (1990).

    CAS  PubMed  Google Scholar 

  278. Walshe, T. E. et al. TGF-β is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE 4, e5149 (2009).

    PubMed  PubMed Central  Google Scholar 

  279. He, S., Li, M., Ma, X., Lin, J. & Li, D. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 30, 2621–2630 (2010).

    CAS  PubMed  Google Scholar 

  280. Chen, P. Y. et al. Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat. Metab. 1, 912–926 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Scavelli, C., Vacca, A., Di Pietro, G., Dammacco, F. & Ribatti, D. Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia 18, 1054–1058 (2004).

    CAS  PubMed  Google Scholar 

  282. Stacker, S. A., Achen, M. G., Jussila, L., Baldwin, M. E. & Alitalo, K. Lymphangiogenesis and cancer metastasis. Nat. Rev. Cancer 2, 573–583 (2002).

    CAS  PubMed  Google Scholar 

  283. Niessen, K., Zhang, G., Ridgway, J. B., Chen, H. & Yan, M. ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115, 1654–1661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat. Cell Biol. 3, 400–408 (2001).

    CAS  PubMed  Google Scholar 

  285. Coffey, R. J. Jr. et al. Growth modulation of mouse keratinocytes by transforming growth factors. Cancer Res. 48, 1596–1602 (1988).

    CAS  PubMed  Google Scholar 

  286. Pierce, D. F. Jr. et al. Mammary tumor suppression by transforming growth factor β1 transgene expression. Proc. Natl Acad. Sci. USA 92, 4254–4258 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Arteaga, C. L. et al. Growth stimulation of human breast cancer cells with anti-transforming growth factor β antibodies: evidence for negative autocrine regulation by transforming growth factor β. Cell Growth Differ. 1, 367–374 (1990).

    CAS  PubMed  Google Scholar 

  288. Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massagué, J. Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation. Cell 62, 175–185 (1990).

    CAS  PubMed  Google Scholar 

  289. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J. M. & Massagué, J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-β. Science 260, 536–539 (1993).

    CAS  PubMed  Google Scholar 

  290. Akhurst, R. J. TGF-β antagonists: why suppress a tumor suppressor? J. Clin. Invest. 109, 1533–1536 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Arteaga, C. L. et al. Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. J. Clin. Invest. 92, 2569–2576 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Igarashi, J. et al. Preclinical study of novel gene silencer pyrrole-imidazole polyamide targeting human TGF-β1 promoter for hypertrophic scars in a common marmoset primate model. PLoS ONE 10, e0125295 (2015).

    PubMed  PubMed Central  Google Scholar 

  293. Jachimczak, P. et al. The effect of transforming growth factor-β2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J. Neurosurg. 78, 944–951 (1993).

    CAS  PubMed  Google Scholar 

  294. Brandes, A. A. et al. A phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro. Oncol. 18, 1146–1156 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Yingling, J. M. et al. Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget 9, 6659–6677 (2018).

    PubMed  Google Scholar 

  296. Inman, G. J. et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62, 65–74 (2002).

    CAS  PubMed  Google Scholar 

  297. Fu, K. et al. SM16, an orally active TGF-β type I receptor inhibitor prevents myofibroblast induction and vascular fibrosis in the rat carotid injury model. Arterioscler. Thromb. Vasc. Biol. 28, 665–671 (2008).

    CAS  PubMed  Google Scholar 

  298. Budi, E. H., Mamai, O., Hoffman, S., Akhurst, R. J. & Derynck, R. Enhanced TGF-β signaling contributes to the insulin-induced angiogenic responses of endothelial cells. iScience 11, 474–491 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  299. Hamidi, A. et al. TGF-β promotes PI3K-AKT signaling and prostate cancer cell migration through the TRAF6-mediated ubiquitylation of p85α. Sci. Signal. 10, eaal4186 (2017).

    PubMed  Google Scholar 

  300. Jung, S. Y. et al. Pharmacokinetic characteristics of vactosertib, a new activin receptor-like kinase 5 inhibitor, in patients with advanced solid tumors in a first-in-human phase 1 study. Invest. New Drugs 38, 812–820 (2020).

    CAS  PubMed  Google Scholar 

  301. Jung, S. Y. et al. Population pharmacokinetics of vactosertib, a new TGF-β receptor type I inhibitor, in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 85, 173–183 (2019).

    PubMed  Google Scholar 

  302. Morris, J. C. et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-β (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 9, e90353 (2014).

    PubMed  PubMed Central  Google Scholar 

  303. Bedinger, D. et al. Development and characterization of human monoclonal antibodies that neutralize multiple TGFβ isoforms. MAbs 8, 389–404 (2016).

    CAS  PubMed  Google Scholar 

  304. Laverty, H. G., Wakefield, L. M., Occleston, N. L., O’Kane, S. & Ferguson, M. W. TGF-β3 and cancer: a review. Cytokine Growth Factor Rev. 20, 305–317 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Cohn, A. et al. A phase I dose-escalation study to a predefined dose of a transforming growth factor-β1 monoclonal antibody (TβM1) in patients with metastatic cancer. Int. J. Oncol. 45, 2221–2231 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Zhong, Z. et al. Anti-transforming growth factor β receptor II antibody has therapeutic efficacy against primary tumor growth and metastasis through multieffects on cancer, stroma, and immune cells. Clin. Cancer Res. 16, 1191–1205 (2010).

    CAS  PubMed  Google Scholar 

  307. Tolcher, A. W. et al. A phase 1 study of anti-TGFβ receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 79, 673–680 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  308. Yang, Y. A. et al. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J. Clin. Invest. 109, 1607–1615 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Hinck, A. P. & O’Connor-McCourt, M. D. Structures of TGF-β receptor complexes: implications for function and therapeutic intervention using ligand traps. Curr. Pharm. Biotechnol. 12, 2081–2098 (2011).

    CAS  PubMed  Google Scholar 

  310. Lan, Y. et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci. Transl Med. 10, eaan5488 (2018).

    PubMed  Google Scholar 

  311. Ravi, R. et al. Bifunctional immune checkpoint-targeted antibody-ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun. 9, 741 (2018).

    PubMed  PubMed Central  Google Scholar 

  312. Qin, T. et al. A novel highly potent trivalent TGF-β receptor trap inhibits early-stage tumorigenesis and tumor cell invasion in murine Pten-deficient prostate glands. Oncotarget 7, 86087–86102 (2016).

    PubMed  PubMed Central  Google Scholar 

  313. Zwaagstra, J. C. et al. Engineering and therapeutic application of single-chain bivalent TGF-β family traps. Mol. Cancer Ther. 11, 1477–1487 (2012).

    CAS  PubMed  Google Scholar 

  314. Knudson, K. M. et al. M7824, a novel bifunctional anti-PD-L1/TGFβ trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 7, e1426519 (2018).

    PubMed  PubMed Central  Google Scholar 

  315. Park, C. C., Zhang, H. J., Yao, E. S., Park, C. J. & Bissell, M. J. β1 integrin inhibition dramatically enhances radiotherapy efficacy in human breast cancer xenografts. Cancer Res. 68, 4398–4405 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Park, C. C. et al. β1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 66, 1526–1535 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Van Aarsen, L. A. et al. Antibody-mediated blockade of integrin αvβ6 inhibits tumor progression in vivo by a transforming growth factor-β-regulated mechanism. Cancer Res. 68, 561–570 (2008).

    PubMed  Google Scholar 

  318. Miller, L. M., Pritchard, J. M., MacDonald, S. J. F., Jamieson, C. & Watson, A. J. B. Emergence of small-molecule non-RGD-mimetic inhibitors for RGD Integrins. J. Med. Chem. 60, 3241–3251 (2017).

    CAS  PubMed  Google Scholar 

  319. Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl Med. 7, 288ra279 (2015).

    Google Scholar 

  320. Schaub, J. et al. Targeted disruption of TGF-β activation by an ΑVβ1 integrin inhibitor significantly reduces liver fibrosis in CCl4 mice and human NASH liver slices. J. Hepatol. 70, e57–e58 (2019).

    Google Scholar 

  321. Dodagatta-Marri, E. et al. Integrin avβ8 on T cells is responsible for suppression of anti-tumor immunity in syngeneic models and is a promising target for tumor immunotherapy. Preprint at bioRxiv https://doi.org/10.1101/2020.05.14.084913 (2020).

    Article  Google Scholar 

  322. Liénart, S. et al. Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells. Science 362, 952–956 (2018).

    PubMed  Google Scholar 

  323. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  324. Hodi, F. S. et al. Immune-modified response evaluation criteria in solid tumors (imRECIST): Refining guidelines to assess the clinical benefit of cancer immunotherapy. J. Clin. Oncol. 36, 850–858 (2018).

    PubMed  Google Scholar 

  325. Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    PubMed  PubMed Central  Google Scholar 

  326. Subramanian, G. et al. Targeting endogenous transforming growth factor β receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1. Cancer Res. 64, 5200–5211 (2004).

    CAS  PubMed  Google Scholar 

  327. Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 11, 790–811 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Muraoka, R. S. et al. Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J. Clin. Invest. 109, 1551–1559 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Rodon, J. et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-β receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Invest. New Drugs 33, 357–370 (2015).

    CAS  PubMed  Google Scholar 

  330. Fujiwara, Y. et al. Phase 1 study of galunisertib, a TGF-β receptor I kinase inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother. Pharmacol. 76, 1143–1152 (2015).

    CAS  PubMed  Google Scholar 

  331. Herbertz, S. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-β signaling pathway. Drug Des. Devel. Ther. 9, 4479–4499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Biswas, T., Gu, X., Yang, J., Ellies, L. G. & Sun, L. Z. Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model. Cancer Lett. 346, 129–138 (2014).

    CAS  PubMed  Google Scholar 

  333. Yang, Y. et al. The outcome of TGFβ antagonism in metastatic breast cancer models in vivo reflects a complex balance between tumor-suppressive and proprogression activities of TGFβ. Clin. Cancer Res. 26, 643–656 (2020).

    PubMed  Google Scholar 

  334. Bragado, P. et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat. Cell Biol. 15, 1351–1361 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Yumoto, K. et al. Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Sci. Rep. 6, 36520 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Jiang, J. et al. PRRX1 regulates cellular phenotype plasticity and dormancy of head and neck squamous cell carcinoma through miR-642b-3p. Neoplasia 21, 216–229 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Connolly, E. C. et al. Outgrowth of drug-resistant carcinomas expressing markers of tumor aggression after long term TβRI/II kinase inhibition with LY2109761. Cancer Res. 71, 1–11 (2011).

    Google Scholar 

  338. Ciardiello, D. et al. Inhibition of TGFβ in colorectal cancer cells is associated with compensatory activation of AXL and p38 MAPK signaling pathways [abstract]. Cancer Res. 79 (Suppl. 13), 2627 (2019).

    Google Scholar 

  339. Lacouture, M. E. et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol. Immunother. 64, 437–446 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Strauss, J. et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFβ, in advanced solid tumors. Clin. Cancer Res. 24, 1287–1295 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    CAS  PubMed  Google Scholar 

  342. Kovacs, R. J. et al. Cardiac safety of TGF-β receptor I kinase inhibitor LY2157299 monohydrate in cancer patients in a first-in-human dose study. Cardiovasc. Toxicol. 15, 309–323 (2015).

    CAS  PubMed  Google Scholar 

  343. Mitra, M. S. et al. A potent pan-TGFβ neutralizing monoclonal antibody elicits cardiovascular toxicity in mice and Cynomolgus monkeys. Toxicol. Sci. 175, 24–34 (2020).

    CAS  PubMed  Google Scholar 

  344. Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-β1. Mol. Endocrinol. 10, 1077–1083 (1996).

    CAS  PubMed  Google Scholar 

  345. Martin, M. et al. Coactivation of AP-1 activity and TGF-β1 gene expression in the stress response of normal skin cells to ionizing radiation. Oncogene 15, 981–989 (1997).

    CAS  PubMed  Google Scholar 

  346. Barcellos-Hoff, M. H. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 53, 3880–3886 (1993).

    CAS  PubMed  Google Scholar 

  347. Vanpouille-Box, C. et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75, 2232–2242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Formenti, S. C. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast Cancer. Clin. Cancer Res. 24, 2493–2504 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  349. Bhola, N. E. et al. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 123, 1348–1358 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  350. Capper, D. et al. Biomarker and histopathology evaluation of patients with recurrent glioblastoma treated with Galunisertib, Lomustine, or the combination of Galunisertib and Lomustine. Int. J. Mol. Sci. 18, 995 (2017).

    PubMed Central  Google Scholar 

  351. Ungerleider, N., Han, C., Zhang, J., Yao, L. & Wu, T. TGFβ signaling confers sorafenib resistance via induction of multiple RTKs in hepatocellular carcinoma cells. Mol. Carcinog. 56, 1302–1311 (2017).

    CAS  PubMed  Google Scholar 

  352. Kelley, R. K. et al. A phase 2 study of Galunisertib (TGF-β1 receptor type I inhibitor) and Sorafenib in patients with advanced hepatocellular carcinoma. Clin. Transl Gastroenterol. 10, e00056 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  353. Melisi, D. et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 119, 1208–1214 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  354. Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).

    PubMed  PubMed Central  Google Scholar 

  355. Jiao, S. et al. Differences in tumor microenvironment dictate T helper lineage polarization and response to immune checkpoint therapy. Cell 179, 1177–1190 (2019).

    CAS  PubMed  Google Scholar 

  356. Noman, M. Z. et al. The immune checkpoint ligand PD-L1 is upregulated in EMT-activated human breast cancer cells by a mechanism involving ZEB-1 and miR-200. Oncoimmunology 6, e1263412 (2017).

    PubMed  PubMed Central  Google Scholar 

  357. Lequeux, A. et al. Impact of hypoxic tumor microenvironment and tumor cell plasticity on the expression of immune checkpoints. Cancer Lett. 458, 13–20 (2019).

    CAS  PubMed  Google Scholar 

  358. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  359. Sharma, A. et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T Cells (Tregs) in human cancers. Clin. Cancer Res. 25, 1233–1238 (2019).

    CAS  PubMed  Google Scholar 

  360. Wei, S. C. et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms partially distinct from monotherapies. Proc. Natl Acad. Sci. USA 116, 22699–22709 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  361. Larkin, J. et al. Five-year survival with combined Nivolumab and Ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    CAS  PubMed  Google Scholar 

  362. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  363. Akhurst, R. J. & Padgett, R. W. Matters of context guide future research in TGFβ superfamily signaling. Sci. Signal. 8, re10 (2015).

    PubMed  Google Scholar 

  364. Funaki, S. et al. Chemotherapy enhances programmed cell death 1/ligand 1 expression via TGF-β induced epithelial mesenchymal transition in non-small cell lung cancer. Oncol. Rep. 38, 2277–2284 (2017).

    CAS  PubMed  Google Scholar 

  365. Park, B. V. et al. TGFβ1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov. 6, 1366–1381 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  366. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

    PubMed  PubMed Central  Google Scholar 

  367. Jochems, C. et al. Analyses of functions of an anti-PD-L1/TGFβR2 bispecific fusion protein (M7824). Oncotarget 8, 75217–75231 (2017).

    PubMed  PubMed Central  Google Scholar 

  368. David, J. M. et al. A novel bifunctional anti-PD-L1/TGF-β trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells. Oncoimmunology 6, e1349589 (2017).

    PubMed  PubMed Central  Google Scholar 

  369. Wang, D. et al. Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep. 23, 3262–3274 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  370. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011).

    CAS  PubMed  Google Scholar 

  371. Nemunaitis, J. et al. Phase II trial of Belagenpumatucel-L, a TGF-β2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther. 16, 620–624 (2009).

    CAS  PubMed  Google Scholar 

  372. Giaccone, G. et al. A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur. J. Cancer 51, 2321–2329 (2015).

    CAS  PubMed  Google Scholar 

  373. Kim, S. et al. Systemic blockade of transforming growth factor-β signaling augments the efficacy of immunogene therapy. Cancer Res. 68, 10247–10256 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  374. Muul, L. M., Director, E. P., Hyatt, C. L. & Rosenberg, S. A. Large scale production of human lymphokine activated killer cells for use in adoptive immunotherapy. J. Immunol. Methods 88, 265–275 (1986).

    CAS  PubMed  Google Scholar 

  375. Wallace, A. et al. Transforming growth factor-β receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res. 14, 3966–3974 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Hwu, P. & Rosenberg, S. A. The genetic modification of T cells for cancer therapy: an overview of laboratory and clinical trials. Cancer Detect. Prev. 18, 43–50 (1994).

    CAS  PubMed  Google Scholar 

  377. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  378. Foster, A. E. et al. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-β receptor. J. Immunother. 31, 500–505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  379. Chang, Z. L. et al. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Chem. Biol. 14, 317–324 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  380. Hou, A. J., Chang, Z. L., Lorenzini, M. H., Zah, E. & Chen, Y. Y. TGF-β-responsive CAR-T cells promote anti-tumor immune function. Bioeng. Transl Med. 3, 75–86 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  381. Huang, S. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell 151, 937–950 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  382. Panda, M. & Biswal, B. K. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol. Biol. Rep. 46, 5645–5659 (2019).

    CAS  PubMed  Google Scholar 

  383. Gulley, J. L. et al. Role of antigen spread and distinctive characteristics of immunotherapy in cancer treatment. J. Natl Cancer Inst. 109, djw261 (2017).

    PubMed Central  Google Scholar 

  384. Autio, K. A., Boni, V., Humphrey, R. W. & Naing, A. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin. Cancer Res. 26, 984–989 (2020).

    CAS  PubMed  Google Scholar 

  385. Hamid, O., Hoffner, B., Gasal, E., Hong, J. & Carvajal, R. D. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol. Immunother. 66, 1249–1264 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  386. Kim, S. K. et al. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling. J. Biol. Chem. 292, 7173–7188 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  387. Chanier, T. & Chames, P. Nanobody engineering: toward next generation immunotherapies and immunoimaging of cancer. Antibodies 8, 13 (2019).

    CAS  PubMed Central  Google Scholar 

  388. Cancer Genome Atlas Research Network. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203 (2017).

    Google Scholar 

  389. Lechner, A. et al. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget 8, 44418–44433 (2017).

    PubMed  PubMed Central  Google Scholar 

  390. Van Allen, E. M. et al. Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation. Cancer Immunol. Res. 3, 855–863 (2015).

    PubMed  PubMed Central  Google Scholar 

  391. Trefny, M. P. et al. A variant of a killer cell immunoglobulin-like receptor is associated with resistance to PD-1 blockade in lung cancer. Clin. Cancer Res. 25, 3026–3034 (2019).

    CAS  PubMed  Google Scholar 

  392. Valle, L. et al. Germline allele-specific expression of TGFBR1 confers an increased risk of colorectal cancer. Science 321, 1361–1365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  393. Kawasaki, K. et al. Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans. Proc. Natl Acad. Sci. USA 111, 7723–7728 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  394. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS  PubMed  Google Scholar 

  395. Jin, Y. et al. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J. Thorac. Oncol. 14, 1378–1389 (2019).

    CAS  PubMed  Google Scholar 

  396. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  397. Pasche, B. et al. TGFBR1*6A and cancer: a meta-analysis of 12 case-control studies. J. Clin. Oncol. 22, 756–758 (2004).

    PubMed  Google Scholar 

  398. Izad, M. et al. Cytokines genes polymorphisms and risk of multiple sclerosis. Am. J. Med. Sci. 339, 327–331 (2010).

    PubMed  Google Scholar 

  399. Bonyadi, M. et al. Mapping of a major genetic modifier of embryonic lethality in TGF β1 knockout mice. Nat. Genet. 15, 207–211 (1997).

    CAS  PubMed  Google Scholar 

  400. Benzinou, M. et al. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat. Commun. 3, 616 (2012).

    PubMed  Google Scholar 

  401. Freimuth, J. et al. Epistatic interactions between Tgfb1 and genetic loci, Tgfbm2 and Tgfbm3, determine susceptibility to an asthmatic stimulus. Proc. Natl Acad. Sci. USA 109, 18042–18047 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  402. Engle, S. J. et al. Elimination of colon cancer in germ-free transforming growth factor β1-deficient mice. Cancer Res. 62, 6362–6366 (2002).

    CAS  PubMed  Google Scholar 

  403. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    CAS  PubMed  Google Scholar 

  404. Stevenson, J. P. et al. Immunological effects of the TGFβ-blocking antibody GC1008 in malignant pleural mesothelioma patients. Oncoimmunology 2, e26218 (2013).

    PubMed  PubMed Central  Google Scholar 

  405. Formenti, S. C. et al. Baseline T cell dysfunction by single cell network profiling in metastatic breast cancer patients. J. Immunother. Cancer 7, 177 (2019).

    PubMed  PubMed Central  Google Scholar 

  406. Melisi, D. et al. TGFβ receptor inhibitor galunisertib is linked to inflammation- and remodeling-related proteins in patients with pancreatic cancer. Cancer Chemother. Pharmacol. 83, 975–991 (2019).

    CAS  PubMed  Google Scholar 

  407. Gueorguieva, I. et al. Population pharmacokinetics and exposure-overall survival analysis of the transforming growth factor-β inhibitor galunisertib in patients with pancreatic cancer. Cancer Chemother. Pharmacol. 84, 1003–1015 (2019).

    CAS  PubMed  Google Scholar 

  408. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    CAS  PubMed  Google Scholar 

  409. Ikeda, M. et al. A phase 1b study of transforming growth factor-β receptor I inhibitor galunisertib in combination with sorafenib in Japanese patients with unresectable hepatocellular carcinoma. Invest. New Drugs 37, 118–126 (2019).

    CAS  PubMed  Google Scholar 

  410. Ikeda, M. et al. Phase 1b study of galunisertib in combination with gemcitabine in Japanese patients with metastatic or locally advanced pancreatic cancer. Cancer Chemother. Pharmacol. 79, 1169–1177 (2017).

    CAS  PubMed  Google Scholar 

  411. Pei, H. et al. LY3200882, a novel, highly selective TGFβRI small molecule inhibitor [abstract]. Cancer Res. 77 (Suppl. 13), 955 (2017).

    Google Scholar 

  412. Yap, T. et al. AVID200, first-in-class TGF-b1 and -b3 selective inhibitor: results of a phase 1 monotherapy dose escalation study in solid tumors and evidence of targeted engagement in patients. J. Immunother. Cancer 8, https://doi.org/10.1136/LBA2019.10 (2020).

  413. Santini, V. et al. Phase II study of the ALK5 inhibitor Galunisertib in very low-, low-, and intermediate-risk myelodysplastic syndromes. Clin. Cancer Res. 25, 6976–6985 (2019).

    CAS  PubMed  Google Scholar 

  414. Keedy, V. L. et al. Association of TGF-β responsive signature with anti-tumor effect of vactosertib, a potent, oral TGF-β receptor type I (TGFBRI) inhibitor in patients with advanced solid tumors. J. Clin. Oncol. 36, 3031–3031 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Rik Derynck, Shannon J. Turley or Rosemary J. Akhurst.

Ethics declarations

Competing interests

R.D. is a co-founder of Pliant Therapeutics. S.J.T. is an employee of Genentech. R.J.A. has sponsored research agreements with Pfizer and Bristol–Myers Squibb and is a co-inventor of a patent on the use of anti-TGFβ antibodies that is co-owned by the University of California at San Francisco and XOMA.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks S. Mani, J. Seoane, H. Ungefroren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov database: https://clinicaltrials.gov

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derynck, R., Turley, S.J. & Akhurst, R.J. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18, 9–34 (2021). https://doi.org/10.1038/s41571-020-0403-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-020-0403-1

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer